Scalaness/nesT: Type

Specialized Staged

Programming for Sensor Networks

Christian Skalka

University of Vermont
skalka@cs.uvm.edu

Peter Chapin

University of Vermont
pchapin@cs.uvm.edu

Abstract

Programming wireless embedded networks is challengingtaue
severe limitations on processing speed, memory, and baltiulwi
Staged programming can help bridge the gap between high leve
code refinement techniques and efficient device level progtay
allowing a first stage program to specialize device levekcotere

we introduce a two stage programming system for wirelessaen
networks. The first stage program is written in our extendatbdt

of Scala, called Scalaness, where components written irtyper
safe dialect of nesC, called nesT, are composed and spedali
Scalaness programs can dynamically construct TinyOS-tantp
nesT device images that can be deployed to motes. A key result
called cross-stage type safety, shows that successfit syae
checking of a Scalaness program means no type errors vedl ari

ther during programmatic composition and specializatibW&N
code, or later on the WSN itself. Scalaness has been imptechen
through direct modification of the Scala compiler. Impleagion

of a staged public-key cryptography calculation shows #ressr
memory footprint can be significantly reduced by staging.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guage§ Processors—Compilers

Keywords Staged programming; Scala; nesC

1. Introduction

A wireless sensor network (WSN) is a network of small nodiss, a
calledmotes equipped with sensors or actuators, and that commu-
nicate with each other via short range radio links. Programgm
WSNs is challenging because the nodes are severely resmmee
strained in terms of memory and processor speed. This paper d
scribes a programming language designed to support theatito
generation of runtime-efficient code for WSN nodes. The lagg
enablesdynamic specializatioof node code on a nearby hub or
other more resource-rich device, allowing adaptation tperties

of a node’s deployment environment such as neighborhoogcha
teristics, network interference factoetc

* This author's work was supported by a YIP grant from the Airdeo
Office of Scientific Research (AFOSR).

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. Copyrights for components of this work aivbg others than the
author(s) must be honored. Abstracting with credit is petedi To copy otherwise, or
republish, to post on servers or to redistribute to listguires prior specific permission
and/or a fee. Request permissions from permissions@agm.or

GPCE 13 October 27-28, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s). Publication tiglicensed to ACM.

ACM 978-1-4503-2373-4/13/10. .. $15.00.
http://dx.doi.org/10.1145/2517208.2517217

The Johns Hopkins University

Michael Watson

University of Vermont
mpwatson@cs.uvm.edu

Scott Smith

scott@cs.jhu.edu

Our system supports dynamic generation of programs for the
TinyOS operating system [16], a popular platform for WSNs. |
features programming abstractions for specializing WSdecal-
lowing on-the-fly adaptation to current WSN deployment d¢end
tions. We use a restricted formstaging[8, 32, 33] to achieve well
founded dynamic program generatidfirst stagecode is written
in an extended version of Scala [30], called ScalanessaBess
program execution yields a residusdcond stag¥/SN node pro-
gram written in nesT, a variant of the popular nesC programgmi
language [12] with a stronger type checking analysis. Tloerss
stage program is constructed from module components treste
first class values, which may ligpe and value specializedr-
ing the course of first stage computation to yield more compac
and efficient code. A code rewriting strategy in the impletagan
transforms nesT code into nesC code, which can be compiled us
standard TinyOS tools.

While staging is well-studied and has been explored in a WSN
context [24], our work is novel in that we achieve strongetist
safety guarantees than previous work. At the point of Seasiapro-
gram compilation, our compiler can statically verify thayaesT
program produced by the Scalaness runtime will be stafitgbe-
safe when deployed and run on a network node, even if module pa
rameters are specialized during the course of nesT modaip@o
sition. We call this propertgross-stage type safetyhich has been
previously studied in a foundational language context.[RDthis
paper we apply these concepts to the more practical Scalare3
language, and illustrate how they support the implemeniaif ef-
ficient real-life WSN applications.

1.1 Application Setting and Contributions

The diagram in Fig. 1 provides an overview of the Scalanes3/n
language architecture. Scalaness source code is compiethod-
ified Scala compiler to Java bytecode, and run in a standaktl JV
At runtime this Scalaness program may generate nesT codeh wh
is subsequently rewritten to nesC and compiled using thelata
TinyOS compiler. The resulting image can then be installed o
nodes in a WSN.

Another interesting feature of our intended applicatiotr se
ting, captured in Fig. 1, is the physical platform on whicH- di
ferent elements of the Scalaness/nesT “workflow” may be exe-
cuted. Scalaness source code will typically be compilethénlab,
prior to deployment. There are two distinct deployment aces
where compiled bytecode execution, TinyOS image generatio
and mote (re)programming (the rightmost two boxes in Fig:al)
occur. Clearly these activities can take place in the lalgre/kVSN
motes can be easily imaged over e.g. USB connections prite-to
ployment. But the more interesting scenario we aim to supipor
generation of TinyOS images on a “hub” devioesitu, and then to
automatically reprogram WSN nodes over the air (OTA) froat th
hub.

Stage 1 Stage 2
A J
[\)
Scalaness (Stage 1)
Computation i
R Result N .o Rewrite | O Source Code
~
Modified &nce | ¥ D .
Scala & / \.~
Compiler O Execution Environment
S 1/0 with user ==> Load
and/or WSN —> Parse

InLab

In Lab, or in situ on Hub

In situ on Motes

Figure 1. Scalaness/nesT Compilation and Execution Model

In WSN applications such as our Snowcloud snow telemetry
system [11, 26], sensor motes report data to higher powarks, h
pictured in Fig. 2. The hub device in the figure uses a low-pede
embedded Linux platform that supports a JVM, and is in direct
radio communication with the sensor network via a physjcatt
tached mote. These types of devices are readily availableteaap.

Such a system can execute compiled Scalaness code, and com-

pile and deploy generated TinyOS images to nearby moteseSin
the hub is in communication with the network, Scalanes3/ngs
uniquely positioned to evolve network behavior based orohall
view of observed data, a technique calleatkcasting34] when
used specifically for network control. In this context thegiit of
cross-stage type safety is clear: type-checked Scalaoesgila-
tion in the lab ensures type safety of bytecode executionhen t
hub,andtype-safety of dynamically generated TinyOS image exe-
cution on the WSN. Manual correction of type errors in getegta
TinyOS images in this scenario is infeasible since thestesys
run automatically in remote settings.

7y

Figure2. A Sensor Node (L,C) and Hub Device (R).

Paper Outline. The main contributions of the work presented
here are the specification, implementation, and prototype a
plication of the Scalaness and nesT languages, includieg th
syntax, semantics, and type analysis. In Sect. 2 we sumenariz
Scalaness/nesT via discussion of an extended example.aForm
specifications of the nesT and Scalaness languages arefege
Sect. 3 and Sect. 4, respectively. Their semantics and hgayt
possess several novel and challenging features, which ove ish
Sect. 5 are grounded in principles studied in a previous daun
tional setting [20]. We describe our implementation andsen

an extended example application of our system to resouEsac
control in WSNs in Sect. 6 and Sect. 7, along with some empiri-
cal results demonstrating efficiency benefits of our apgroside
conclude with remarks on related work in Sect. 8

2. An Example: Authenticated M essaging

In this section we provide a high-level overview of ScalafessT
usage and applications via an example. (This example iganrii
DScalaness/DnesT, a simplified formalization of the imm@atad
Scalaness/nesT, which is defined later in this paper.) Tampbe
illustrates both the type and value specializations that azcur

in our system. This example needs to be very small to fit in this
overview which means it alone is not complete evidence of the
advantage of mote code staging, but it should point the re@de
the promise of the approach.

