
A

SpartanRPC: Remote Procedure Call Authorization in Wirele ss
Sensor Networks

PETER CHAPIN and CHRISTIAN SKALKA, University of Vermont

We describe SpartanRPC, a secure middleware technology that supports cooperation between distinct secu-
rity domains in wireless sensor networks. SpartanRPC extends nesC to provide a link-layer remote procedure
call (RPC) mechanism, along with an enhancement of configuration wirings that allow specification of re-
mote, dynamic endpoints. RPC invocation is secured via an authorization logic that enables servers to
specify access policies, and requires clients to prove authorization. This mechanism is implemented using
a combination of symmetric and public key cryptography. We report on benchmark testing of a proto-
type implementation, and on an application of the framework that supports secure collaborative use and
administration of an existing WSN data gathering system.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers; Run-time

environments; C.3 [Computer Systems Organization]: Special-Purpose and Application-Based Systems—
Real-time and embedded systems; C.2.4 [Computer-Communication Networks]: Distributed Systems—
Client/server

General Terms: Security, Languages

Additional Key Words and Phrases: remote procedure call, sensor networks, trust management

ACM Reference Format:

Peter Chapin and Christian Skalka. 2014. SpartanRPC: Remote Procedure Call Authorization in Wireless
Sensor Networks ACM Trans. Info. Syst. Sec. V, N, Article A (January YYYY), 30 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

SpartanRPC is an extension of the nesC programming language [Gay et al. 2003] that
supports application development in a decentralized, open world security model for
wireless sensor networks (WSNs). Traditional networks have long enjoyed support for
an open world security model via public key based security architectures such as the
secure sockets layer (SSL). The goal of our work is to introduce an open world security
model to the TinyOS programming environment for embedded device programming.

Currently, TinyOS security models are very simple and support only a closed world
paradigm. TinySec [Karlof et al. 2004] and MiniSec [Luk et al. 2007] are based on
shared secrets and generally assume that an entire network comprises a single secu-
rity domain. Furthermore, these systems support confidentiality and integrity prop-
erties, but not access control, a.k.a. authorization. In contrast SpartanRPC includes
primitive features for specifying and enforcing authorization policies and allows mul-
tiple security domains to interact within a single network. SpartanRPC security mech-

Christian Skalkas work was supported by a grant from the Air Force Office of Scientific Research Young
Investigator Program (AFOSR YIP).
Author’s addresses: P. Chapin, (Current address) Computer Information Systems Department, Vermont
Technical College; C. Skalka, Computer Science Department, University of Vermont.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1094-9224/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. Chapin and C. Skalka

anisms leverage public key cryptography and an authorization logic to support an open
world model where shared secrets are not required a priori.

1.1. Overview and Applications

The SpartanRPC system provides an applications programming interface for manag-
ing resource access control in a WSN. It allows network administrators to define secu-
rity policies that mediate access to specified resources on network nodes, and allows
subnetworks from different security domains to interact. A resource in SpartanRPC
is user-defined functionality programmed in an extension of nesC, and accessible via
RPC by client code programmed in the same extension of nesC. Thus, while previ-
ous systems have explored the problem of establishing multiple security domains in
a WSN [Claycomb and Shin 2011], and other have considered RPC in WSNs [May
et al. 2007], SpartanRPC combines these features for secure WSN application devel-
opment in TinyOS. Furthermore, SpartanRPC’s expressive authorization logic allows
specification of fine-grained and decentralized security policies, better supporting col-
laborations between multiple security domains.

Since the SpartanRPC API is flexible and easily accessible to TinyOS programmers,
these features can be readily used in a variety of application spaces. Consider a first-
responder situation, in which multiple social entities must interact and cooperate on
an ad-hoc basis. Recent work has shown the effectiveness of WSNs in such scenarios
[Gao et al. 2008; Lorincz et al. 2004], in their ability to coordinate multiple data col-
lection and communication devices in an easily deployable manner. However, data col-
lection and communication in this scenario (and other similar ones) must be a secured
resource, due to e.g. requirements of the Health Insurance Portability and Account-
ability Act. Furthermore, security must be coordinated on-site in a WSN comprising
subnetworks administered separately (police, medical units from different hospitals,
etc.), and no prior coordination between domains can generally be assumed. The Spar-
tanRPC system is designed to address these types of scenarios.

For example, if an emergency medical technician (EMT) emplaces a WSN to monitor
patient locations and vital signs, a security policy can be imposed whereby responding
police departments can emplace their own WSN, and through it access patient identity
and location data but not medical data directly from the EMT’s network. This direct
data access will often be necessary due to real-time constraints and lack of Internet
connectivity in emergency situations.

Time synchronization is another important WSN function that is security sensitive,
since many higher-level protocols rely on it. A number of previous authors have con-
sidered secure time synchronization in the presence of “insider” attacks [Manzo et al.
2005; Ganeriwal et al. 2008], whereby nodes within the network may be compromised
and function as malicious actors capable of corrupting the protocol. In particular, the
FTSP protocol can be attacked by a single compromised “root” node injecting false tim-
ing information into the network [Manzo et al. 2005], even when symmetric keys are
used for secure information exchange. However, the threat model in this work treats
all nodes in a network as equally compromisable. In cases where a connected sub-
network is more resistant to compromise, due to e.g. differences in hardware, a Spar-
tanRPC policy can be established whereby only nodes in the most tamper-resistant
sub-component of the network may function as roots. FTSP time sync updates on any
given node can be defined to require a root authorization level. This implies that nodes
requiring secure time synchronization must be at most a single radio hop from a root
node, but nodes willing to accept possibly corrupted time sync data can extend the
network indefinitely. Note that in this scenario, SpartanRPC policies adapt to hetero-
geneity in network device hardware, vs. network administration as in the previous
example.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:3

Other potential applications of our system include secure routing protocols in hetero-
geneous trust environments [Karlof and Wagner 2003], transport and network layer
protocols [Perillo and Heinzelman 2005], tracking protocols [Brooks et al. 2003], and
even mote-based web servers supporting secure channels [Gupta et al. 2005].

