
Scalaness/nesT: Type Specialized Staged
Programming for Sensor Networks

Peter Chapin
University of Vermont

pchapin@cs.uvm.edu

Christian Skalka∗

University of Vermont
skalka@cs.uvm.edu

Scott Smith
The Johns Hopkins University

scott@cs.jhu.edu

Michael Watson
University of Vermont

mpwatson@cs.uvm.edu

Abstract
Programming wireless embedded networks is challenging dueto
severe limitations on processing speed, memory, and bandwidth.
Staged programming can help bridge the gap between high level
code refinement techniques and efficient device level programs by
allowing a first stage program to specialize device level code. Here
we introduce a two stage programming system for wireless sensor
networks. The first stage program is written in our extended dialect
of Scala, called Scalaness, where components written in ourtype
safe dialect of nesC, called nesT, are composed and specialized.
Scalaness programs can dynamically construct TinyOS-compliant
nesT device images that can be deployed to motes. A key result,
called cross-stage type safety, shows that successful static type
checking of a Scalaness program means no type errors will arise ei-
ther during programmatic composition and specialization of WSN
code, or later on the WSN itself. Scalaness has been implemented
through direct modification of the Scala compiler. Implementation
of a staged public-key cryptography calculation shows the sensor
memory footprint can be significantly reduced by staging.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Staged programming; Scala; nesC

1. Introduction
A wireless sensor network (WSN) is a network of small nodes, also
calledmotes, equipped with sensors or actuators, and that commu-
nicate with each other via short range radio links. Programming
WSNs is challenging because the nodes are severely resourcecon-
strained in terms of memory and processor speed. This paper de-
scribes a programming language designed to support the automatic
generation of runtime-efficient code for WSN nodes. The language
enablesdynamic specializationof node code on a nearby hub or
other more resource-rich device, allowing adaptation to properties
of a node’s deployment environment such as neighborhood charac-
teristics, network interference factors,etc.

∗ This author’s work was supported by a YIP grant from the Air Force
Office of Scientific Research (AFOSR).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GPCE ’13, October 27–28, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/2517208.2517217

Our system supports dynamic generation of programs for the
TinyOS operating system [16], a popular platform for WSNs. It
features programming abstractions for specializing WSN code, al-
lowing on-the-fly adaptation to current WSN deployment condi-
tions. We use a restricted form ofstaging[8, 32, 33] to achieve well
founded dynamic program generation.First stagecode is written
in an extended version of Scala [30], called Scalaness. Scalaness
program execution yields a residualsecond stageWSN node pro-
gram written in nesT, a variant of the popular nesC programming
language [12] with a stronger type checking analysis. The second
stage program is constructed from module components treated as
first class values, which may betype and value specializeddur-
ing the course of first stage computation to yield more compact
and efficient code. A code rewriting strategy in the implementation
transforms nesT code into nesC code, which can be compiled using
standard TinyOS tools.

While staging is well-studied and has been explored in a WSN
context [24], our work is novel in that we achieve stronger static
safety guarantees than previous work. At the point of Scalaness pro-
gram compilation, our compiler can statically verify that any nesT
program produced by the Scalaness runtime will be statically type-
safe when deployed and run on a network node, even if module pa-
rameters are specialized during the course of nesT module compo-
sition. We call this propertycross-stage type safety, which has been
previously studied in a foundational language context [20]. In this
paper we apply these concepts to the more practical Scalaness/nesT
language, and illustrate how they support the implementation of ef-
ficient real-life WSN applications.

1.1 Application Setting and Contributions

The diagram in Fig. 1 provides an overview of the Scalaness/nesT
language architecture. Scalaness source code is compiled in a mod-
ified Scala compiler to Java bytecode, and run in a standard JVM.
At runtime this Scalaness program may generate nesT code, which
is subsequently rewritten to nesC and compiled using the standard
TinyOS compiler. The resulting image can then be installed on
nodes in a WSN.

Another interesting feature of our intended application set-
ting, captured in Fig. 1, is the physical platform on which dif-
ferent elements of the Scalaness/nesT “workflow” may be exe-
cuted. Scalaness source code will typically be compiled in the lab,
prior to deployment. There are two distinct deployment scenarios
where compiled bytecode execution, TinyOS image generation,
and mote (re)programming (the rightmost two boxes in Fig. 1)can
occur. Clearly these activities can take place in the lab, where WSN
motes can be easily imaged over e.g. USB connections prior tode-
ployment. But the more interesting scenario we aim to support is
generation of TinyOS images on a “hub” devicein situ, and then to
automatically reprogram WSN nodes over the air (OTA) from that
hub.

Figure 1. Scalaness/nesT Compilation and Execution Model

In WSN applications such as our Snowcloud snow telemetry
system [11, 26], sensor motes report data to higher powered hubs,
pictured in Fig. 2. The hub device in the figure uses a low-powered
embedded Linux platform that supports a JVM, and is in direct
radio communication with the sensor network via a physically at-
tached mote. These types of devices are readily available and cheap.
Such a system can execute compiled Scalaness code, and com-
pile and deploy generated TinyOS images to nearby motes. Since
the hub is in communication with the network, Scalaness/nesT is
uniquely positioned to evolve network behavior based on a global
view of observed data, a technique calledbackcasting[34] when
used specifically for network control. In this context the benefit of
cross-stage type safety is clear: type-checked Scalaness compila-
tion in the lab ensures type safety of bytecode execution on the
hub,and type-safety of dynamically generated TinyOS image exe-
cution on the WSN. Manual correction of type errors in generated
TinyOS images in this scenario is infeasible since these systems
run automatically in remote settings.

Figure 2. A Sensor Node (L,C) and Hub Device (R).

Paper Outline. The main contributions of the work presented
here are the specification, implementation, and prototype ap-
plication of the Scalaness and nesT languages, including their
syntax, semantics, and type analysis. In Sect. 2 we summarize
Scalaness/nesT via discussion of an extended example. Formal
specifications of the nesT and Scalaness languages are presented in
Sect. 3 and Sect. 4, respectively. Their semantics and type theory
possess several novel and challenging features, which we show in
Sect. 5 are grounded in principles studied in a previous founda-
tional setting [20]. We describe our implementation and present

an extended example application of our system to resource access
control in WSNs in Sect. 6 and Sect. 7, along with some empiri-
cal results demonstrating efficiency benefits of our approach. We
conclude with remarks on related work in Sect. 8

2. An Example: Authenticated Messaging
In this section we provide a high-level overview of Scalaness/nesT
usage and applications via an example. (This example is written in
DScalaness/DnesT, a simplified formalization of the implemented
Scalaness/nesT, which is defined later in this paper.) The example
illustrates both the type and value specializations that can occur
in our system. This example needs to be very small to fit in this
overview which means it alone is not complete evidence of the
advantage of mote code staging, but it should point the reader to
the promise of the approach.

Program description. To illustrate type specialization, we refine
address size. It is well-known that minimizing address space size
in WSN message packets can obtain significant energy savingsby
reducing message sizes, since each bit of transmission is known to
consume energy similar to 800 instructions [22]. However, WSNs
are “ad hoc” precisely in the sense that positions and densities
of nodes in space are unpredictable, so “minimal” address space
is an environmental property, where minimality may need to be
determinedin situ.