Program description. To illustrate type specialization, we refine
address size. It is well-known that minimizing address spsize

in WSN message packets can obtain significant energy salings
reducing message sizes, since each bit of transmissioroverkto
consume energy similar to 800 instructions [22]. Howeve§NE
are “ad hoc” precisely in the sense that positions and dessit
of nodes in space are unpredictable, so “minimal” addreasesp
is an environmental property, where minimality may need ¢o b
determinedn situ.

To illustrate value specialization, we define a DnesT code te
plate that can be instantiated with specific session keyseoure
communication in a WSN. We imagine that the template is msta
tiated on high powered hub or lab device, where session keys a
generated. In previous work it has been shown how symmedyic k
signatures can be used to support language based resothioe au
rization in WSNs [4, 5]. In particular, communication betmese-
curity domains in a WSN is mediated by credentials imple@@nt
as keys, and nodes lying at domain frontiers can use difféwyrs
to send (to the other domain) and receive (from the other dgma
over secured link layer channels. Since it is unpredictaliiere
nodes will be physically distributed in space, approprlags for
each node need to be establisleditu. Defining node functional-
ity using generic code that must be instantiated with spekéys
allows adaptation to a deployment environment, and allows e
pensive computations for establishing session keys toftwadéd
from the WSN to a higher powered device. Experience with an ac
tual implementation of this application is discussed Séct.

The Code. To distinguish Scalaness and nesT code in examples:

we will use a darker font for Scalaness code and a lighter font2
23

for nesT code, and line numbers for reference. We begin \uih t
definition of a parameterized typeesgT(t) using the Scalaness
abbrvt binder, where an instanagesgT(7) denotes the ground
type obtained by substitutingfor t in the definition ofmesgT.

1 abbrvt mesgT(t) = { src : t; dest : t; data : uint8[] };

Next, we define a typeadioT, which is the type of nesT modules
that provide an API to the radio.

2 abbrvt radioT = < nt < mesgT(uint) >

3 { export radio_x(ntx);

4 inmport handle_radio_r(ntx); };

The nesT module language is a simplified version of the nes€ co
ponent language. In this example, any module of typ@ioT
exports aradio_x function for sending messages, and imports
ahandle_radio_r function that allows received messages to be
handled in a user-defined manner. Both functions take messag
references as argumeht§urthermore, the module is parameter-
ized by the type of messageas, where the address type is upper-
bounded by 32-bit unsigned integer. Thus, any module of type
radioT can be dynamically specialized to a 32, 16, or 8 bit address
space by type instantiation. Module type parameters arayal\ae-

fined with brackets< ... >. o
Now we define another typsommT Which is the type of modules
providing a QOS layer over a specialized radio.

= (m < mesgT(uint)) o
< >
{ export send(nt=*);
inmport handl e_receive(ntx);

5 abbrvt commT
6
7
8

I

Although this type is also parameterized by a bounded messag
typemt, as isradioT, the parameterization is subtly different syn-
tactically and semantically, sine@mmT expects a program context
where the radio has been specialized. ThugpeimT, mt is under-
stood as being “some” type with an upper bounchefgT(uint)
which occurs in the module signature, whereas the modudéf its
has no parameters to be instantiated— note the empty iespaic
rameter brackets > in the module type after the delimiter. This
sort of type is needed in the presencelgfhamic type construction

a useful Scalaness feature we exemplify below.
Next we define modules for sending and receiving messages th
provide a layer of authentication security over the radio.

a

9 authSend = < m < mesgT(uint); sendk : uint8[],>

10 { inport radio_x(ntx);

11 export send(m: ntx)

12 { radi o_x(AES sign(m sendk)); } };
13

14 authRecv = < m < mesgT(uint); recvk : uint8[] >

15 { inport handle_recv(ntx*);

16 export handle_radio_r(m: ntx)

17
18

{ if AES_signed(m recvk)
handl e_recv(m; } };

Observe that in the implementationsefnd in moduleauthSend,
messages are signed with a keyndk, whereas when messages are
received they must be signed with a possibly different keyvk
before being passed on to the user’s receive handler, aisgéc

moduleauthRecv. These modules are parameterized by a message

typemt, and also theendk andrecvk key values.

To generalize a technique for composing these modules with a
radio to yield a module of typeommT, that is abstract wrt neigh-
borhood sizes, radio implementations, and session keyrialatee
define the ScalanessithSpecialize function as follows:

19 def authSpecialize
20 (nmax : uint16,radioM : radioT,keys : uint8[|[]) : commT {

1For brevity the return type on all commands is omitted. Incaies it is
the TinyOS error typerror_t

25

26
27
28
29
30

typedef adt < uint = if (nmax < 256) uint8 else uint16;
val sendM = authSend(mesgT(adt); keys[0])
val recvM = authRecv(mesgT(adt); keys[1])
(sendM X radioM(mesgT(adt))) X recvM;

}

The first-class status of nesT modules in Scalaness is agpare
here. Online 20 the function is specified to take a modulempater
radioM of type radioT among its arguments, and to return a
module of typecommT as a result. It also takes an array of keys as
an argument, and on lines 22 and 23 it instantiatesiMesg and
recvMesg with the keys in the array. It also uses the tyge in the
instantiations, which in line 21 is dynamically construtten the
basis of the input variablemax which defines the needed address
space size and bound using the Scalangpedef construct. This
illustrates a key novelty of our system, the abilitydynamicallyset
a type to use on a mote based on a decision made in the Scalaness
runtime. Since the value afmax cannot be statically determined,
the type analysis only knows thatit is some subtype ofiint.
Finally, on line 24 the instantiated radio module is comgoséh
the instantiated send and receive modules via the Scalaness
operator. The semantics of module composition here is atdnd
[2]; in a composition aka wiring:; X u2, the exports ofu, are
connected to imports gf;. The function result is a module of type

commT.

To obtain a module defining a mote OS image in a program
context where neighborhood size is known, a radio impleatant
has been provided, and session keys have been computednWe ca
then compose the results of anthSpecialize function with
modules specifying top-level message send and receivevioehia
and amai n application entry point as follows (here we assume it
is known that address sizes can be limited to 8 bitapgo: < 256).
At line 30 a closed module is defined and a binary mote image can
be produced by a call timage.

3
3

appMR =

< > { export handl e_recv(m:
appM
< > { inport send(mesgT(uint8)*); export main() {...} };
image(appM X (authSpecialize(nmax,radioM, keys) X appMR));

mesgT(uint8)*) {...} };

In DScalanessimage is an assertion that its argument isianable

module, with no unresolved parameters or imports. In théaBeas
implementation, this is the point where nesT source codetisdy

generated. Successful Scalaness/nesT type checkingh(atgars
during stage 1 compilation as per Fig. 1) statically guaesithat
specialized code generated at the pointmfge will run in a type-

safe manner when it is eventually loaded and run on a mote.