As a concrete application example, in Sec. 8 we describe our implementation of a
WSN application for environmental data sampling and collection. The node software
provides remote resources for data collection or node control. Access to these resources,
in particular via a distinguished sink node that is under control of some user, is me-
diated by a security policy. Depending on the user’s credentials, only data collection,
or collection and control, or neither, will be allowed. Thus, we can specify that data
end users can be provided with sink nodes that only allow collection, whereas system
administrators can also control the network from theirs. And since user populations
may be part of different social entities than system administration, our policy lan-
guage allows authorization of a social entity itself to administer its own user base for
data collection. This supports collaboration between different institutions which is a
hallmark of this particular application.

1.2. Security Goals

The main security-related goal of our work is to provide fine-grained authorization
a.k.a. access control in a WSN. We support an open world setting, where principals
do not share secrets a priori, and employ an authorization logic capable of express-
ing rich security policies [Li et al. 2002]. As in various authorization frameworks for
more traditional distributed systems [Ellison et al. 1999], principals are identified as
asymmetric key pairs, so that possession of a private key is necessary and sufficient
to establish a principal’s identity. With this understanding of identity, our underlying
security protocols support authentication of resource users through the use of a Diffie-
Hellman protocol. We assume that WSN nodes are provided with private keys a priori
by a trusted certification authority. Thus, we are not concerned with communication of
private keys.

Because WSN nodes are assumed to possess private keys, our system is vulnera-
ble to hardware tampering, which we consider out-of-scope for this work. Modulo this,
our system ensures that only authenticated principals capable of proving compliance
with a specified authorization policy may access a protected resource. Authorization is
proved by communication of credentials to the authorizer in the form of certificates, as
discussed in Sec. 4. We note that the onus of credential communication is on the re-
quester, not the authorizer, who only passively receives credentials. This implies that
access may not be granted in case incomplete credential sets are provided. Although
this incompleteness has been addressed in traditional distributed systems via e.g. dis-
tributed credential chain discovery [Chapin et al. 2008], these approaches are rela-
tively heavyweight and difficult to implement in a WSN. The validity and integrity of
the certificates themselves are established via signature verification by the authorizer.

In order to authenticate requesters, and to improve the efficiency of normal message
transfers between a requester and an authorizer, symmetric session keys are computed
using a simple Diffie-Hellman key agreement protocol [Diffie and Hellman 2006] as
described in Sec. 6.1.2. The version of Diffie-Hellman we use is not susceptible to man-
in-the-middle attacks because of the way principles are directly represented by their
keys. Thanks to this, and our certificate representation of credentials, the SpartanRPC
authorization scheme is not susceptible to man-in-the-middle attacks, where an unau-
thorized principal (i.e. a device not holding the private key denoting an authorized
principal) can obtain access to resource. This claim is supported by relevant technical
discussion in Sec. 6. We consider other security properties of our system, relevant to

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. Chapin and C. Skalka

DoS, replay, and confidentiality, in Sec. 6.1.4 following a more detailed discussion of
the language model implementation.

1.3. Technical Foundations

Technical foundations underlying our secure RPC design include programming
language-based techniques, asynchronous RPC semantics, and public key (PK) based
authorization logics.

Language-Based Security. SpartanRPC provides language-level abstractions for
defining remote services and associated security policies. Programmers are presented
with an extension of nesC, with new features for defining remote access controlled ser-
vices, and for invoking those services at specific authorization levels. This hides the
implementation details of underlying security protocols and only requires mastery of
a simple authorization logic. SpartanRPC programs are compiled in the same manner
as nesC programs, in fact the SpartanRPC compiler rewrites SpartanRPC programs
to nesC code and compiles the latter.

Asynchronous Remote Procedure Call. As other authors have observed [May et al.
2007], RPC is an appropriate abstraction for node services on the network and sup-
ports whole-network (vs. node-specific) programming. Secure RPC is well-studied in a
traditional networking environment, and is a natural means of layering security over
a distributed communication abstraction.

It is necessary for RPC invocation in a WSN to be asynchronous, since synchronous
call-and-return to a remote node would significantly impede performance in the best
case and cause deadlock in the worst. In order to minimally impact the nesC program-
ming model, we define RPC invocation as a form of remote task. Local tasks are units of
programmer-defined asynchronous computation in nesC, so treating remote computa-
tional services as remote tasks fits well in this paradigm. Remote tasks can be invoked
on one-hop neighbors, providing a link layer service on which network layer services
can be built. For example in Sec. 5 we illustrate how a secure multi-hop data collection
protocol can be built using our link layer service.

PK-Based Authorization Policies. SpartanRPC provides language-level abstractions
for specifying RPC authorization policies. The policy language we support is RT [Li
et al. 2002], which allows network entities to communicate composable credentials
for authorizing service invocations. Credentials are typically signed by certificate au-
thorities and do not require shared secrets to validate. SpartanRPC certificates use
elliptic curve cryptography (ECC) [Bertoni et al. 2006] signatures which are validated
during an initial authorization phase. ECC is significantly more tractable than RSA
in a WSN setting. Following the initial authorization phase our protocol establishes
a shared AES key for computing message authentication codes (MACs) during subse-
quent invocations of a given service by the same node. Since hardware AES is available
on common WSN radio chipsets, we obtain highly efficient performance for secure invo-
cations following authorization. This is demonstrated with empirical results reported
in Sec. 7.