To illustrate value specialization, we define a DnesT code tem-
plate that can be instantiated with specific session keys forsecure
communication in a WSN. We imagine that the template is instan-
tiated on high powered hub or lab device, where session keys are
generated. In previous work it has been shown how symmetric key
signatures can be used to support language based resource autho-
rization in WSNs [4, 5]. In particular, communication between se-
curity domains in a WSN is mediated by credentials implemented
as keys, and nodes lying at domain frontiers can use different keys
to send (to the other domain) and receive (from the other domain)
over secured link layer channels. Since it is unpredictablewhere
nodes will be physically distributed in space, appropriatekeys for
each node need to be establishedin situ. Defining node functional-
ity using generic code that must be instantiated with specific keys
allows adaptation to a deployment environment, and allows ex-
pensive computations for establishing session keys to be offloaded
from the WSN to a higher powered device. Experience with an ac-
tual implementation of this application is discussed Sect.7.

The Code. To distinguish Scalaness and nesT code in examples
we will use a darker font for Scalaness code and a lighter font
for nesT code, and line numbers for reference. We begin with the
definition of a parameterized typemesgT(t) using the Scalaness
abbrvt binder, where an instancemesgT(τ) denotes the ground
type obtained by substitutingτ for t in the definition ofmesgT.

1 abbrvt mesgT(t) = { src : t; dest : t; data : uint8[] };

Next, we define a typeradioT, which is the type of nesT modules
that provide an API to the radio.

2 abbrvt radioT = < mt 4 mesgT(uint) >
3 { export radio_x(mt*);
4 import handle_radio_r(mt*); };

The nesT module language is a simplified version of the nesC com-
ponent language. In this example, any module of typeradioT

exports aradio_x function for sending messages, and imports
a handle_radio_r function that allows received messages to be
handled in a user-defined manner. Both functions take message
references as arguments1. Furthermore, the module is parameter-
ized by the type of messagesmt, where the address type is upper-
bounded by 32-bit unsigned integer. Thus, any module of type
radioT can be dynamically specialized to a 32, 16, or 8 bit address
space by type instantiation. Module type parameters are always de-
fined with brackets< ... >.

Now we define another typecommT which is the type of modules
providing a QOS layer over a specialized radio.

5 abbrvt commT = (mt 4 mesgT(uint)) ◦
6 < >
7 { export send(mt*);
8 import handle_receive(mt*); };

Although this type is also parameterized by a bounded message
typemt, as isradioT, the parameterization is subtly different syn-
tactically and semantically, sincecommT expects a program context
where the radio has been specialized. Thus, incommT, mt is under-
stood as being “some” type with an upper bound ofmesgT(uint)
which occurs in the module signature, whereas the module itself
has no parameters to be instantiated– note the empty instance pa-
rameter brackets<> in the module type after the◦ delimiter. This
sort of type is needed in the presence ofdynamic type construction,
a useful Scalaness feature we exemplify below.

Next we define modules for sending and receiving messages that
provide a layer of authentication security over the radio.

9 authSend = < mt 4 mesgT(uint); sendk : uint8[],>
10 { import radio_x(mt*);
11 export send(m : mt*)
12 { radio_x(AES_sign(m, sendk)); } };
13

14 authRecv = < mt 4 mesgT(uint); recvk : uint8[] >
15 { import handle_recv(mt*);
16 export handle_radio_r(m : mt*)
17 { if AES_signed(m, recvk)
18 handle_recv(m); } };

Observe that in the implementation ofsend in moduleauthSend,
messages are signed with a keysendk, whereas when messages are
received they must be signed with a possibly different keyrecvk

before being passed on to the user’s receive handler, as specified in
moduleauthRecv. These modules are parameterized by a message
typemt, and also thesendk andrecvk key values.

To generalize a technique for composing these modules with a
radio to yield a module of typecommT, that is abstract wrt neigh-
borhood sizes, radio implementations, and session key material, we
define the ScalanessauthSpecialize function as follows:

19 def authSpecialize

20 (nmax : uint16, radioM : radioT, keys : uint8[][]) : commT {

1 For brevity the return type on all commands is omitted. In allcases it is
the TinyOS error typeerror_t

21 typedef adt 4 uint = if (nmax ≤ 256) uint8 else uint16;
22 val sendM = authSend〈mesgT(adt);keys[0]〉;
23 val recvM = authRecv〈mesgT(adt);keys[1]〉;
24 (sendM ⋉ radioM〈mesgT(adt)〉) ⋉ recvM;
25 }

The first-class status of nesT modules in Scalaness is apparent
here. On line 20 the function is specified to take a module parameter
radioM of type radioT among its arguments, and to return a
module of typecommT as a result. It also takes an array of keys as
an argument, and on lines 22 and 23 it instantiatessendMesg and
recvMesg with the keys in the array. It also uses the typeadt in the
instantiations, which in line 21 is dynamically constructed on the
basis of the input variablenmax which defines the needed address
space size and bound using the Scalanesstypedef construct. This
illustrates a key novelty of our system, the ability todynamicallyset
a type to use on a mote based on a decision made in the Scalaness
runtime. Since the value ofnmax cannot be statically determined,
the type analysis only knows thatadt is some subtype ofuint.
Finally, on line 24 the instantiated radio module is composed with
the instantiated send and receive modules via the Scalaness⋉

operator. The semantics of module composition here is standard
[2]; in a composition aka wiringµ1 ⋉ µ2, the exports ofµ2 are
connected to imports ofµ1. The function result is a module of type
commT.

To obtain a module defining a mote OS image in a program
context where neighborhood size is known, a radio implementation
has been provided, and session keys have been computed. We can
then compose the results of anauthSpecialize function with
modules specifying top-level message send and receive behaviors,
and amain application entry point as follows (here we assume it
is known that address sizes can be limited to 8 bits, sonmax < 256).
At line 30 a closed module is defined and a binary mote image can
be produced by a call toimage.

26 appMR =
27 < > { export handle_recv(m : mesgT(uint8)*) {...} };
28 appM =
29 < > { import send(mesgT(uint8)*); export main() {...} };
30 image(appM⋉ (authSpecialize(nmax,radioM, keys)⋉ appMR));

In DScalaness,image is an assertion that its argument is arunnable
module, with no unresolved parameters or imports. In the Scalaness
implementation, this is the point where nesT source code is actually
generated. Successful Scalaness/nesT type checking (which occurs
during stage 1 compilation as per Fig. 1) statically guarantees that
specialized code generated at the point ofimage will run in a type-
safe manner when it is eventually loaded and run on a mote.

3. The nesT Language Distilled
In this section we summarize aDistilled version of nesT, called
DnesT, that isolates novel elements of nesT, specifically paramet-
ric types, subtyping, type safety, and modules. DnesT serves as a
formal specification for the nesT implementation—given thenovel
type theory a specification is crucial as a guide for the implementa-
tion. Due to limited space we summarize only the top-level struc-
ture of DnesT modules and our type checking algorithm, in order
to focus more on the more central technical issues of module com-
position, instantiation, and typing at the Scalaness level.