3. ThenesT Language Distilled

In this section we summarize Ristilled version of nesT, called
DnesT, that isolates novel elements of nesT, specificaligirpat-
ric types, subtyping, type safety, and modules. DnesT seagea
formal specification for the nesT implementation—givenbgel
type theory a specification is crucial as a guide for the inmgleta-
tion. Due to limited space we summarize only the top-levelcst
ture of DnesT modules and our type checking algorithm, ireord
to focus more on the more central technical issues of modute c
position, instantiation, and typing at the Scalaness level

The goal of nesT is to be a type-safe variant of nesC, and DnesT
serves as the specification for how type safety is achievada@-
proach is another species of “safe C” language design pgsgech
as [29]. In particular, in DnesT all array bound accessestageked
at run-time, and pointer arithmetic and casting are restlito safe
forms only. We have developed a new type checking algoritiah t
incorporates subtyping, which supports bounded type petiens
in DnesT module definitions and a more accurate static aisatys
Scalaness code in the presence of type construction anchmedT
ule instantiation.

g, 7 == t|T|uint8 | uintl6 | uint | types
uninit | {I: 7} | 7[] | 7*
T = ix7 type parameters
\Y, = X:7 value parameters
c = fV):7={e} command definition
s = fV):7r command signature
L = 3 imports
I3 = ¢ exports
€ = 3 export types
d = Ttz =c¢c|Tx = [le]| declarations
te={l=¢g]c
w = <T;V>{4;d; ¢} module definitions
pr = <T;V>{ye} module signatures

Figure3. Syntax of DnesT Types and Modules

3.1 Syntax and Semanticsof DnesT

Module definitions rely on a notion of lists aka sequencesyof s
tactic entities, so we begin with a definition of relevantatiain.

Notation and identifiers. Sequenceare notated, ..., z,, and
are abbreviate@; T, is thei-th element,) denotes the empty
sequence, and] is the size. We write € T to denote membership
in sequences, andz denotes a sequence with headnd tailz.
We denote append @fy. For relational symbol® € {x,=,:},
we use the abbreviatiom® Ry = z1 Ryi1,...,2Zn Ryn. So for
exampleZ : 7 = x1 : T1,...,Zn : Tn. We will use metavariablé
(of set.F) for function names|, (of setL) for field namesx (of set
V) for term variablest (of setT) for type variables.

Module syntax. The syntax of DnesT modules is defined in
Fig. 3. Modulesy are written<T; V>{s; d; £} with T andV being
generic type and term parametaiyeing module scope identifier
declarations, including function definitions, andnd¢ being im-

ports and exports. In Sect. 2 and elsewhere we use the keyword

i mport andexport as sugar indicating this categorization.

All type parameters are assigned an upper bound, and term

parameters are explicitly typed. Imports and export typessea-
qguences of imported and exported command type signatures. E
ports are sequences of command definitions. Exports areedefin
in terms of expressions, the syntax of which we omit here for
brevity. Declarationsl; are a sequence of typed variable declara-
tions. Base values, arrays (in brackigtd]), structs (in brace$-}),

and commands may all be declared, and the scope of declaied va
able names is restricted to the module. Declarations areriaut

to include in DnesT, as they support serialization of valamme-
ters during Scalaness instantiation as we describe in &8&ct.

While we have elided the specifics of DnesT syntax from this
shortened presentation, we now give a high-level summaiis of
largely standard features. Expressions include standditceCon-
ditional branching, looping, sequencing of expressionsction
calls, arrays, structs, numeric base data types and batimatic
operations. As in nesC, no dynamic memory allocation isiposs
ble; all memory layout is established by static variabldatations.
DnesT disallows pointer arithmetic, to support strongpetgafety
guarantees. Type casting and array access have run timksdhec
posed: types may never be cast to a pointer, and array ascagse
always checked to be in bounds at runtime. As in nesC, DnesT in
cludes apost operation for posting tasks, although we make no
syntactic distinction between tasks and commands. The imgan
of post corresponds to the “run-to-completion” model of TinyOS
tasks. Interrupts are omitted from DnesT since they do ryptifsi
cantly affect the typing issues we are concerned with here.

Module semantics A “runnable” module — one without imports

or generic parameters — is the DnesT model of a node OS image.
The declarations in the module defindsa@d sequencestablishing

an initial machine configuration, and the application empimynt is
defined in a required commandin.

DEFINITION 3.1. A module of the formk@; @>{;d; £}, where
main() : uninit € ¢, is called runnable

This model is consistent with nesC, where an applicatioefsdd
as a top-level component that establishes an initial cortgn
through variable declarations, and requires user definitiban
entry point (an event handler call@doted). Formally speaking,
type safety in nesT is a dynamic property of runnable modules

3.2 Type Checking and Subtyping

The type system for DnesT combines a standard procedural lan
guage typing approach with subtyping techniques adaptu fr
previous foundational work [13, 20].

At the heart of our system is a decidable subtyping judgment
T+ 71 < 72, whereT is acoercionand defines a system of upper
bounds for type variables. This establishes a subtype ioglen
base types, and also allows for width subtyping of recordie. re-
lation is defined in Fig. 4. Algorithms for deciding the rédbet and
integrating it with dynamic type construction and other |8oass
(stage 1) type features was a central topic of [20].

TRANSS
REFLS ToPS T <1 Thr <73
THTXT1 T T
TH™T X713
STRUCTS
UINTS THFT <73

TH uint8 < uintl6 < uint

THE{h:mWla: =} < {1 : 73}

Figure4. Subtyping Rules

The type checking algorithm for DnesT expressions is a combi
nation of standard procedural type systems and standatgosougp
systems. Module typing is obtained by type checking moduie e
ports, using a coercion obtained from the module type paense
and a typing environment obtained from a combination of n®du
value parameters, imports, and variable type declaratidnalid
module type checking judgment is written as:

<T,V>{1;d; &} : <T,V>{s;¢}

Wheree is just the type signatures ¢f and each of the command
bodies in¢ is proven to respect its type signature.