1.4. Outline of Paper

In Sec. 2 we describe the fundamental language abstraction we provide for defining
remote services, called duties. In Sec. 3 we describe a modification of remote services
that accommodates dynamically changing communication neighborhoods. In Sec. 4 we
define our authorization logic, and show how to specify duty posting policies and how
they are enforced in the implementation. In Sec. 5 we provide the extended example
of secure directed diffusion. In Sec. 6 we summarize novel and important features of

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:5

our implementation. In Sec. 7 we discuss empirical results of system performance. In
Sec. 8 we describe a realistic application of our system. We conclude with a discussion
of related work in Sec. 10.

2. DUTIES AND REMOTABILITY

The wireless communication in a WSN is typically unreliable due to frequent node
failures and interference effects. Furthermore the data transfer rate in a WSN based
on the IEEE 802.15.4 link layer protocol is much less than in other common networked
environments. For example the CC2420 radio used in our experiments, a typical WSN
device, supports a data rate of only 250 Kbps [Chipcon 2004]. Consequently we believe
it is unrealistic for RPC services in WSNs to be synchronous. Instead we believe the
semantics of nesC tasks are a more appropriate abstraction. They are not quite right
however, since RPC services, unlike nesC tasks, will typically require arguments to
be passed. Also a nesC task can only be posted in the module where it is defined. In
contrast an RPC service invokes remotely defined functionality. We therefore define a
new RPC abstraction called a duty.

2.1. Syntax and Semantics

Duties are declared in interfaces and syntactically resemble command declarations.
Instead of using the reserved word command the new reserved word duty is used. Du-
ties are allowed to take parameters, with restrictions as discussed below, but must
return the type void. For example the following interface describes an RPC service for
remotely controlling a collection of LEDs:

interface LEDControl { duty void setLeds(uint8_t ctl); }

Duties are defined in modules in a manner similar to the way tasks, commands,
or events are defined. The reserved word duty is again used on the definition. Like
commands and events the name of the duty is qualified by the name of the interface in
which it is declared. Including a duty in an interface definition automatically implies
that the interface can be remotely invoked, or is remotable in the sense formalized in
Sec. 2.2. Any remotable interface provided by a component must be specified as remote
in the component’s list of provided interfaces. The first code sample in Fig. 1 shows an
LEDControllerC component that provides the LEDControl interface remotely– i.e. that
allows remote nodes to control LED status lights on a board. A more extended example
of duty implementation and usage is provided in Sec. 5.

A module on the client node that wishes to use a remote interface simply posts the
duty in the same manner as tasks are posted. The use of post emphasizes the asyn-
chronous nature of the invocation. An example duty posting is illustrated in Fig. 1.
The standard component semantics of nesC provide a natural abstraction of “where”
the RPC call goes, just as e.g. a normal command invocation will go through a com-
ponent interface that is disconnected from its implementation. Like a normal com-
mand invocation, configuration wirings determine where duty control flows. However,
in SpartanRPC duty invocation control flows to a component residing on a different
network node. The invoking module must be connected to the remote modules by way
of a dynamic wire as described in Sec. 3.

When a duty is posted by a client it may run at some time in the future on the server
node. The client node continues at once without waiting for the duty to start. Once
posted the client has no direct way to determine the status of the duty. Also, due to the
unreliability of the network a posted duty may not run at all. SpartanRPC does not
attempt to retransmit or even detect failed duty invocations; postings occur at most
once. Any error semantics for duty postings must be implemented by the application
developer.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. Chapin and C. Skalka

module LEDControllerC { provides remote interface LEDControl; }
implementation {

duty void LEDControl.setLeds(uint8_t ctl) { ... }
}

module LoggerC { uses interface LEDControl; }
implementation {

void f() { ... post LEDControl.setLeds(42); }
}

Fig. 1. Duty Implementation and Invocation Examples

2.2. Remotable Interfaces

We impose certain requirements on RPC service definitions for ease of implementa-
tion. First, since WSN nodes do not share state we disallow passing references to
duties—such a reference would be meaningless on the receiving node. Thus we define
remotable types:

Definition 2.1. A type is remotable if and only if it satisfies the following induc-
tive definition: The nesC built-in arithmetic types, including enumeration types, are
remotable, and structures containing remotable types are remotable.

Since a remotable interface describes RPC services, we require that they specify duties
taking only arguments of remotable type; also, remotable interfaces can only contain
duties, to ensure meaningful remote usage.

Definition 2.2. An interface is remotable if and only if it only provides duties whose
argument types are remotable.

3. DYNAMIC WIRES

In an ordinary nesC program the “wiring” between components as defined by config-
urations is entirely static. The nesC compiler arranges for all connections, and at run
time the code invoked by each called command or signaled event is predetermined.

In a remote procedure call system for wireless networks this static arrangement is
insufficient. A node can not, in general, know its neighbors at compilation time but
rather must discover this information after deployment. In addition, the volatility of
wireless links and of the nodes themselves means that a given node’s set of neighbors
will change over time. In this section we discuss the facility in SpartanRPC to allow
dynamic wirings for specifying control flow from duty invocation to duty implementa-
tion.

3.1. Component IDs, Component Managers

We begin by discussing how remote components are identified for wiring. In order
to uniquely identify components on the network, remotable components are specified
via a two-element structure called a component id defined on the left side of Fig. 2.
The node id member is the same node ID used by TinyOS and is set when the node
is programmed during deployment. The local ID member is an arbitrary value defined
by the programmer of the server node. Only components that are visible remotely need
to have ID values assigned, however, the ID values must be unique on the node. The
component set structure defined on the right side of Fig. 2 wraps an arbitrary array of
component id values.