The goal of nesT is to be a type-safe variant of nesC, and DnesT
serves as the specification for how type safety is achieved. Our ap-
proach is another species of “safe C” language design projects such
as [29]. In particular, in DnesT all array bound accesses arechecked
at run-time, and pointer arithmetic and casting are restricted to safe
forms only. We have developed a new type checking algorithm that
incorporates subtyping, which supports bounded type parameters
in DnesT module definitions and a more accurate static analysis of
Scalaness code in the presence of type construction and nesTmod-
ule instantiation.

ς, τ ::= t | ⊤ | uint8 | uint16 | uint | types
uninit | {l : τ} | τ [] | τ*

T ::= t 4 τ type parameters
V ::= x : τ value parameters
c ::= f(V) : τ = {e} command definition
s ::= f(V) : τ command signature
ι ::= s imports
ξ ::= c exports
ε ::= s export types
d ::= τ x = e | τ x = [| e |] | declarations

τ x = {l = e} | c

µ ::= <T;V>{ι; d; ξ} module definitions
µτ ::= <T;V>{ι; ε} module signatures

Figure 3. Syntax of DnesT Types and Modules

3.1 Syntax and Semantics of DnesT

Module definitions rely on a notion of lists aka sequences of syn-
tactic entities, so we begin with a definition of relevant notation.

Notation and identifiers. Sequencesare notatedx1, . . . , xn, and
are abbreviatedx; x(i) is the i-th element,∅ denotes the empty
sequence, and|x| is the size. We writex ∈ x to denote membership
in sequences, andxx denotes a sequence with headx and tailx.
We denote append asx@y. For relational symbolsR ∈ {4,=, :},
we use the abbreviation:xRy = x1 Ry1, . . . , xn Ryn. So for
example,x : τ = x1 : τ1, . . . , xn : τn. We will use metavariablef
(of setF) for function names,l (of setL) for field names,x (of set
V) for term variables,t (of setT) for type variables.

Module syntax. The syntax of DnesT modules is defined in
Fig. 3. Modulesµ are written<T;V>{ι; d; ξ} with T andV being
generic type and term parameters,d being module scope identifier
declarations, including function definitions, andι andξ being im-
ports and exports. In Sect. 2 and elsewhere we use the keywords
import andexport as sugar indicating this categorization.

All type parameters are assigned an upper bound, and term
parameters are explicitly typed. Imports and export types are se-
quences of imported and exported command type signatures. Ex-
ports are sequences of command definitions. Exports are defined
in terms of expressionse, the syntax of which we omit here for
brevity. Declarationsd; are a sequence of typed variable declara-
tions. Base values, arrays (in brackets[| · |]), structs (in braces{·}),
and commands may all be declared, and the scope of declared vari-
able names is restricted to the module. Declarations are important
to include in DnesT, as they support serialization of value parame-
ters during Scalaness instantiation as we describe in Sect.4.3.

While we have elided the specifics of DnesT syntax from this
shortened presentation, we now give a high-level summary ofits
largely standard features. Expressions include standard C-like con-
ditional branching, looping, sequencing of expressions, function
calls, arrays, structs, numeric base data types and basic arithmetic
operations. As in nesC, no dynamic memory allocation is possi-
ble; all memory layout is established by static variable declarations.
DnesT disallows pointer arithmetic, to support stronger type safety
guarantees. Type casting and array access have run time checks im-
posed: types may never be cast to a pointer, and array accesses are
always checked to be in bounds at runtime. As in nesC, DnesT in-
cludes apost operation for posting tasks, although we make no
syntactic distinction between tasks and commands. The meaning
of post corresponds to the “run-to-completion” model of TinyOS
tasks. Interrupts are omitted from DnesT since they do not signifi-
cantly affect the typing issues we are concerned with here.

Module semantics A “runnable” module – one without imports
or generic parameters – is the DnesT model of a node OS image.
The declarations in the module defines aload sequenceestablishing
an initial machine configuration, and the application entrypoint is
defined in a required commandmain.

DEFINITION 3.1. A module of the form<∅;∅>{; d; ξ}, where
main() : uninit ∈ ξ, is called runnable.

This model is consistent with nesC, where an application is defined
as a top-level component that establishes an initial configuration
through variable declarations, and requires user definition of an
entry point (an event handler calledBooted). Formally speaking,
type safety in nesT is a dynamic property of runnable modules.

3.2 Type Checking and Subtyping

The type system for DnesT combines a standard procedural lan-
guage typing approach with subtyping techniques adapted from
previous foundational work [13, 20].

At the heart of our system is a decidable subtyping judgment
T ⊢ τ1 4 τ2, whereT is acoercionand defines a system of upper
bounds for type variables. This establishes a subtype ordering on
base types, and also allows for width subtyping of records. The re-
lation is defined in Fig. 4. Algorithms for deciding the relation and
integrating it with dynamic type construction and other Scalaness
(stage 1) type features was a central topic of [20].

REFLS
T ⊢ τ 4 τ

TOPS
T ⊢ τ 4 ⊤

TRANSS
T ⊢ τ1 4 τ2 T ⊢ τ2 4 τ3

T ⊢ τ1 4 τ3

UINTS
T ⊢ uint8 4 uint16 4 uint

STRUCTS
T ⊢ τ1 4 τ3

T ⊢ {l1 : τ1 ⊎ l2 : τ2} 4 {l1 : τ3}

Figure 4. Subtyping Rules

The type checking algorithm for DnesT expressions is a combi-
nation of standard procedural type systems and standard subtyping
systems. Module typing is obtained by type checking module ex-
ports, using a coercion obtained from the module type parameters
and a typing environment obtained from a combination of module
value parameters, imports, and variable type declarations. A valid
module type checking judgment is written as:

<T,V>{ι; d; ξ} : <T,V>{ι; ε}

Whereε is just the type signatures ofξ, and each of the command
bodies inξ is proven to respect its type signature.

EXAMPLE 3.1. The moduleauthSend defined in Sect. 2 code line
9 can be assigned the following type in DnesT:

< mt 4 mesgT(uint); sendk : uint8[] >
{ import radio_x(mt*), export send(mt*) }

4. The Scalaness Language Distilled
Scalaness serves as the language for nesT module composition in
the same manner as nesC configurations serve to compose nesC
modules, but Scalaness is a much more powerful metalanguage
since modules are treated as a new category of first class values
in Scalaness. Instantiation, composition (aka wiring), and imaging
of modules are defined as operations on module values. Because
instantiation of modules with both types and values is allowed,
types and values may migrate from the Scalaness level to the nesT
level after programmatic refinement, realizing a disciplined form of
code specialization.

L ::= class C〈X̄ <: N̄〉 extends N {T̄ f̄; K M̄} classes

K ::= C(T̄ f̄){super(f̄); this.f̄ = f̄; } constructors

M ::= T m(T̄ x̄){return e; } methods

e ::= x | e.f | e.m(ē) | new C〈T̄〉(ē) | (N)e | expressions
l | e.f = e | def x : T = e in e |
abbrvt X(X̄) = T in e |
µ | e ⋉ e | e〈ē; ē〉 | image e

T ::= X | N | T ◦ µτ types

N ::= C〈T̄〉 class types

l ::= (p, N) references

Figure 5. The Syntax of DScalaness

Our goal in this Section is to describe the Scalaness syntax
and semantics realized in our implementation. Since Scala is too
large to easily formalize, we define here aDistilled Scalaness,
DScalaness, that extends a core typed object-oriented language to
include syntax and semantics for defining and composing DnesT
modules. The particular object-oriented core calculus we use is
a combination of two Featherweight Java variants: Featherweight
Generic Java (FGJ) [17] and Assignment Featherweight Java (AFJ)
[27].