ExampPLE 3.1. The moduleuthSend defined in Sect. 2 code line
9 can be assigned the following type in DnesT:

<nm < nesgT(uint); sendk : uint8[] >
{ import radio_x(mt=+), export send(nt=*) }

4. The Scalaness L anguage Distilled

Scalaness serves as the language for nesT module compasitio

the same manner as nesC configurations serve to compose nesC
modules, but Scalaness is a much more powerful metalanguage
since modules are treated as a new category of first clasesvalu

in Scalaness. Instantiation, composition (aka wiringll Bmaging

of modules are defined as operations on module values. Becaus
instantiation of modules with both types and values is adidw
types and values may migrate from the Scalaness level toeiE n
level after programmatic refinement, realizing a discigdifiorm of

code specialization.

struct module type instances. The appropriate behavidstamed

L = class C(X <:N) extends N {T £; K M} classes) . .
- == by treating dynamically constructed types as extensions loé-
kK ow= (T f){suf’er(f)v thisf =f;} constructors gic class of objects, and declarations of DnesT level typesav
M == Tn(Tx){returne;} methods typedef construct as syntactic sugar for ordinary object construc-
e = x|ef|em(s)|newC(T)(s)| (N)e] expressions tion. We define diftableType class as the supertype of all types
llef=e|defx:T=eine| of objects that can be used to instantiate a module, and dgatiyn
abbrvt X(X) = Tine | constructed types are defined as instances of a gemerType
wlexele(s;8) | image e class.
T == X|N|Touw types DEFINITION 4.1. Any DScalaness class tab{e¢T’ comprises the
= ¢(T) class types following definitions:
1 == (p,N) references CT(LiftableType) =
class LiftableType() extends Object {...}
Figure5. The Syntax of DScalaness CT (MetaType) =

class MetaType(X <: LiftableType) extends Object {...}

.) o . And we take as given the following syntactic sugar:
Our goal in this Section is to describe the Scalaness syntax

and semantics realized in our implementation. Since Sealad typedef x <: T =e; ine, = def x : MetaType(T) = e; ine;
large to easily formalize, we define hereDastilled Scalaness al ; ; ; ;

' h . ' ass typeletaT is generalized on a single type variable. For
DScalaness, that extends a core typed object-orienteddgegto brevity)cl)l? n(?taatLiosrerewe gefine' gle yp
include syntax and semantics for defining and composing Dnes ' '
modules. The particular object-oriented core calculus & is MetaType(T) 2= MetaType(T)
a combination of two Featherweight Java variants: Featbigiw

Generic Java (FGJ) [17] and Assignment Featherweight Jeva)(cally constructed type cannot be treated as a type at thel@rtss

[27]. level. This is a more restrictive mechanism than envisianeslr
41 Syntax of DScalaness foundational model [20], however it allows us to define D@naks

) o as a straightforward extension to Scala, especially ingevhtype
The DScalaness language syntax is presented in Fig. 5. & ref cpecking.

A crucial fact of DScalaness type construction is that anyaatyi-

the reader to [17, 27] for details on the FGJ and AFJ objeented Module instantiation, shown in Fig. 6, is the only point waer
calculi, which are represented in the languages of classitiefis, specialization of DnesT modules is allowed. Since DScaisaed
constructors, methods, and the first line of expressiondatefined DnesT are two different language spaces, some sort of tranaf

in Fig. 5. DScalaness extends these features with a typeabl@r tion must occur when values migrate from DScalaness to DnesT
declaration forndef x : T = e; in e, Where the scope ofise,, a via module instantiation. Thiifting transformation involves both
dynamic type construction forrypedef x <: T = e; in e, with data mapping and serialization since the process spaceditits.
similar scoping rules (although this is defined as syntautgar in We aim to be flexible and allow the user to specify how values ar

Definition 4.1). For programmer convenience a simple pateme |ifted and how types are transformed. We only require tHting
ized type abbreviation bindebbrvt is also provided. We include anq type transformation are coherent, in the sense thatfting |
DnesT moduleg. in the DScalaness expression and value spaces: of an object should be typeable at the object’s type transition.
instantiation is obtained via the fore (e;; &), whereg, are type We formalize this in the following definition.
parameters and, are value parameters. Wiring of modules is de- it

. . . L .
notede; i e,. Imaging of modules, denoteihage e, ensures that DerINITION 4.2. We assume given a relatien which transforms
e computes to a runnable DnesT module. a DScalaness referenaento DnesT declarationd and expression
42 antics of DScalaness e. We also assume given a DScalaness-to-DnesT transfommatio

of types][-]. To preserve type safety, we require in all cases that

The semantics of DScalaness is an extension of the semaitics Mt~ ; i
AFJ and FGJ to incorporate DnesT modules and operations: Com (p,N) (_> d, ¢ implies both of the following for some type environ-

- ' X mentG:
putations assume a fixed class tabl&' allowing access to class _
definitions via class nhames, which always decorate an ¢bjgpe. g,9kFd: G and G, o+ e:[N]
A store ST is a function from memory locations to object rep-
resentations. Objects are represented in memory by listbjett
referenced, which refer to the locations of the objects stored in
mutable field values. A referendeis a pair(p, N) wherep is the
memory location of an object representation and the nominal
type of the object, including its class name. Hence, givealaect
referencép, C(T)), we can access and mutate its fields .ST'(p),
and access and use its methods via the definIst{C).

Following AFJ, the semantics of DScalaness is defined as a
labeled transition systerwhere transitions are of the foren-{s = DEFINITION 4.3 (Special Mapping Operationd)etm range over
ST, s’ = ST’} — €'. Intuitively, this denotes that given an initial ~ vectors with mapping interpretations, in particular T, ¥,and
store ST and expressiore, one step of evaluation results in a £. Binary operatorm: Y m2 represents (non-exclusive) map
modified storeST’ and contractune’. We writee — e’ as an merge, i.eemy Y ma2 = mi1@mgy with the requirement that
abbreviation when the store is not altered. td € Dom(mi) N Dom(ms) impliesm,(id) = ma(id). The

The primary novelty of DScalaness is the formal semantics mappingm/S is the same as: except undefined on domain el-
of type and module construction. We begin with type construc ements in seb, and the mappingn | s is the same as: except
tion, which is provided to allow programmers to dynamicalon- undefined on elements not$h

The full definition of serialization and an example are gieerm
discussed below in Sect. 4.3.

Module wiring is given a standard component composition se-
mantics. We only allow wiring of instantiated modules, whis
consistent with nesC and simpler to implement. In a wieng e,
the exports ok, are wired to the imports af;. This is specified in
the MODWIRE rule in Fig. 6, which relies on the following auxil-
iary definition of operations for combining mappings.

MODINST B
p=<t=xTT:>{d; €}
1{(p, MetaType(T)); I) — <>{1; d'Qd; &}[[T] /7]

serialize(Z,3,1) = d’

MODWIRE o
L= (Ll/Dom(fg))@LQ d= d2@£2 | Dom(e1)

<>{uydi; &} x <>{ia;da; 2} — <>{;d Y di; &1}

M ODIMAGE
mai n defined in¢

image (<>{;d; &}) = <>{;d; &}

Figure6. DScalaness Module Semantics

Finally, the MODIMAGE rule in Fig. 6 shows that imaging it is an
assertion requiring its arguments to be a runnable module.

ExXAMPLE 4.1. Given code definitions in Sect. 2 and an invocation
authSpecialize (50, radioM, [|ki,k []), whereradioM : radioT,
and k4, k, are keys, the evaluation of the expression on line 24,
sendM x radioM(mesgT(adt)), will evaluate to the following
module:
< > ({ inport handl e_radio_r(mesgT(uint8)x);
export send(m : mesgT(uint8)x*)
Pl

{ radi o_x(AES_sign(m ki));
where the elided declarations include a definition of a com-
mandr adi o_x imported fromradioM also with argument type
mesgT(Ui Nt 8) *.

4.3 Serialization and Lifting

Serialization generates a flattened DnesT source cod@nerta
DScalaness object in memory. At the top level, serializatimds
the value parameters of a module to the results of flatterika,
lifting, via a sequence of declarations. Here is the predigimition.