A component manager is a component that provides the ComponentManager interface
defined at the bottom of Fig. 2. It dynamically specifies a set of component IDs that

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:7

typedef struct {
uint16_t node_id;
uint8_t local_id;

} component_id;

typedef struct {
int count;
component_id *ids;

} component_set;

interface ComponentManager { command component_set elements(); }

Fig. 2. Component Manager Interface and Type Definitions

module RemoteSelectorC { provides interface ComponentManager; }
implementation {

component_id broadcast = { 0xFFFF, 1 };
component_set broadcast_set = { 1, &broadcast };

command component_set ComponentManager.elements() {
return broadcast_set;

}
}

Fig. 3. Example Component Manager

ultimately serve as dynamic wiring endpoints. An example component manager is dis-
cussed in detail Sec. 5.

As a simple example, consider the component manager RemoteSelectorCas shown in
Fig. 3. This component manager always returns a component set containing a single
component. The special SpartanRPC broadcast node ID is used (0xFFFF) indicating
that all neighbors should be the target of the dynamic wire. The component ID on the
neighbors is specified as 1 in this example. In a more complex example the component
manager would compute the component set each time the dynamic wire is used, filling
in an array of component IDs based on information gathered earlier.

3.2. Syntax and Semantics

In SpartanRPC we extend the syntax and semantics of nesC to allow the target of a
connection to be dynamically specified by a component manager. The syntax of wirings,
or connections, is extended as follows:

connection ::= endpoint ’->’ dynamic_endpoint
dynamic_endpoint ::= ’[’ IDENTIFIER ’]’ (’.’ IDENTIFIER)?

Given a dynamic wiring of the form C.I -> [M].I, we informally summarize its se-
mantics as follows. First, we statically require that M be a component providing the
ComponentManager interface, and that I be a remotable interface. At run time, if control
flows across this wire via posting of some duty I.d within component C, the command
elements in M is called to obtain a set of component IDs. The duties I.d provided by
the specified remote components will then be posted on their respective nodes via an
underlying link layer communication, the details of which are hidden from the pro-
grammer. Thus, duties can only be posted on neighbors. Note that since this call to
elements may return more than one component ID, this is a sort of fan-out wiring.

For example, the programmer could wire the LoggerC component mentioned in Fig. 1
to LED controller components on a dynamically changing subset of neighbors using a
configuration such as:

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. Chapin and C. Skalka

LoggerC.LEDControl -> [RemoteSelectorC];

The server’s configuration does not need to wire anything to the remote interface
explicitly.

3.3. Callbacks and First-Class IDs

We assume that the component IDs for well known services will be agreed upon ahead
of time by a social process outside of our system. By broadcasting to a well known
component ID, a node can use services on neighboring nodes without knowing their
node IDs.

If a node expects a reply from a service that it invokes, the invoking node must
set up a component with a suitable remote interface to receive the service’s result. In
SpartanRPC remote invocations can only transmit information in one direction. Bidi-
rectional data flow requires separate dynamic wires. This design provides a natural
“split-phase” semantic in which the invoker of a service can continue executing while
waiting for the result of that service. For example, a service might require the client
to provide the node ID and component ID of the component that will receive the ser-
vice result as arguments to the service invocation. The server could store those values
for use by a server-side component manager. It is permitted for a component to be its
own component manager making it easy for a service to return a result by posting the
appropriate duty.

4. SECURITY POLICY SPECIFICATION AND PROGRAM LOGIC

In this section we discuss how to extend the language setting described previously
with security features. The goal is a language framework where RPC services require
authorization for use, and where authorization policies support collaboration between
multiple security domains. To this end we adapt a distributed trust management sys-
tem [Chapin et al. 2008] for policy specification. This system secures WSN application
programming by way of the SpartanRPC API.

4.1. Security Policy Language

Authorization in trust management systems is more expressive than in traditional ac-
cess control schemes such as access control lists or role based access control (RBAC)
[Sandhu et al. 1996]. In these simpler models, access is based on identities of princi-
pals. But in the distributed scenarios we are considering here, creating a single local
database of all potential requesters is untenable. Where there are multiple domains of
administrative control, no single authorizer can have direct knowledge of all users of
the system. Furthermore, in highly dynamic and volatile environments, no single en-
tity in-network can be expected to keep pace with changes in an authoritative manner.
Finally, basing authorization purely on identity is not a sufficiently expressive or flexi-
ble approach, since security in modern distributed systems utilizes more sophisticated
features (e.g. delegation). These problems are addressed by the use of trust manage-
ment systems such as the RT framework [Li et al. 2002]. We use the system RT0 in this
foundational presentation due to its simplicity, but other RT variants [Li et al. 2003;
Li and Mitchell 2003b] could be adapted.

Like other trust management systems such as SPKI/SDSI [Ellison et al. 1999], RT
represents principals as public keys and does not attempt to formalize the connection
between a key and an individual. The RT literature usually refers to principals as
entities. RT allows each entity to define roles in a name space that is local to that
entity. An authorizer associates permissions with a particular role; to access a resource
a requester must prove membership in the role. In this way RT provides a form of role
based access control.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:9

To define a role, an entity issues credentials that specify the role’s membership.
Some of these credentials may be a part of private policy, others may be signed by the
issuer and made publicly available as certificates. The overall membership of a role is
taken as the union of the memberships specified by all known defining credentials.