4.1 Syntax of DScalaness

The DScalaness language syntax is presented in Fig. 5. We refer
the reader to [17, 27] for details on the FGJ and AFJ object oriented
calculi, which are represented in the languages of class definitions,
constructors, methods, and the first line of expression forms defined
in Fig. 5. DScalaness extends these features with a typed variable
declaration formdef x : T = e1 in e2 where the scope ofx is e2, a
dynamic type construction formtypedef x <: T = e1 in e2 with
similar scoping rules (although this is defined as syntacticsugar in
Definition 4.1). For programmer convenience a simple parameter-
ized type abbreviation binderabbrvt is also provided. We include
DnesT modulesµ in the DScalaness expression and value spaces:
instantiation is obtained via the forme1〈ē1; ē2〉, whereē1 are type
parameters and̄e2 are value parameters. Wiring of modules is de-
notede1 ⋉ e2. Imaging of modules, denotedimage e, ensures that
e computes to a runnable DnesT module.

4.2 Semantics of DScalaness

The semantics of DScalaness is an extension of the semanticsof
AFJ and FGJ to incorporate DnesT modules and operations. Com-
putations assume a fixed class tableCT allowing access to class
definitions via class names, which always decorate an object’s type.
A storeST is a function from memory locationsp to object rep-
resentations. Objects are represented in memory by lists ofobject
references̄l, which refer to the locations of the objects stored in
mutable field values. A referencel is a pair(p, N) wherep is the
memory location of an object representation andN is the nominal
type of the object, including its class name. Hence, given anobject
reference(p, C〈T̄〉), we can access and mutate its fieldsl̄ = ST (p),
and access and use its methods via the definitionCT (C).

Following AFJ, the semantics of DScalaness is defined as a
labeled transition system, where transitions are of the forme−{s =
ST, s′ = ST ′} → e

′. Intuitively, this denotes that given an initial
storeST and expressione, one step of evaluation results in a
modified storeST ′ and contractume′. We write e → e

′ as an
abbreviation when the store is not altered.

The primary novelty of DScalaness is the formal semantics
of type and module construction. We begin with type construc-
tion, which is provided to allow programmers to dynamicallycon-

struct module type instances. The appropriate behavior is obtained
by treating dynamically constructed types as extensions ofa ba-
sic class of objects, and declarations of DnesT level types via a
typedef construct as syntactic sugar for ordinary object construc-
tion. We define aLiftableType class as the supertype of all types
of objects that can be used to instantiate a module, and dynamically
constructed types are defined as instances of a genericMetaType

class.

DEFINITION 4.1. Any DScalaness class tableCT comprises the
following definitions:

CT (LiftableType) =
class LiftableType〈〉 extends Object {. . .}
CT (MetaType) =
class MetaType〈X <: LiftableType〉 extends Object {. . .}

And we take as given the following syntactic sugar:

typedef x <: T = e1 in e2 , def x : MetaType〈T〉 = e1 in e2

Class typeMetaType is generalized on a single type variable. For
brevity of notation, we define:

MetaType〈T̄〉 , MetaType〈T〉

A crucial fact of DScalaness type construction is that any dynami-
cally constructed type cannot be treated as a type at the DScalaness
level. This is a more restrictive mechanism than envisionedin our
foundational model [20], however it allows us to define DScalaness
as a straightforward extension to Scala, especially in terms of type
checking.

Module instantiation, shown in Fig. 6, is the only point where
specialization of DnesT modules is allowed. Since DScalaness and
DnesT are two different language spaces, some sort of transforma-
tion must occur when values migrate from DScalaness to DnesT
via module instantiation. Thislifting transformation involves both
data mapping and serialization since the process spaces also differ.
We aim to be flexible and allow the user to specify how values are
lifted and how types are transformed. We only require that lifting
and type transformation are coherent, in the sense that the lifting
of an object should be typeable at the object’s type transformation.
We formalize this in the following definition.

DEFINITION 4.2. We assume given a relation
lift
→֒ which transforms

a DScalaness referencel into DnesT declarationsd and expression
e. We also assume given a DScalaness-to-DnesT transformation
of typesJ·K. To preserve type safety, we require in all cases that

(p,N)
lift
→֒ d, e implies both of the following for some type environ-

mentG:

∅,∅ ⊢ d : G and G,∅ ⊢ e : JNK

The full definition of serialization and an example are givenand
discussed below in Sect. 4.3.

Module wiring is given a standard component composition se-
mantics. We only allow wiring of instantiated modules, which is
consistent with nesC and simpler to implement. In a wiringe1⋉e2,
the exports ofe2 are wired to the imports ofe1. This is specified in
the MODWIRE rule in Fig. 6, which relies on the following auxil-
iary definition of operations for combining mappings.

DEFINITION 4.3 (Special Mapping Operations).Letm range over
vectors with mapping interpretations, in particular T, V,ι, and
ξ. Binary operatorm1 . m2 represents (non-exclusive) map
merge, i.e.m1 . m2 = m1@m2 with the requirement that
id ∈ Dom(m1) ∩ Dom(m2) impliesm1(id) = m2(id). The
mappingm/S is the same asm except undefined on domain el-
ements in setS, and the mappingm | S is the same asm except
undefined on elements not inS.

MODINST
µ = <t 4 τ ;x : ς>{ι; d; ξ} serialize(x, ς, l̄) = d′

µ〈(p, MetaType〈T̄〉); l̄〉 → <>{ι; d′@d; ξ}[JT̄K/t]

MODWIRE
ι = (ι1/Dom(ξ2))@ι2 d = d2@ξ2 |Dom(ι1)

<>{ι1; d1; ξ1} ⋉ <>{ι2; d2; ξ2} → <>{ι; d . d1; ξ1}

MODIMAGE
main defined inξ

image (<>{; d; ξ}) → <>{; d; ξ}

Figure 6. DScalaness Module Semantics

Finally, the MODIMAGE rule in Fig. 6 shows that imaging it is an
assertion requiring its arguments to be a runnable module.

EXAMPLE 4.1. Given code definitions in Sect. 2 and an invocation
authSpecialize(50, radioM, [| k1, k2 |]), whereradioM : radioT,
and k1, k2 are keys, the evaluation of the expression on line 24,
sendM ⋉ radioM〈mesgT(adt)〉, will evaluate to the following
module:

< > ({ import handle_radio_r(mesgT(uint8)*); ...;
export send(m : mesgT(uint8)*)

{ radio_x(AES_sign(m, k1)); } }

where the elided declarations include a definition of a com-
mandradio_x imported fromradioM also with argument type
mesgT(uint8)*.

4.3 Serialization and Lifting

Serialization generates a flattened DnesT source code version of a
DScalaness object in memory. At the top level, serialization binds
the value parameters of a module to the results of flattening,aka
lifting, via a sequence of declarations. Here is the precisedefinition.