DEFINITION 4.4 (Serialization) Assume given a stor€7" which
is implicit in the following definitions. We define seriatina of
DScalaness references as follows, along with an extenditimeo
user defined lifting relation to sequences of references:

lift

o 5,0
— it = _ lift — o it — _
l1<—d,e 1—d,e 1—d.e
serialize(Z,7,1) = dQ7T =¢ 1T —aF oz
)

Although lifting is user defined, a standard strategy is tmuhuce

a new declared variable for each memory reference in thedlift
object, and bind the variable to the lifted referent. Herlifeng
will typically be defined recursively. In our implementatiowe
have adapted a “default” lifting which follows this straye@nd
also transforms objects by just transforming the fields atepre-
sentative struct, and ignoring methods. We will illustrtitis with
an example in Sect. 6. We can formally capture the essend¢gsof t
transformation with the following definitions. It is easygee that
these definitions will satisfy the requirements of Definiti?2.

EXAMPLE 4.2. In this example we allow lifting of any object ref-
erences, and transform the objecinto a structure containing the
transformed fields of. Methods are disregarded by the transfor-
mation. Here is the specification of the type transformation

CT(C) = class C(X <: §) extends N {R £; KM}
[C(T)] = {£ : [R{T/X]}

MobT
w : pr in DnesT type checking

I'Fu:@our

MODIMAGET
F'ke:To<>{se} main() : 7 € ¢

T'F image e : To <>{i;¢}

MODINSTT
T'Fe:To<tx7T1;T:T2>{1;¢} '+ & : MetaType(T1)
TFé&y: Ty }—HT1}]<?1 F[[TQ]]#?Q
Tk e(81;8) : & < [T1] o <>{1;¢}
MODWIRET

TFey:Tio<>{t;e1}
Tk es:Teo<>{12;e2} t = (t1/Dom(e2)) Qe

Fl—el D<622T1YT20<>{L;61}

Figure7. DScalaness Module Typing Rules

and here is the specification of lifting.

4.4 DScalaness Type Checking

The primary novelty of DScalaness are the rules for DnesTuieod
typing and composition, and that is the focus of this sectitle
adopt the typing rules of FGJ in their entirety, and referrdrader
to [17] for relevant details.

DScalaness syntax for expressing DnesT module types;is,
wherer is a DnesT module type. ThHEin this form represents
the type bounds of dynamically constructed types that haen b
used to instantiate the module; we refer to this part of thee ty
as theinstance coercionBecause these types are dynamically
constructed, their identity is not known statically, hetfve need to
treat them as upper-bounded type names in the static typgsana
This subtle technical point of our type system is discussedase
length in Sect. 5. It is important to note that the type names i
will be fully resolved at run time, so that any module genedat
by a DScalaness program execution will have a fully reifie@£in
type. Throughout this paper, we abbreviate s aspr for brevity.

This is reflected in the MDT rule in Fig. 7, which connects
the DnesT typing system with the DScalaness type systermeSin
in this case we are typing an uninstantiated module defmitio
its instance coercion is empty. An instance coercion in auteod
type is directly populated when a module is instantiatedndbe
MODINSTT rule. Here, the type instanceés are all dynamically
constructed, so they define the upper bounds of the instadtia
module’s instance coercion. We also expect all type andevalu
parameters to respect the typing bounds specified in the lmodu
definition. The MoDWIRET typing rule for module wiring is a
straightforward reflection of the operational rule for migdwiring,
as is the MODIMAGET rule for module runnability imaging.

EXAMPLE 4.3. Returning to the code and type examples in Sect. 2,
we may assign the following typing:
G F authSpecialize(50, radioM, [|ki,k2]]) : commT

GivenradioM : radioT, k; : uint8[], k, : uint8[] € G.

5. Scalaness/nesT Foundations constructing types, so for example:

The Scalaness/nesT type system design is based on prsipte tlett < uint1l6 = if e thenuint8 elseuint16in (\z : t.x)
ied in the foundational calculuvL)? [20]. (ML) comprisesF<, 3t < uint16.4 —s ¢

state, dynamic type construction, and staging featurethisrsec- h ’
tion we describe how the design of modules and module opesati Here a typet is dynamically constructed to be eithaint8 or

in Scalaness can be modeled (ML). Although the correspon- uint16, and then used in the type annotation of a type-specialized
dence is informal, these models directed the design of Beata identity function. Furthermore,escapes its declaration scope since
semantics and type checking, and provide confidence initsdso it annotates a function argument. Sincis some arbitrary compu-

ness. While our choice of modules as the basic unit of nes& od tation, we cannot statically predict whawill be, other than “some
based on obvious software engineering concerns and theforeeed type with upper boundint16”. Note also that since can appear
tight relation with nesC, Scalaness modules are well catedlwith in contravariant positions, it is unsound to perform a ciargrsub-
certain structures igML) and so are also technically appealing. stitution of uint16 for ¢, so the3 bound is needed. Although this
usage ofi types is somewhat non-standard, an eigenvariable inter-
pretation of the bound type variable is sound and also ctamgis
with standard existential type interpretations.

Inspired by these foundations, in DScalaness the type form:

The model of a module. Code as a datatype is available(ML)

as expressions of the forfe). While code as a datatype is a stan-
dard feature of staged/generative programmii,) has adapted
staged programming to a setting where different code lesds
intended for execution on different machines with distipaicess Ti o <T2; V>{y; ¢}
spaces. In particular, values, including code values, imeistosed.

If a type or term variable occurs free i), it must beA or A
bound, respectively, for closure. Hence, if a type varidkiefree

in (e), thenAt < 7.(e) binds it, and provides parametric subtyping
polymorphism for{ML) terms.

If the term variablez is free in(e), then Az : 7.(e) binds it.
Furthermore, the type in the termAx : 7.(e) mustbe of the form
(s}, because the type discipline requires thi of code type, since .
it occurs within code. If the programmer wishes to pass aevalu 6. I mplementation

captures the same typing mechanisms, in particular tharinst
coercionT; is the analog off bound type variables, in contrast to
the type parameterE, which are implicitlyV bound, as discussed
above. The static semantics Bf and T» are distinguished appro-
priately, especially in the treatment of the typing rulesrfdule
instantiation and module wiring in Fig. 7.

residing at the current execution stage to such a functtanpit Scalaness is implemented as a modification to the open source
be explicitly “lifted” in the now-standard style of [33]. kiever, in Scala compiler. Scala was chosen as a basis for our first stage
(ML), lifting a value entails serialization of it, which is norivial guage because the Scala compiler supported a plug-inectiie,
in case the value is stateful. o and we originally envisioned implementing Scalaness asug-pl

We use(ML) type and term bindings to model Scalaness type j, e also wanted to create a practical programming sysieoh,
and term parameters. This is a standard strategy, in factyfGiy Scala’s easy access to Java libraries and broad commupippgu
[17]is based on it as well. Hence the basic analog of a module i \yere attractive.