Let A,B,C, . . . range over entities and let r, s, t, . . . range over role names. A role r
local to an entity A is denoted by A.r. RT credentials are of the form A.r ← f , where f
can take on one of four forms to obtain one of four credential types:

(1) A.r ← E . This form asserts that entity E is a member of role A.r.
(2) A.r ← B .s. This form asserts that all members of role B.s are members of role

A.r. Credentials of this form can be used to delegate authority over the membership of
a role to another entity.

(3) A.r ← B .s .t . This form asserts that for each member E of B.s, all members of role
E.t are members of role A.r. Credentials of this form can be used to delegate authority
over the membership of a role to all entities that have the attribute represented by
B.s. The expression B.s.t is called a linked role.

(4) A.r ← q1 ∩ · · · ∩ qn . Where the qi are qualified role names such as B.s. This form
asserts that each entity that is a member of all roles q1, . . . , qn is also a member of role
A.r. The expression q1 ∩ · · · ∩ qn is called an intersection role. In our implementation
only two constituent roles q1 and q2 are allowed in an intersection role. This does not
limit expressivity since intermediate roles can be introduced as necessary to handle
larger intersections.

For all credential forms A.r ← f , the principal A is called the issuer of the credential.
An example credential set is presented and discussed in Sec. 8.

The formal semantics of RT can be expressed in terms of Datalog [Li et al. 2002].
The translation of RT credentials to Datalog requires only a single relation isMember
to assert when a particular entity is a member of a particular role. A type (1) creden-
tial, called a membership credential, is translated into Datalog simply as a fact. For
example the credential A.r ← E becomes the fact isMember(E,A, r). The other three
credential types are translated into Datalog rules. For example, the type (3) credential
A.r ← B .s .t becomes the following Datalog rule:1

isMember(?x, A, r)← isMember(?y, B, s), isMember(?x, ?y, t).

The meaning of an RT credential JCK is the Datalog fact or rule to which it translates.
Let C be a set of RT credentials split into two disjoint subsets C = Cf ∐ Cr where Cf is
the set of all membership credentials. The meaning of C, which we denote as JCK, is the
minimum model of the Datalog program JCrK using JCf K as input [Abiteboul et al. 1995].
The authorizer associates an access permission with a particular role, say A.g, that we
call the governing role. Hence we formally define authorization in a given credential
environment C as follows:

Definition 4.1. Given a credential set C, entities A and E, and role g, E is authorized
for A.g in C, denoted C ⊢ E ∈ A.g, if and only if isMember(E,A, g) is in JCK.

One appealing characteristic of the RT0 trust management system is monotonic-
ity. Negative credentials that explicitly remove entities from roles are not supported.
Consequently if an authorizer has incomplete information she might deny access that
would otherwise be granted, but she will never grant access that should have been
denied. This property is essential in a WSN context where the unreliability of wireless
communication together with the limited memory resources of sensor nodes make it
impossible to guarantee complete information about all roles.

1Logical variables are shown prefixed with ‘?’

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. Chapin and C. Skalka

Our system requires the requester to provide all necessary credentials using some
external means to obtain them. Methods for doing, for example, distributed credential
chain discovery have been described [Li et al. 2003] but we feel they would be pro-
hibitively expensive in a WSN context. The best approach for collecting a complete set
of credentials may be application specific, and thus we regard it as outside the scope of
this work.

The use of RT0 means that principles cannot switch to roles of lesser privilege, as is
often desirable in accordance with the principle of least privilege. However, variants of
RT are available that support switching to less privileged roles [Li and Mitchell 2003b],
and that could be used in SpartanRPC instead of RT0. Also techniques for supporting
certificate revocation in an RT-style trust management framework have been explored
[Li and Feigenbaum 2002].

4.2. Program Logic

Our authorization model can be viewed as a client-server interaction; respective sides
of the interaction protocol are summarized separately as follows.

4.2.1. RPC Server Side Logic. RPC service providers establish policy by assigning gov-
erning roles A.g to remote interface implementations. Service providers also possess a
set of assumed credentials C which establish an authorization environment by provid-
ing initial server side authorization policy. As we will describe in detail, the set C may
grow as additional credentials are communicated to servers. Finally, in the presence of
security, client invocations of any RPC service are not anonymous, but are performed
on behalf of some entity B, which must be a member of the governing role A.g to use
the protected service.

In summary, access to an RPC level is allowed if and only if the property C ⊢ B ∈ A.g
holds, where:

— B is the identity of the RPC client
— A.g is the governing role of the RPC service
— C are the credentials known to the RPC host server

RPC service programmers specify governing roles as part of module definitions—
specifically at remote interface provides clauses. Hence, governing roles are associ-
ated with interface implementations, not interfaces themselves. This allows applica-
tion flexibility, in that the same interface can be implemented with various authoriza-
tion levels within the same network. Syntax is as follows:

provides remote interface I requires A.g

Note the minor modification to previously introduced syntax for remote module def-
initions via the requires keyword.

4.2.2. RPC Client Side Logic. In order to use a secure remote module, RPC clients wire
to it as for unsecured modules (see Sec. 3.2), but with two additional capabilities: (1)
the client specifies under what RT entity the invocations will be performed, and (2) the
client may also specify credentials in their possession which are to be activated for use
in the invocation. Syntax is as follows:

enable "C1, . . . , Cn" as "B" for C.I -> [M].J

For any invocation made through this wiring the credentials C1, . . . , Cn will be re-
motely added to the RPC server’s database for the authorization decision, via a process
detailed in Sec. 6. Note that these credentials need not establish authorization entirely
by themselves, rather they will be added to the server’s existing credentials, all of which
will be used in the authorization decision. A special form of the enable clause using

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:11

interface InterestManagement {
duty void set_interest(uint16_t sender_node, int temp_threshold,

int interval, int duration);
}

interface DataManagement {
duty void set_data(uint16_t sender_node, uint16_t originator_node,

int temp_value);
}

Fig. 4. Directed Diffusion Interest and Data Management Interfaces

"*" for the list of credentials is also supported. This form indicates that all credentials
known to the client should be communicated to the server.