DEFINITION 4.4 (Serialization).Assume given a storeST which
is implicit in the following definitions. We define serialization of
DScalaness references as follows, along with an extension of the
user defined lifting relation to sequences of references:

∅
lift
→֒ ∅,∅

l
lift
→֒ d, e

serialize(x, τ , l) = d@ τ x = e

l
lift
→֒ d, e l̄

lift
→֒ d′, e

ll
lift
→֒ d@d′, ee

Although lifting is user defined, a standard strategy is to introduce
a new declared variable for each memory reference in the lifted
object, and bind the variable to the lifted referent. Hence,lifting
will typically be defined recursively. In our implementation, we
have adapted a “default” lifting which follows this strategy, and
also transforms objects by just transforming the fields intoa repre-
sentative struct, and ignoring methods. We will illustratethis with
an example in Sect. 6. We can formally capture the essence of this
transformation with the following definitions. It is easy tosee that
these definitions will satisfy the requirements of Definition 4.2.

EXAMPLE 4.2. In this example we allow lifting of any object ref-
erences, and transform the objecto into a structure containing the
transformed fields ofo. Methods are disregarded by the transfor-
mation. Here is the specification of the type transformation:

CT (C) = class C〈X̄ <: S̄〉 extends N {R̄ f̄; K M̄}

JC〈T̄〉K = {f : JR̄[T̄/X̄]K}

MODT
µ : µτ in DnesT type checking

Γ ⊢ µ : ∅ ◦ µτ

MODIMAGET
Γ ⊢ e : T ◦<>{ι; ε} main() : τ ∈ ε

Γ ⊢ image e : T ◦<>{ι; ε}

MODINSTT
Γ ⊢ e : ∅ ◦<t 4 τ 1;x : τ2>{ι; ε} Γ ⊢ ē1 : MetaType〈T̄1〉

Γ ⊢ ē2 : T̄2 ⊢ JT̄1K 4 τ1 ⊢ JT̄2K 4 τ2

Γ ⊢ e〈ē1; ē2〉 : t 4 JT̄1K ◦<>{ι; ε}

MODWIRET
Γ ⊢ e1 : T1 ◦<>{ι1; ε1}

Γ ⊢ e2 : T2 ◦<>{ι2; ε2} ι = (ι1/Dom(ε2))@ι2

Γ ⊢ e1 ⋉ e2 : T1 . T2 ◦<>{ι; ε1}

Figure 7. DScalaness Module Typing Rules

and here is the specification of lifting.

ST (p) = l̄ fields(C) = T̄ f̄ l̄
lift
→֒ d, e x fresh

(p, C〈R̄〉)
lift
→֒ d@(JC〈R̄〉K x = {f = e}), x

4.4 DScalaness Type Checking

The primary novelty of DScalaness are the rules for DnesT module
typing and composition, and that is the focus of this section. We
adopt the typing rules of FGJ in their entirety, and refer thereader
to [17] for relevant details.

DScalaness syntax for expressing DnesT module types isT◦µτ ,
whereµτ is a DnesT module type. TheT in this form represents
the type bounds of dynamically constructed types that have been
used to instantiate the module; we refer to this part of the type
as the instance coercion. Because these types are dynamically
constructed, their identity is not known statically, hencethe need to
treat them as upper-bounded type names in the static type analysis.
This subtle technical point of our type system is discussed at more
length in Sect. 5. It is important to note that the type names in T
will be fully resolved at run time, so that any module generated
by a DScalaness program execution will have a fully reified DnesT
type. Throughout this paper, we abbreviate∅ ◦µτ asµτ for brevity.

This is reflected in the MODT rule in Fig. 7, which connects
the DnesT typing system with the DScalaness type system. Since
in this case we are typing an uninstantiated module definition
its instance coercion is empty. An instance coercion in a module
type is directly populated when a module is instantiated, asin the
MODINSTT rule. Here, the type instances̄e1 are all dynamically
constructed, so they define the upper bounds of the instantiated
module’s instance coercion. We also expect all type and value
parameters to respect the typing bounds specified in the module
definition. The MODWIRET typing rule for module wiring is a
straightforward reflection of the operational rule for module wiring,
as is the MODIMAGET rule for module runnability imaging.

EXAMPLE 4.3. Returning to the code and type examples in Sect. 2,
we may assign the following typing:

G ⊢ authSpecialize(50, radioM, [| k1, k2 |]) : commT

GivenradioM : radioT, k1 : uint8[], k2 : uint8[] ∈ G.

5. Scalaness/nesT Foundations
The Scalaness/nesT type system design is based on principles stud-
ied in the foundational calculus〈ML〉2 [20]. 〈ML〉 comprisesF≤,
state, dynamic type construction, and staging features. Inthis sec-
tion we describe how the design of modules and module operations
in Scalaness can be modeled in〈ML〉. Although the correspon-
dence is informal, these models directed the design of Scalaness
semantics and type checking, and provide confidence in its sound-
ness. While our choice of modules as the basic unit of nesT code is
based on obvious software engineering concerns and the needfor a
tight relation with nesC, Scalaness modules are well correlated with
certain structures in〈ML〉 and so are also technically appealing.

The model of a module. Code as a datatype is available in〈ML〉
as expressions of the form〈e〉. While code as a datatype is a stan-
dard feature of staged/generative programming,〈ML〉 has adapted
staged programming to a setting where different code levelsare
intended for execution on different machines with distinctprocess
spaces. In particular, values, including code values, mustbe closed.
If a type or term variable occurs free in〈e〉, it must beΛ or λ
bound, respectively, for closure. Hence, if a type variablet is free
in 〈e〉, thenΛt 4 τ.〈e〉 binds it, and provides parametric subtyping
polymorphism for〈ML〉 terms.

If the term variablex is free in〈e〉, thenλx : τ.〈e〉 binds it.
Furthermore, the typeτ in the termλx : τ.〈e〉 mustbe of the form
〈ς〉, because the type discipline requires thatx is of code type, since
it occurs within code. If the programmer wishes to pass a value
residing at the current execution stage to such a function, it must
be explicitly “lifted” in the now-standard style of [33]. However, in
〈ML〉, lifting a value entails serialization of it, which is non-trivial
in case the value is stateful.

We use〈ML〉 type and term bindings to model Scalaness type
and term parameters. This is a standard strategy, in fact FGJtyping
[17] is based on it as well. Hence the basic analog of a module is:

Λt 4 τ.λx : 〈ς〉.〈e〉

wheret is a bounded type parameter andx is a value parameter.

The model of instantiation. Most of the interesting parts of
Scalaness typing happen at instantiation. Given the above model
of a module, the〈ML〉 analog of instantiation is a term of the form:

(Λt 4 τ.λx : 〈ς〉.〈e〉)(τ ′)(lift v)

where all parameters are instantiated. Note in particular that the
value parameterv must be explicitly lifted, since the model must
reflect that values passed in to modules are always constructed
at the first stage in a Scalaness program. This means thatv must
be assumed to not be a code value, while the type annotation on
x requires that it be lifted. There is no explicit lift operation in
Scalaness, but the DSCalaness semantics (Fig. 6) specifies that se-
rialization is always implicit at module instantiation. Scalaness typ-
ing of instantiation thus treats value instantiation asλ application
with implicit lifting of the argument, and type instantiation asΛ
application, i.e. a form of bounded∀-elimination.