At < 72T 2 (<) (e) ~ Keeping the Scala and Scalaness type checking well segarate
. . in the implementation had useful software engineering fitsreas

wheret is a bounded type parameter ands a value parameter. well. It simplifies the problem of tracking the evolving Szalom-

The model of instantiation. Most of the interesting parts of Piler. It also promotes a clear separation of first and secbage
Scalaness typing happen at instantiation. Given the abmdein concerns in the mind of the Scalaness programmer. Unfdelyna

of a module, théML) analog of instantiation is a term of the form: ~ We found that the needed modifications to the type checked cou
only be made by direct modification of the compiler code base.

(At <7z 2 (6)(e) (T)(lift v) In addition to type checking, runtime support is needed to im
where all parameters are instantiated. Note in partictiat the plement Scalaness module operations. Also, facilitiesegaired
value parametes must be explicitly lifted, since the model must {0 _réad nesT modules from the file system and parse them into
reflect that values passed in to modules are always corstruct ASTs, and to write TinyOS image source code files defined by con
at the first stage in a Scalaness program. This means thaist structed nesT modules atiage invocations.
be assumed to not be a code value, while the type annotation on
x requires that it be lifted. There is no explicit lift opexatiin
Scalaness, but the DSCalaness semantics (Fig. 6) spebdieset The Scalaness/nesT compiler and several code examplesliivg

6.1 OnlineRepository and Examples

rialization is always implicit at module instantiation.saness typ- applications discussed in Sect. 2 and Sect. 7, are avaifable
ing of instantiation thus treats value instantiation\aapplication download from the following URL:

with implicit lifting of the argument, and type instantiati asA .

application, i.e. a form of boundedelimination. http://tinyurl.conl a85z8cu

Type construction and variable escapecentral technical nov-

elty and core feature of DScalaness is dynamic type coniiruc 6.2 nesT Type Checking and Program Transformation

for module instantiation. As we discussed in Sect. 2, thidgufie The nesT language is treated by two major components in the
is technically challenging since constructed types caamstheir implementation, the type checker and the nesT-to-nesCithegvr
scope of declaration. Similarly, ML), types may be dynamically ~ transformation. The nesT type checker was written from tbegd
constructed that can escape their declaration scope, ticydar if up, in contrast to the Scalaness type checker which was dedise

they are used as function type annotations.zAtype binder was an extension to the Scala type checker. The rewriting toaumsi-
introduced in(ML) for this purpose; intuitively a type of the form tion yields TinyOS2-compliant source code, which can beasep

Jt < 7.5 is a type containing a dynamically constructed type term rately compiled.

t with upper boundr. (ML) includes a “tlet” expression form for The nesT language is defined as a subset of the nesC language.
An AST yielded by parsing is type checked by our algorithmialuh
2Pronounced “framed ML.” incorporates subtyping and other features not presents@ nge

checking. This algorithm is a nearly direct encoding of theet
discipline described in Sect. 3. Following type checkirgg AST
is submitted to a rewriting transformation that imposes ain
disciplines discussed in Sect. 3, in particular type saftimg and
array bounds checks, also in nesC. For example, a staterfrideat o
form x = ale] will be rewritten to:

int _x = e; if (_x >= a_SIZE) fail(); x = al_x];

wherea_SIZE is an automatically generated variable containing
the size ofa andfail is some user-defined function that handles
array bounds check failure.

Source code for nesT module definitions is written in separat
files that are included in Scalaness code, as discussed. bihisv
separation is mainly for software engineering purposesvtid
modifying the Scala compiler to parse intermingled ScathreesT
syntax.

6.3 Scalaness Module L anguage Syntax

In order to limit modifications of the Scala compiler and reelen-
gineering problems in our implementation, we have avoidedim
fying Scala syntax to represent Scalaness features. Herckiles
are represented as class instances, which must satisfylhwing
trait:
trait NesTModule {
def image(): Unit // Generates residual nesC program.

def +>(m: NesTModule): NesTModule // Wires this to m.
}

This trait is implemented by BesTModule class that provides the
appropriate semantics for wiring and TinyOS image genamatn-
cluding translation to nesC and file output. This class alanages
parsing and storage of nesT ASTs from source code files, aed ty
checking of nesT ASTs.

Any nesT module definition is a subclasVekTModule. Some
subtleties are involved in supporting first clagsneric modules.
Instantiation is implemented by method call, but since tape
value parameters vary per module, particular modules nefsted
their own parameters and instantiation methods. For exgm@
would represent theuthSend component definition from Sect. 2,
line 9 as follows:
authSend extends NesTModule {
mt : MetaType[LiftableTypel = _
var sendk : LiftableType = _
def instantiate(m: MetaType[LiftableTypel], k: LiftableType) =

{ val result=new authSend; result.mt=m; result.sendk=k }

"authSend.nt"
}

Although theinstantiate method and parameter fields must be
defined in the implementation at the time of this writing, quer
generation of these definitions is a topic for future worky emod-
ules instantiate method can be easily inferred from its symoeo-
tation. Note that the types at which parameters are declared
as general as possible (esgandn are not declared asints but
asLiftableTypes). This is because class definitions support the
semantics of Scalaness, not Scalaness type checkinggsiésthbe-
low), and declaring generic parameters at a maximally geégoe
removes interference related to Scala type checking. liyjmaite

the string literal“authSend.nt” at the end of the definition. This
is the file containing the nesT source code definition of thdufe
The Scala compiler has been modified to input and parse tlee spe
ified source code when this literal is encountered duringStbeda
type checking phase.

class
var

6.4 TypeAnnotation and Checking

Scalaness typing relies on native Scala syntax for ternmegifsp
cally Scala annotations and singleton types are utilizedleSan-
notations allow metadata to be associated with definitidrmaod-

ule type annotation is of the formModuleType(“wr”), where

pr is defined using the syntax of Fig. 3. The compiler-defined
ModuleType class automatically associates the type with the iden-
tifier immediately following it. In the case of module classfidi-
tions, the type is assigned as a class field. In the case atblari
definitions, the type is assigned as a Scala singleton tyfieeaib-
ject. For example, the declaration @fithSend on line 9 in as in
Sect. 2 would be preceded by such an annotation wheis the
type specified in Example 3.1, asédndM as on line 22 would be
annotated with an instance of that type. Similarly, annost are
required on method parameter and result types, if thoseads#x-
pect nesT modules as arguments or return them, as fafathierC
parameter of theuthSpecialize method defined in Sect. 2, and
the method'sommT return type. These requirements reflect the type
discipline in Scalaness as specified in Sect. 4, which reguirod-

ule type annotations at these points.

Scalaness type checking has been implemented as an adlysis
these annotations during Scala type checking, piggybgakirthat
process. When type checking a class that ext@ad$Module, the
compiler uses its type annotation to perform nesT type dhgck
on the underlying AST representation of the module. Whe typ
checking module operations (i.e. at invocationsinétantiate,
+>, or image), the Scala compiler has been modified to examine
operand types for Scalaness type annotations, and to decera
sultant singleton types of these operations with new Seakan-
notations, reflecting the typing rules in Fig. 7. A type chiagkex-
ception is raised in case this analysis fails. Scalanessdiypcking
does not modify Scala type checking in any other way, so it is a
conservative extension of Scala typing.