Each node is deployed with a collection of ECC key pairs, one for each entity the
node represents. When an invocation is made the entity B mentioned in the as clause
of the dynamic wire is used in the request. The as clause is optional; if it is omitted a
distinguished default entity is used for the invocation.

5. EXAMPLE: SECURE DIRECTED DIFFUSION

To illustrate our language design we have implemented a secured version of the well-
known directed diffusion protocol [Intanagonwiwat et al. 2003] for ad-hoc routing of
data in a sensor network. It is one example of the publish/subscribe paradigm for data
gathering. In our secure version facilities for subscribing to a data stream are defined
as secure RPC services by data stream providers. Directed diffusion supports multi-
hop data collection, so this example illustrates how our link layer RPC service supports
network layer communication. It also serves as a good benchmark application for em-
pirical observations reported in Sec. 7. We provide another extended example in a real
prototype application of SpartanRPC in Sec. 8.

The directed diffusion algorithm [Intanagonwiwat et al. 2003] allows a node to sub-
scribe to a data stream by expressing an interest in it. In our example, an interest is
expressed as temperature data above a given threshold. A certain data rate, expressed
as a time interval between samples, is associated with each interest. Initially a node
seeking temperature data floods the network using an interest with a low data rate. As
data events find their way back to the interested node, that node selectively reinforces
certain immediate neighbors by retransmitting the interest with a higher associated
data rate to just those neighbors. Also, in our version of directed diffusion we imagine
that it is to be implemented in a network comprising multiple security domains, and
specify that subscription to data streams requires certain authorization levels as de-
fined by policy. We omit the policy specification in this example to focus on the language
API. An example policy specification is presented and discussed in Sec. 8.

5.1. Interfaces

Interest and data propagation are handled by separate interfaces, as shown in Fig. 4,
each containing a single duty.

A node expresses interest in temperature data above a certain threshold and at a
certain data rate by posting the set interest duty on its neighboring nodes. The du-
ration parameter of the set interest duty specifies a lifetime of the interest. Once an
interest expires it is removed from the node’s interest cache. Temperature values are
expressed as integers presumably corresponding to the output of an analog to digi-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. Chapin and C. Skalka

tal converter. Similarly time intervals are expressed as integer multiples of some unit
time, the exact value of which is arbitrary.

A node passes data to its interested neighbors by posting the set data duty on those
neighbors. The originator node is the ID of the node where the data was originally
observed; the node soliciting this data will typically want to know its provenance.

Both of these interfaces include the sender’s node ID as an explicit parameter. The
nodes use that information to track paths through the network. Although the node ids
are also part of the low level radio packets sent between the nodes, we chose for demon-
stration purposes to manage the interest and data information strictly at a higher level
in the protocol stack. As usual greater efficiency may be possible by mixing protocol
layers.

5.2. Configuration

The interest and data caches, which we call “managers,” are the two central compo-
nents of our application. The interest manager provides the InterestManagement in-
terface remotely and uses the same interface on other components. The data manager
provides and uses the DataManagement interface in a similar way. Both components
serve as their own component managers, using internal information to specify the des-
tination nodes of each outgoing post operation.

The main configuration contains, in part, the following wiring for the interest man-
ager:

enable "*" for InterestManagerC.NeighborSensors ->
[InterestManagerC].InterestManagement;

In this example, we assume the nodes are deployed with a single default entity as
their identity. As discussed in Sec. 4.2.2, because the as clause is missing this wiring
makes the invocation on behalf of that entity. We anticipate that single entity nodes
will be common.

Because the interest manager provides and uses the same interface, it defines
NeighborSensors as an alias for the InterestManagement interface that it uses re-
motely. When the interest manager posts the set interest duty, that duty is invoked
in all neighbors currently selected by its own, internal component manager. These post
operations are authorized using credentials available to the invoking node; neighbors
can be in multiple security domains.

5.3. Authorized Interest Management

The interest manager has a partial specification as follows, which we assume resides
in a domain controlled by some Admin entity. Observe that its InterestManagement
interface requires authorization for the Admin.OK role:

module InterestManagerC {
provides interface ComponentManager;
provides remote interface InterestManagement requires "Admin.OK";
uses interface InterestManagement as NeighborSensors;

}

Because the interest manager is its own component manager, setting up target node
addresses entails updating an internal component set. In the case when a new interest
is received the interest manager propagates that interest to all neighbors. This is done
inside the interest manager’s set interest duty as shown in Fig. 5.

The “well known” local component ID of the interest manager is used to specify
which component on neighbor nodes is to process the duty. The implementation of the
elements command in the ComponentManager interface merely returns remote set com-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:13

remote_set.ids = &remote_components;
remote_set.count = 1;
remote_components[0].node_id = 0xFFFF;
remote_components[0].local_id = INTEREST_ID;
post NeighborSensors.set_interest(...);

Fig. 5. Propagation of New Interests

puted above. Before the posting of set interest returns, remote set is used to prepare
the outgoing packet. After the post is complete remote set and remote components can
be reused without affecting any pending radio transmissions.

In the more complicated case where an interest is being reinforced, the interest
manager must use information in the data cache to compute which neighbors need
reinforcing. Although SpartanRPC allows a component manager to dynamically select
neighbor nodes, the component used as a component manager is statically bound. Thus
in this example the interest manager cannot switch its component manager to, for
example, the data manager. To work around this, the interest manager communicates
with the data manager using connections not shown here. With the data manager’s
help the interest manager computes appropriate neighbors dynamically before posting
set interest on those neighbors. The data manager implementation has a similar
structure and authorization mechanism.