Type construction and variable escape.A central technical nov-
elty and core feature of DScalaness is dynamic type construction
for module instantiation. As we discussed in Sect. 2, this feature
is technically challenging since constructed types can escape their
scope of declaration. Similarly, in〈ML〉, types may be dynamically
constructed that can escape their declaration scope, in particular if
they are used as function type annotations. An∃ type binder was
introduced in〈ML〉 for this purpose; intuitively a type of the form
∃t 4 τ.ς is a type containing a dynamically constructed type term
t with upper boundτ . 〈ML〉 includes a “tlet” expression form for

2 Pronounced “framed ML.”

constructing types, so for example:

tlet t 4 uint16 = if e thenuint8 elseuint16 in (λx : t.x) :

∃t 4 uint16.t → t

Here a typet is dynamically constructed to be eitheruint8 or
uint16, and then used in the type annotation of a type-specialized
identity function. Furthermore,t escapes its declaration scope since
it annotates a function argument. Sincee is some arbitrary compu-
tation, we cannot statically predict whatt will be, other than “some
type with upper bounduint16”. Note also that sincet can appear
in contravariant positions, it is unsound to perform a covariant sub-
stitution of uint16 for t, so the∃ bound is needed. Although this
usage of∃ types is somewhat non-standard, an eigenvariable inter-
pretation of the bound type variable is sound and also consistent
with standard existential type interpretations.

Inspired by these foundations, in DScalaness the type form:

T1 ◦<T2;V>{ι; ε}

captures the same typing mechanisms, in particular the instance
coercionT1 is the analog of∃ bound type variables, in contrast to
the type parametersT2 which are implicitly∀ bound, as discussed
above. The static semantics ofT1 andT2 are distinguished appro-
priately, especially in the treatment of the typing rules for module
instantiation and module wiring in Fig. 7.

6. Implementation
Scalaness is implemented as a modification to the open source
Scala compiler. Scala was chosen as a basis for our first stagelan-
guage because the Scala compiler supported a plug-in architecture,
and we originally envisioned implementing Scalaness as a plug-
in. We also wanted to create a practical programming system,and
Scala’s easy access to Java libraries and broad community support
were attractive.

Keeping the Scala and Scalaness type checking well separated
in the implementation had useful software engineering benefits as
well. It simplifies the problem of tracking the evolving Scala com-
piler. It also promotes a clear separation of first and secondstage
concerns in the mind of the Scalaness programmer. Unfortunately
we found that the needed modifications to the type checker could
only be made by direct modification of the compiler code base.

In addition to type checking, runtime support is needed to im-
plement Scalaness module operations. Also, facilities arerequired
to read nesT modules from the file system and parse them into
ASTs, and to write TinyOS image source code files defined by con-
structed nesT modules atimage invocations.

6.1 Online Repository and Examples

The Scalaness/nesT compiler and several code examples, including
applications discussed in Sect. 2 and Sect. 7, are availablefor
download from the following URL:

http://tinyurl.com/a85z8cu

6.2 nesT Type Checking and Program Transformation

The nesT language is treated by two major components in the
implementation, the type checker and the nesT-to-nesC rewriting
transformation. The nesT type checker was written from the ground
up, in contrast to the Scalaness type checker which was defined as
an extension to the Scala type checker. The rewriting transforma-
tion yields TinyOS2-compliant source code, which can be sepa-
rately compiled.

The nesT language is defined as a subset of the nesC language.
An AST yielded by parsing is type checked by our algorithm, which
incorporates subtyping and other features not present in nesC type

checking. This algorithm is a nearly direct encoding of the type
discipline described in Sect. 3. Following type checking, the AST
is submitted to a rewriting transformation that imposes semantic
disciplines discussed in Sect. 3, in particular type safe casting and
array bounds checks, also in nesC. For example, a statement of the
form x = a[e] will be rewritten to:

int _x = e; if (_x >= a_SIZE) fail(); x = a[_x℄;

wherea_SIZE is an automatically generated variable containing
the size ofa andfail is some user-defined function that handles
array bounds check failure.

Source code for nesT module definitions is written in separate
files that are included in Scalaness code, as discussed below. This
separation is mainly for software engineering purposes, toavoid
modifying the Scala compiler to parse intermingled Scala and nesT
syntax.

6.3 Scalaness Module Language Syntax

In order to limit modifications of the Scala compiler and reduce en-
gineering problems in our implementation, we have avoided modi-
fying Scala syntax to represent Scalaness features. Hence,modules
are represented as class instances, which must satisfy the following
trait:

trait NesTModule {

def image(): Unit // Generates residual nesC program.

def +>(m: NesTModule): NesTModule // Wires this to m.

}

This trait is implemented by aNesTModule class that provides the
appropriate semantics for wiring and TinyOS image generation, in-
cluding translation to nesC and file output. This class also manages
parsing and storage of nesT ASTs from source code files, and type
checking of nesT ASTs.

Any nesT module definition is a subclass ofNesTModule. Some
subtleties are involved in supporting first classgenericmodules.
Instantiation is implemented by method call, but since typeand
value parameters vary per module, particular modules must define
their own parameters and instantiation methods. For example, we
would represent theauthSend component definition from Sect. 2,
line 9 as follows:

lass authSend extends NesTModule {

var mt : MetaType[LiftableType℄ = _

var sendk : LiftableType = _

def instantiate(m: MetaType[LiftableType℄, k: LiftableType) =

{ val result=new authSend; result.mt=m; result.sendk=k }

"authSend.nt"

}

Although theinstantiate method and parameter fields must be
defined in the implementation at the time of this writing, compiler
generation of these definitions is a topic for future work; any mod-
ules instantiate method can be easily inferred from its typeanno-
tation. Note that the types at which parameters are declaredare
as general as possible (e.g.s andn are not declared asuints but
asLiftableTypes). This is because class definitions support the
semantics of Scalaness, not Scalaness type checking (discussed be-
low), and declaring generic parameters at a maximally general type
removes interference related to Scala type checking. Finally, note
the string literal“authSend.nt” at the end of the definition. This
is the file containing the nesT source code definition of the module.
The Scala compiler has been modified to input and parse the spec-
ified source code when this literal is encountered during theScala
type checking phase.

6.4 Type Annotation and Checking

Scalaness typing relies on native Scala syntax for terms, specifi-
cally Scala annotations and singleton types are utilized. Scala an-
notations allow metadata to be associated with definitions.A mod-

ule type annotation is of the form@ModuleType(“µτ”), where
µτ is defined using the syntax of Fig. 3. The compiler-defined
ModuleType class automatically associates the type with the iden-
tifier immediately following it. In the case of module class defini-
tions, the type is assigned as a class field. In the case of variable
definitions, the type is assigned as a Scala singleton type ofthe ob-
ject. For example, the declaration ofauthSend on line 9 in as in
Sect. 2 would be preceded by such an annotation whereµτ is the
type specified in Example 3.1, andsendM as on line 22 would be
annotated with an instance of that type. Similarly, annotations are
required on method parameter and result types, if those methods ex-
pect nesT modules as arguments or return them, as for theradioC

parameter of theauthSpecialize method defined in Sect. 2, and
the method’scommT return type. These requirements reflect the type
discipline in Scalaness as specified in Sect. 4, which requires mod-
ule type annotations at these points.