6.5 ImportingnesC Libraries

Our preliminary experiments with nesT show that it is expnes
enough to write useful program components. However, arlisrea
tic application will need to interact with various librasigvritten

in nesC. One library of critical importance is the TinyOS &te
ing system itself. Our current solution is to allow non-genaesC
components to be treated as nesT modules as long as theysenly
or provide commands, which are interpreted as nesT imports and
exports. Support for specializable generic nesC librargmanents

is a topic for future work. Events can be accessed througim™sh
modules provided by the user, since used or provided eveats a
really just syntactic sugar for provided or used commandpae-
tively. A library component defined in a fileibraryC.nc can be
defined as a nesT module as follows:

object LibraryC extends NesTModule { external("LibraryC.nc") }

Note that nesC code imported in this way is not type checked by
the Scalaness/nesT compiler, since nesT is a strict subees@.
Rather, the programmer type annotates the shimmed modualg us
a @QModuleType annotation as for other module definitions, and
the compiler trusts that the annotation is correct. Thisodhices

a possibility for type safety failure in our system, if thegorted
code contains a type error. A possible long term goal would be
complete re-write of TinyOS in nesT, yielding full type sifef

all sensor code, but this is well beyond our current scope.

7. Example: Authorization and Access Control

In [5] the SpartanRPC architecture for link-layer resouscgého-
rization in TinyOS-based WSNs is developed (as an extersfion
[4]). In SpartanRPC, resources are accessed by link-laraote
procedure calls (RPC) which require authorization. Useesaal-
thorized by communicating credentials to the provider,rezped

in an authorization logic based on RT [18] and implemented us
ing TinyECC [19] public key signatures. SpartanRPC supgpart
“open world” security model, allowing WSNs in different seity

Internet
Exchange/verify certs
Authorize access
Negotiate session keys
T (Re)image motes —

)b

Cross-domain communication:

Stage 1 I

A —

Stage 2

O

O
Q

Intra-domain communication:

Figure 8. Staging Authorization and Authorized Access in a
Multi-Domain WSN.

domains to interact without sharing secrafgriori. However, pub-

lic key encryption and signature verification is very expessn

a WSN. Hence, session keys are negotiated for ongoing m@sour
access (using a TinyECC-based Diffie-Hellman protocol).

In this section we describe a re-implementation of the $part
RPC protocol in Scalaness/nesT that addresses sever&tasher
ings of SpartanRPC, and will thus serve to illustrate the growf
Scalaness/nesT. The central idea, illustrated in Fig tBatsrespon-
sibility for authorization on the basis of public key cretlals is

offloaded from the WSN to a Scalaness program running on a hub
device or lab computer. We assume a WSN comprising two sub- Harvester:

networks under control of distinct security domaifieind B. Each
domain also controls a lab or hub device which is in commuiuna
with WSN nodes in their domain, either prior to or during aspl
ment. These devices are in communication with each othertbee
Internet, and exchange authorization credentials for tthamnain
over that medium in the first-stage Scalaness program. Each
vice then confirms authorization for resource access argptd
their own domain’s policies, and subsequently they netpsas-
sion keys over the Internet. These keys are then used toadipeci

The original and Scalaness/nesT versions of this appicatn
be compared both in terms of performance and user experience
the unstaged version, the SpartanRPC protocol requiresited i
network configuration period when credentials are exchdagel
verified. Since a single TinyECC signature requires at |&@st
seconds to verify on the Crossbow TelosB platform [5] with a
fully dedicated processor, there is an initial network “map”
period of at least a few minutes. Also, in the unstaged versio
upon first invocation of an RPC service Diffie-Hellman is used
in the network to negotiate a session key. In the stagedorersi
credential exchange, validation, and session key negmtiate all
performed on the high-powered hub. For this reason, mote cod
size in ROM is significantly reduced. There are differenaes i
RAM usage as well, due to authorization overhead in the gesta
version and also the storage of key materialin RAM vs. ROREasi
specialization of code with key material in the staged wersillows
the latter. Note that this difference is intensified by scatd the
number of keys (i.e. RPC services) needed by an applicatamer
RAM and ROM usage can have significant performance impacts
on deployed code. In the following table we summarize RAM and
ROM usage for the harvester and sensor node images for three
software versions: one with no security mechanisms in place
with unstaged SpartanRPC protocols in place, and one dgedera
by Scalaness evaluation in our staged version of the SfiP@n
protocol.

| || Unsecured| Unstaged| Staged| Savings|

ROM 36254 48616 | 36596 | 25%
Sensor pam 2868 5417 | 3038 | 44%
ROM 24316 35834 | 24436 | 32%
RAM 2274 4771 | 2402 | 50%

The “Savings” are the percent reduction from unstaged tresta
secure implementation, and these numbers show the pdtfmtia
saving both RAM and ROM space is significant. From the per-
spective of user experience, the staged version of thidcapioin
is more convenient, since no initial authorization perisahéeded
when the harvester is first introduced to the network. Thgesta
version also exposes the system to fewer bugs and failuegs th

nesT code for imaging on WSN nodes. The overall architecture \yould be obstacles to the primary goal of data collection.

of this application represents a concrete realization efideas of
Fig. 1, and also expands on and implements the idealizedmgam
presented in Sect. 2.

8. Conclusion

Note that our current implementation assumes nodes are pro-We have introduced Scalaness/nesT, a two stage progransysng
grammed in the lab since we have no secure OTA program dissem-tem for wireless sensor networks. Our system provides a folve

ination library; the Deluge protocol has such an extensgjrtat
we plan on using in the future.

Evaluation on Snowcloud To empirically evaluate the staged im-
plementation of SpartanRPC in Scalaness/nesT, we have-impl

programming environment for dynamically specializing aoth-
posing nesC modules in a type safe way; any type correcti@esda
program will generate only type correct residual programs.

8.1 Related Work

mented and tested both the original SpartanRPC as well as theWe do not review the broader topic of sensor network prograogm
Scalaness/nesT staged version in our deployed Snowcloud WS here; the reader is referred to [28] for a broader perspectiv

system architecture. Mobile gateway devices as picturdeign2
are provided to Snowcloud system users for data gathenibaie
also used by system administrators for controlling sangplates.
The hardware for both of these so-called “harvester” devitee
same for users and administrators, is equipped with a motesfo
tablishing network communication. When the device is idtroed
to the sensor network, the two together comprise a singleankt
with two distinct security domains — the sensor node subowtw

We follow the foundationa{ML) work in our language design
[20]; Sect. 5 discusses how it serves as the theoreticarpimiéng
of our approach. The primary aim of this work is to make the
theoretical insights of ML) more practical. We accomplish this
by making a sensor language nesT that is based on the design of
nesC, and by implementing Scalaness and nesT and testing the
framework on examples.

The potential of applying metaprogramming to sensor neksvor

and the subnetwork of the single device mote. The mote on har- was explored in the functional sensor language Flask [24kk~

vester devices provided to system users is supplied witteottéals
for collecting data, but not modifying network control, whas
system administration harvester motes are supplied witmger
credentials for both functions.

allows FRP-based stream combinators to be pre-computedebef
network deployment, but it is possible to generate ill-typgask
object code since cross-stage static type checking is mfutrpeed.
Hume [15] is a DSL for real-time embedded device programming

It includes a metaprogramming layer but that layer is mdke li
nesC's configuration files in that there is a very restricigdax for
a few special metaprogramming operations including corapbn
wiring, macros, and code templating.