6. THE SPARTANRPC IMPLEMENTATION

In this section we describe the implementation of the SpartanRPC system using RT0

trust management for authorization. We call our implementation SprocketRT [Chapin
2014]. SprocketRT rewrites a SpartanRPC program into a pure nesC program and pro-
vides a supporting runtime system. Program rewriting converts remote duty postings
into a nesC messaging protocol. The main task of the runtime system is to implement
the encapsulated, underlying security protocols for authorization of remote duty post-
ings.

6.1. Authorization and Security Protocols

SprocketRT implements SpartanRPC authorization using a combination of public and
symmetric key cryptography. We use the TinyECC library [Liu and Ning 2008] for pub-
lic key functionality, and AES encryption for symmetric key functionality. TinyECC
uses elliptic curve cryptography for more efficient public key operations in WSNs. Us-
ing AES has the benefit of hardware support on many current embedded platforms,
e.g. those employing the Chipcon CC2420 radio.

There are three security protocols for authorized duty postings, illustrated in Fig. 6,
that operate asynchronously. First, a credential exchange protocol in which RT creden-
tials are communicated between nodes and authorization levels for various entities are
computed, i.e. the minimum model as described in Sec. 4. Second, a session key proto-
col in which symmetric keys for multiple authorized service invocations are computed
between a client and server. And third, an authorized service invocation protocol in
which duty postings are generated and checked. This decomposition of authorized ser-
vice invocation into three protocols supports efficiency especially through the use of
symmetric keys for multiple service invocations. Its asynchronous nature is also ap-
propriate in an asynchronous TinyOS setting.

6.1.1. Credential Exchange. SpartanRPC credentials are implemented as signed cer-
tificates. All SpartanRPC-enabled nodes contain a certificate sender component and

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. Chapin and C. Skalka

Certificate
Sender

Certificate
Receiver

Session Key
Sender

Session Key
Receiver

Client Server

Node A Node B

Certificates

(Kcp, C, I)

(Ksp, C, I)

Post + MAC

Fig. 6. SpartanRPC Security Protocol Elements

a certificate receiver component to transfer certificates between nodes and to verify
them and interpret the credentials they represent. Both components run as back-
ground daemons, performing their function asynchronously. A SpartanRPC-enabled
node is deployed with a collection of certificates in read-only storage representing that
node’s credentials, which are determined by some external means. Once the node is
booted, the certificate sender starts a periodic timer. When the timer fires, the node
link-layer broadcasts (i.e. only to neighbors) all certificates in its certificate storage
that are mentioned in the enable clauses of the dynamic wires used during program
execution. To prevent adjacent node certificate broadcasts from colliding, the certifi-
cate broadcast interval is modulated randomly by ±10%. For example if the nominal
broadcast interval is one minute, the actual time varies randomly between 54 and 66
seconds.

The certificate distribution strategy is robust in the face of new nodes being added
to the network or intermittent radio connectivity. If a node fails to receive certain
certificates from its neighbors it will have another opportunity to do so when those
neighbors rebroadcast their certificates. There is a trade off between the broadcast in-
terval, responsiveness, and network energy consumption. A short broadcast interval
allows authorizations to succeed “quickly” since neighbors become aware of the neces-
sary credentials early, but at the cost of increased radio traffic and power consumption.

Once a newly received certificate has been verified, the credential it represents is
extracted and stored. The credential storage also contains the RT0 minimum model
implied by the currently known collection of credentials. Each time a new credential is
added to storage, the minimum model is updated. This is done by repeatedly applying
authorization logic inference rules implied by the credentials to the current model until
a fixed point is reached, i.e. a logical closure [Li and Mitchell 2003a]. Thus, each node
maintains a local view of authorization levels for network entities based on received
credentials.

Our certificate representation of an RT credential contains the public keys denoting
entities mentioned in the credential. Roles are identified by one byte numeric codes and
are scoped by the entity defining the role. Credential forms are distinguished by num-
bers {1, 2, 3, 4}. Certificates are also signed by their issuing authority. Conveniently,
the issuing authority is always mentioned in a credential, e.g. the issuing authority

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:15

A.r ← B.s ∩ C.t

4 A (40) r B (40) s C (40) t sig (42) chk (2)

Fig. 7. Intersection Certificate Format (parenthesized numbers indicate byte counts)

of A.r ← B is A, so the means to verify the certificate (i.e. the relevant public key) is
always included with it for free. This does not introduce a security problem. Since en-
tities are identified directly by their keys, an attacker who creates a new key is simply
creating a new entity.

The over-the-air format for the intersection certificate is illustrated in Fig. 7. The
other certificate forms are organized in a similar way. The certificate starts with a
certificate type identifier byte, and then follows the written form of the RT credential
with a signature appended to the end. Role names are mapped to single byte role
numbers specified by the entity defining the role.

Certificates range in size from 124 bytes for the membership credential to 166 bytes
for the intersection credential. This is larger than the maximum payload size limit
of TinyOS T-Frame Active Message packets as transported by IEEE 802.15.4 [IEEE
2003; Hui et al. 2008]. It is much larger than the default maximum payload size of
28 bytes used by TinyOS [Levis]. Consequently the certificates are fragmented into
four messages requiring a maximum payload size of 46 bytes. The choice of using four
fragments is a trade off between an excessive number of fragments on one hand and
excessive memory use for packet buffers on the other. Also the session key negotiation
messages described in Sec. 6.1.2 require 44 bytes in any case.