Scalaness type checking has been implemented as an analysisof
these annotations during Scala type checking, piggybacking on that
process. When type checking a class that extendsNesTModule, the
compiler uses its type annotation to perform nesT type checking
on the underlying AST representation of the module. When type
checking module operations (i.e. at invocations ofinstantiate,
+>, or image), the Scala compiler has been modified to examine
operand types for Scalaness type annotations, and to decorate re-
sultant singleton types of these operations with new Scalaness an-
notations, reflecting the typing rules in Fig. 7. A type checking ex-
ception is raised in case this analysis fails. Scalaness type checking
does not modify Scala type checking in any other way, so it is a
conservative extension of Scala typing.

6.5 Importing nesC Libraries

Our preliminary experiments with nesT show that it is expressive
enough to write useful program components. However, any realis-
tic application will need to interact with various libraries written
in nesC. One library of critical importance is the TinyOS operat-
ing system itself. Our current solution is to allow non-generic nesC
components to be treated as nesT modules as long as they onlyuse

or provide commands, which are interpreted as nesT imports and
exports. Support for specializable generic nesC library components
is a topic for future work. Events can be accessed through “shim”
modules provided by the user, since used or provided events are
really just syntactic sugar for provided or used commands respec-
tively. A library component defined in a fileLibraryC.nc can be
defined as a nesT module as follows:

obje
t LibraryC extends NesTModule { external("LibraryC.n
") }

Note that nesC code imported in this way is not type checked by
the Scalaness/nesT compiler, since nesT is a strict subset of nesC.
Rather, the programmer type annotates the shimmed module using
a @ModuleType annotation as for other module definitions, and
the compiler trusts that the annotation is correct. This introduces
a possibility for type safety failure in our system, if the imported
code contains a type error. A possible long term goal would bea
complete re-write of TinyOS in nesT, yielding full type safety of
all sensor code, but this is well beyond our current scope.

7. Example: Authorization and Access Control
In [5] the SpartanRPC architecture for link-layer resourceautho-
rization in TinyOS-based WSNs is developed (as an extensionof
[4]). In SpartanRPC, resources are accessed by link-layer remote
procedure calls (RPC) which require authorization. Users are au-
thorized by communicating credentials to the provider, expressed
in an authorization logic based on RT [18] and implemented us-
ing TinyECC [19] public key signatures. SpartanRPC supports an
“open world” security model, allowing WSNs in different security

Figure 8. Staging Authorization and Authorized Access in a
Multi-Domain WSN.

domains to interact without sharing secretsa priori. However, pub-
lic key encryption and signature verification is very expensive in
a WSN. Hence, session keys are negotiated for ongoing resource
access (using a TinyECC-based Diffie-Hellman protocol).

In this section we describe a re-implementation of the Spartan-
RPC protocol in Scalaness/nesT that addresses several shortcom-
ings of SpartanRPC, and will thus serve to illustrate the power of
Scalaness/nesT. The central idea, illustrated in Fig. 8, isthat respon-
sibility for authorization on the basis of public key credentials is
offloaded from the WSN to a Scalaness program running on a hub
device or lab computer. We assume a WSN comprising two sub-
networks under control of distinct security domainsA andB. Each
domain also controls a lab or hub device which is in communication
with WSN nodes in their domain, either prior to or during deploy-
ment. These devices are in communication with each other over the
Internet, and exchange authorization credentials for their domain
over that medium in the first-stage Scalaness program. Each de-
vice then confirms authorization for resource access according to
their own domain’s policies, and subsequently they negotiate ses-
sion keys over the Internet. These keys are then used to specialize
nesT code for imaging on WSN nodes. The overall architecture
of this application represents a concrete realization of the ideas of
Fig. 1, and also expands on and implements the idealized example
presented in Sect. 2.

Note that our current implementation assumes nodes are pro-
grammed in the lab since we have no secure OTA program dissem-
ination library; the Deluge protocol has such an extension [9] that
we plan on using in the future.

Evaluation on Snowcloud To empirically evaluate the staged im-
plementation of SpartanRPC in Scalaness/nesT, we have imple-
mented and tested both the original SpartanRPC as well as the
Scalaness/nesT staged version in our deployed Snowcloud WSN
system architecture. Mobile gateway devices as pictured inFig. 2
are provided to Snowcloud system users for data gathering, and are
also used by system administrators for controlling sampling rates.
The hardware for both of these so-called “harvester” devices, the
same for users and administrators, is equipped with a mote for es-
tablishing network communication. When the device is introduced
to the sensor network, the two together comprise a single network
with two distinct security domains – the sensor node subnetwork,
and the subnetwork of the single device mote. The mote on har-
vester devices provided to system users is supplied with credentials
for collecting data, but not modifying network control, whereas
system administration harvester motes are supplied with stronger
credentials for both functions.

The original and Scalaness/nesT versions of this application can
be compared both in terms of performance and user experience. In
the unstaged version, the SpartanRPC protocol requires an initial
network configuration period when credentials are exchanged and
verified. Since a single TinyECC signature requires at least90
seconds to verify on the Crossbow TelosB platform [5] with a
fully dedicated processor, there is an initial network “warmup”
period of at least a few minutes. Also, in the unstaged version,
upon first invocation of an RPC service Diffie-Hellman is used
in the network to negotiate a session key. In the staged version,
credential exchange, validation, and session key negotiation are all
performed on the high-powered hub. For this reason, mote code
size in ROM is significantly reduced. There are differences in
RAM usage as well, due to authorization overhead in the unstaged
version and also the storage of key material in RAM vs. ROM, since
specialization of code with key material in the staged version allows
the latter. Note that this difference is intensified by scaleand the
number of keys (i.e. RPC services) needed by an application.Lower
RAM and ROM usage can have significant performance impacts
on deployed code. In the following table we summarize RAM and
ROM usage for the harvester and sensor node images for three
software versions: one with no security mechanisms in place, one
with unstaged SpartanRPC protocols in place, and one generated
by Scalaness evaluation in our staged version of the SpartanRPC
protocol.

Unsecured Unstaged Staged Savings

Sensor: ROM 36254 48616 36596 25%
RAM 2868 5417 3038 44%

Harvester: ROM 24316 35834 24436 32%
RAM 2274 4771 2402 50%

The “Savings” are the percent reduction from unstaged to staged
secure implementation, and these numbers show the potential for
saving both RAM and ROM space is significant. From the per-
spective of user experience, the staged version of this application
is more convenient, since no initial authorization period is needed
when the harvester is first introduced to the network. The staged
version also exposes the system to fewer bugs and failures that
would be obstacles to the primary goal of data collection.

8. Conclusion
We have introduced Scalaness/nesT, a two stage programmingsys-
tem for wireless sensor networks. Our system provides a powerful
programming environment for dynamically specializing andcom-
posing nesC modules in a type safe way; any type correct Scalaness
program will generate only type correct residual programs.

8.1 Related Work

We do not review the broader topic of sensor network programming
here; the reader is referred to [28] for a broader perspective.