MetaML [32, 33] and MetaHaskell [23] are a foundations we

build on; they do not address type specialization or dynaype
construction.

Lightweight Modular Staging [31] describes a method of ex-

pressing staged computations using a Scala host framewitdrk w
out any compiler modifications. The approach allows créages
type safety but does not support dynamic type construction.

Actor based sensor metaprogramming has been studied in [6];

[8] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault,.-N.
Volanschi, J. Lawall, and J. Noyé. Tempo: specializing exyst
applications and beyondACM Comput. Sury1998.

[9] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securihg
deluge network programming system.IRSN pages 326-333, 2006.

[10] M. Flatt and M. Felleisen. Units: Cool modules for HOh¢mages.
In PLDI, 1998.

[11] J. Frolik and C. Skalka. Snowcloud: A complete systemsioow
hydrology research. IRealWSN2013.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, andCDller.
The nesC language: A holistic approach to networked emisedde
systems. IPLDI, 2003.

this work shares our focus on high level dynamic reprogramma 13} G. Ghelli and B. Pierce. Bounded existentials and maitgping.

bility but is untyped. More broadly, meta programming is \kmo
to be useful for increasing the efficiency of systems aptiboa.
One example is Tempo [8], a system that integrates partet ev
uation and type specialization for increasing efficiencgydtems
applications. Ur [7] allows for type safe meta programmiogvieb
applications.

The units of staged code composition in nesT programming
are modules Countless different module systems exist, but they

are primarily designed to achieve separate compilationsaehd
linking [2]. Our different design goal leads to differentsign
choices in nesT modules. For example, data crossing nestleod
boundaries needs to conform to the property of process aiquar
a non-issue in standard module system designs. In addit@sT,
modules allow values/types across the boundary of modalés t
flexibly constructed, including dynamic construction opég, to
achieve maximal flexibility of cross-stage specializatibfodule
systems such as ML modules [21] and Units [10] allow typeseto b
imported/exported as we also support; there are sevetalésaof
ML modules including type hiding that we do not aim to support
nesT modules are more expressive in their support of firsscla
modules as values and the possibility of dynamic constnabif
“type exports.” That said, first class modules are not nev2§l,
we only claim novelty in their application to program stagisnd
the incorporation of dynamic type construction.

The type parametricity of System F and (3], and the practical
type systems it inspired such as Java’'s generics, do nattynees

as first class values as we do. C++ templates support typestas m

values in template expansion, but type safety of generatelé c
is not guaranteed without full template expansion. Corsgpt]
improves on this, but types are still not first class values.

Acknowledgments
We acknowledge Yu David Liu for early contributions to thienk.

References

[1] D. Ancona and E. Zucca. A calculus of module systedwurnal of
functional programming11:91-132, 2002.

[2] L. Cardelli. Program fragments, linking, and modulatizn. In
POPL, pages 266—-277, 1997.

[3] L. Cardelli and P. Wegner. On understanding types, dasaraction,
and polymorphismACM Comput. Sury17(4):471-523, 1985.

[4] P. Chapin and C. Skalka. SpartanRPC: Secure WSN middéefoa
cooperating domains. IMASS November 2010.

[5] P. Chapin and C. Skalka. Spartan RPC. Techni-
cal report, University of Vermont, 2013. Submitted.
http://ww. cs. uvm edu/ ~skal ka/ skal ka- pubs/
chapi n- skal ka- spartanrpctr. pdf.

[6] E. Cheong. Actor-Oriented Programming for Wireless Sensor
Networks PhD thesis, University of California, Berkeley, 2007.

[7] A. Chlipala. Ur: Statically-typed metaprogramming kvitype-level
record computation. IRLDI, 2010.

Theoretical Computer Scienc&93(1-2):75 — 96, 1998.

[14] D. Gregor, J. Jarvi, J. G. Siek, G. D. Reis, B. Stroustrapd
A. Lumsdaine. Concepts: Linguistic support for genericgpaonming
in C++. INOOPSLA 2006.

[15] K. Hammond and G. Michaelson. Hume: A domain-specifiglsage
for real-time embedded systems. ®PCE pages 37-56. Springer-
Verlag, 2003.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, atd S. J.
Pister. System architecture directions for networked @®snsIn
ASPLASpages 93-104, 2000.

[17] A. lgarashi, B. C. Pierce, and P. Wadler. Featherwelgiva. ACM
Trans. Program. Lang. Sys23(3):396-450, 2001.

[18] N. Li and J. C. Mitchell. RT: A role-based trust-managemframe-
work. In Proceedings of the 3rd DARPA Information Survivability
Conference and Expositippages 201-212, 2003.

[19] A. Liu and P. Ning. Tinyecc: A configurable library forliptic curve
cryptography in wireless sensor networks.|IREN pages 245-256,
2008.

[20] Y. Liu, C. Skalka, and S. Smith. Type-specialized sthgegramming
with process separatiotlOSG pages 341-385, 2011.

[21] D. MacQueen. Modules for Standard ML. Broceedings of ACM
Conference on Lisp and Functional Programmidi§84.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. HO#G: a
Tiny AGgregation service for ad-hoc sensor netwoi®E5OPS Oper.
Syst. Rey36(Sl1):131-146, 2002.

[23] G. Mainland. Explicitly heterogeneous metaprogramgnivith
MetaHaskell. INCFP, 2012.

[24] G. Mainland, G. Morrisett, and M. Welsh. Flask: stagaeddtional
programming for sensor networks. IIGFP, 2008.

[25] J. Mitchell, S. Meldal, and N. Madhav. An extension airsfard ML
modules with subtyping and inheritance. ROPL, 1991.

[26] C. D. Moeser, M. Walker, C. Skalka, and J. Frolik. Applion of
a wireless sensor network for distributed snow water edpriva
estimation. InWestern Snow Conferenc011.

[27] T. Molhave and L. H. Petersen. Assignment Feathervieigla.
Master’s thesis, University of Aarhus, 2005.

[28] L. Mottola and G. P. Picco. Programming wireless semsiworks.
ACM Computing Survey2011.

[29] G. C. Necula, S. McPeak, and W. Weimer.
retrofitting of legacy code. IROPL, 2002.

[30] M. Odersky, L. Spoon, and B. VenneRrogramming in Scala, second
edition Artima, Inc, 2011.

[31] T. Rompf and M. Odersky. Lightweight modular stagingaragmatic
approach to runtime code generation and compiled DSL&REE,
pages 127-136, 2010.

[32] W. Taha. Resource-aware programming. |IQ@ESS pages 38-43,
2004.

[33] W. Taha and T. Sheard. Multi-stage programming withliekp
annotations. IlPEPM, pages 203-217, 1997. ISBN 0-89791-917-3.

[34] R. Willett, A. Martin, and R. Nowak. Backcasting: adaptsampling
for sensor networks. IlPSN pages 124-133, 2004.

CCured: type-saf