We follow the foundational〈ML〉 work in our language design
[20]; Sect. 5 discusses how it serves as the theoretical underpinning
of our approach. The primary aim of this work is to make the
theoretical insights of〈ML〉 more practical. We accomplish this
by making a sensor language nesT that is based on the design of
nesC, and by implementing Scalaness and nesT and testing the
framework on examples.

The potential of applying metaprogramming to sensor networks
was explored in the functional sensor language Flask [24]. Flask
allows FRP-based stream combinators to be pre-computed before
network deployment, but it is possible to generate ill-typed Flask
object code since cross-stage static type checking is not performed.
Hume [15] is a DSL for real-time embedded device programming.

It includes a metaprogramming layer but that layer is more like
nesC’s configuration files in that there is a very restricted syntax for
a few special metaprogramming operations including component
wiring, macros, and code templating.

MetaML [32, 33] and MetaHaskell [23] are a foundations we
build on; they do not address type specialization or dynamictype
construction.

Lightweight Modular Staging [31] describes a method of ex-
pressing staged computations using a Scala host framework with-
out any compiler modifications. The approach allows cross-stage
type safety but does not support dynamic type construction.

Actor based sensor metaprogramming has been studied in [6];
this work shares our focus on high level dynamic reprogramma-
bility but is untyped. More broadly, meta programming is known
to be useful for increasing the efficiency of systems applications.
One example is Tempo [8], a system that integrates partial eval-
uation and type specialization for increasing efficiency ofsystems
applications. Ur [7] allows for type safe meta programming for web
applications.

The units of staged code composition in nesT programming
are modules. Countless different module systems exist, but they
are primarily designed to achieve separate compilation andsound
linking [2]. Our different design goal leads to different design
choices in nesT modules. For example, data crossing nesT module
boundaries needs to conform to the property of process separation,
a non-issue in standard module system designs. In addition,nesT
modules allow values/types across the boundary of modules to be
flexibly constructed, including dynamic construction of types, to
achieve maximal flexibility of cross-stage specialization. Module
systems such as ML modules [21] and Units [10] allow types to be
imported/exported as we also support; there are several features of
ML modules including type hiding that we do not aim to support.
nesT modules are more expressive in their support of first class
modules as values and the possibility of dynamic construction of
“type exports.” That said, first class modules are not new [1,25],
we only claim novelty in their application to program staging and
the incorporation of dynamic type construction.

The type parametricity of System F and F≤ [3], and the practical
type systems it inspired such as Java’s generics, do not treat types
as first class values as we do. C++ templates support types as meta
values in template expansion, but type safety of generated code
is not guaranteed without full template expansion. Concepts [14]
improves on this, but types are still not first class values.

Acknowledgments

We acknowledge Yu David Liu for early contributions to this work.

References
[1] D. Ancona and E. Zucca. A calculus of module systems.Journal of

functional programming, 11:91–132, 2002.

[2] L. Cardelli. Program fragments, linking, and modularization. In
POPL, pages 266–277, 1997.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism.ACM Comput. Surv., 17(4):471–523, 1985.

[4] P. Chapin and C. Skalka. SpartanRPC: Secure WSN middleware for
cooperating domains. InMASS, November 2010.

[5] P. Chapin and C. Skalka. Spartan RPC. Techni-
cal report, University of Vermont, 2013. Submitted.
http://www.cs.uvm.edu/~skalka/skalka-pubs/
chapin-skalka-spartanrpctr.pdf.

[6] E. Cheong. Actor-Oriented Programming for Wireless Sensor
Networks. PhD thesis, University of California, Berkeley, 2007.

[7] A. Chlipala. Ur: Statically-typed metaprogramming with type-level
record computation. InPLDI, 2010.

[8] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N.
Volanschi, J. Lawall, and J. Noyé. Tempo: specializing systems
applications and beyond.ACM Comput. Surv., 1998.

[9] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securingthe
deluge network programming system. InIPSN, pages 326–333, 2006.

[10] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages.
In PLDI, 1998.

[11] J. Frolik and C. Skalka. Snowcloud: A complete system for snow
hydrology research. InRealWSN, 2013.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded
systems. InPLDI, 2003.

[13] G. Ghelli and B. Pierce. Bounded existentials and minimal typing.
Theoretical Computer Science, 193(1-2):75 – 96, 1998.

[14] D. Gregor, J. Järvi, J. G. Siek, G. D. Reis, B. Stroustrup, and
A. Lumsdaine. Concepts: Linguistic support for generic programming
in C++. InOOPSLA, 2006.

[15] K. Hammond and G. Michaelson. Hume: A domain-specific language
for real-time embedded systems. InGPCE, pages 37–56. Springer-
Verlag, 2003.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, andK. S. J.
Pister. System architecture directions for networked sensors. In
ASPLAS, pages 93–104, 2000.

[17] A. Igarashi, B. C. Pierce, and P. Wadler. FeatherweightJava. ACM
Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[18] N. Li and J. C. Mitchell. RT: A role-based trust-management frame-
work. In Proceedings of the 3rd DARPA Information Survivability
Conference and Exposition, pages 201–212, 2003.

[19] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks. InIPSN, pages 245–256,
2008.

[20] Y. Liu, C. Skalka, and S. Smith. Type-specialized staged programming
with process separation.HOSC, pages 341–385, 2011.

[21] D. MacQueen. Modules for Standard ML. InProceedings of ACM
Conference on Lisp and Functional Programming, 1984.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a
Tiny AGgregation service for ad-hoc sensor networks.SIGOPS Oper.
Syst. Rev., 36(SI):131–146, 2002.

[23] G. Mainland. Explicitly heterogeneous metaprogramming with
MetaHaskell. InICFP, 2012.

[24] G. Mainland, G. Morrisett, and M. Welsh. Flask: staged functional
programming for sensor networks. InICFP, 2008.

[25] J. Mitchell, S. Meldal, and N. Madhav. An extension of standard ML
modules with subtyping and inheritance. InPOPL, 1991.

[26] C. D. Moeser, M. Walker, C. Skalka, and J. Frolik. Application of
a wireless sensor network for distributed snow water equivalence
estimation. InWestern Snow Conference, 2011.

[27] T. Molhave and L. H. Petersen. Assignment Featherweight Java.
Master’s thesis, University of Aarhus, 2005.

[28] L. Mottola and G. P. Picco. Programming wireless sensornetworks.
ACM Computing Surveys, 2011.

[29] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. InPOPL, 2002.

[30] M. Odersky, L. Spoon, and B. Venners.Programming in Scala, second
edition. Artima, Inc, 2011.

[31] T. Rompf and M. Odersky. Lightweight modular staging: apragmatic
approach to runtime code generation and compiled DSLs. InGPCE,
pages 127–136, 2010.

[32] W. Taha. Resource-aware programming. InICESS, pages 38–43,
2004.

[33] W. Taha and T. Sheard. Multi-stage programming with explicit
annotations. InPEPM, pages 203–217, 1997. ISBN 0-89791-917-3.

[34] R. Willett, A. Martin, and R. Nowak. Backcasting: adaptive sampling
for sensor networks. InIPSN, pages 124–133, 2004.