Verification of RT certificates is the most computationally expensive component of
our system as we discuss in Sec. 7. Thus, we want to minimize the amount of effort
spent on verification. To this end, we append a 16-bit Fletcher checksum to each cer-
tificate. Nodes maintain a database of certificate Fletcher checksums to quickly check
whether a certificate has already been received and verified. It is necessary to include
this checksum rather than rely on the checksum provided by the underlying network
stack because the later value covers frame headers that are not part of the certificate.
Fletcher checksums are commonly used in WSNs since their error detection properties
are almost as good as CRCs with significantly reduced computational cost [Fletcher
1982].

6.1.2. Session Key Negotiation. Public key cryptography is much too computationally
expensive to use for routine duty posting authorizations. Sprocket’s run time system
addresses this by negotiating session keys between the sender (client) and receiver
(server) nodes.

The client maintains a session key storage that is indexed by the triple (N,C, I)
where N is the remote node ID, C is the remote component ID, and I is the remote
interface ID. A session key is thus created for each combination of these IDs. The
server also maintains a session key storage indexed by (N,C, I). In this case N is
the node ID of the client and C, I are the component and interface IDs on the server
to which that client is communicating. Since any given node can be both server and
client, each session key storage entry has a flag to indicate the nature (client-side or
server-side) of the session key.

The first time a client attempts to access a service on a particular server, it will send
a session key negotiation request. When a server receives a session key negotiation
request message from a client node N containing the public key Kcp of the requesting
entity (as mentioned in the as clause of the dynamic wire) and the (C, I) address of the
desired service, the following steps are taken:

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. Chapin and C. Skalka

n args MAC
Interface ID

Duty ID

Node ID Component ID

n Components n Components

Fig. 8. Duty Post Message

(1) Authorization of Kcp for service (C, I) is checked using the RT minimum model
computed by the certificate receiver. If authorization fails nothing more is done.

(2) A session key is computed using elliptic curve Diffie-Hellman and added to the
session key storage under the proper (N,C, I) value. The key is stored as a remote
client key.

(3) A message is returned to the client containing the server’s public key Ksp and
the original (N,C, I) values used by the client. This is so the client is able to compute
the same session key and associate it with the proper endpoint from its perspective.

The session key negotiation protocol is a simple Diffie-Hellman key agreement pro-
tocol that combines the public key of the peer entity with the private key of the local
entity. The implementation does not include any nonces as would be done, for exam-
ple, with the ECMQV protocol [ISO 2008]. As a result any renegotiated session keys
between the same entities would be identical. However, this is not a serious problem
because the implementation does not currently renegotiate session keys. Furthermore
the ECMQV protocol entails three exchanged messages and additional computations
and so would further increase the burden on nodes.

A potentially more serious concern is that the simple protocol described here might
be vulnerable to a man in the middle attack, whereby an active attacker negotiates
independent session keys with each peer and is able to modify messages sent between
those peers. However, in RT private keys are identities directly so a man in the middle
without access to either the client or server’s private key would appear as a new entity,
presumably without authorized access.

6.1.3. Authorized RPC Invocations. Authorized RPC invocations are made with MACs
on invocation messages using AES session keys. Verification of a MAC by the receiver
constitutes authorization since a session key for a particular client and service is nego-
tiated only after client credentials have been verified as providing proof of compliance
to authorization policy. Fig. 8 shows the format of authorized invocation request mes-
sages. The interface and duty IDs, both four bit values, are packed into the initial
byte of the message. Following is the number of receivers, the (N,C) addresses of the
receiving components, and the duty arguments.

Since invocation of an RPC service on multiple hosts can be made at once in a fan-
out wiring (see Sec. 3), a single invocation request message may apply to multiple
servers in the neighborhood of the client. To conserve bandwidth, fan-out invocation
messages include multiple MACs, since separate session keys are negotiated with each
of n servers, allowing a single message to invoke the same service on the servers.
If the duty arguments consume d bytes of data, then invocation messages consume
2 + 6n+ d bytes. In the common case where n = 1 invocation messages contain 8 bytes
of overhead. As we describe above our implementation uses a 46 byte message buffer
size as required for sending certificate fragments. Our experience suggests that using
the same buffer size for invocation messages allows for reasonable values of both d and
n.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:17

To conserve space in the invocation messages we only use a 32 bit MAC. Such a
small MAC would not normally be considered secure. However, wireless sensor net-
works generate data so slowly that attacking even such a short MAC is not considered
feasible [Karlof et al. 2004; Luk et al. 2007].

6.1.4. More on Security Properties. As in Sec. 1.2, we stress that our scheme is intended
to enforce authorization, which we achieve via the protocols described above. Integrity
is a side effect of this, since we use MACs to enforce authorization, which are computed
over complete message payloads and are verified by the receiver. Although confiden-
tiality is not directly supported by our current protocols, it could be easily added. In
particular payloads could be encrypted using negotiated session keys (payloads are
currently sent as plaintext).

Our system does not provide any form of replay protection out of the box, but this can
be added at the application level. For example an application could pass a counter or
time stamp as an additional duty argument. The server could verify that the argument
increases monotonically as a simple form of replay protection. The space required for
counter or time stamp information would increase message sizes, but this is unavoid-
able for any solution to replay protection. Delegating replay protection to the applica-
tion is appropriate since SpartanRPC is intended to be a low level infrastructure on
which more complex systems can be built. Furthermore the need for replay protection
is likely to be application specific.

Perhaps the most problematic vulnerability of our system is to denial of service (DoS)
attacks– unlike e.g. replay, for which countermeasures can be readily implemented
at the application level, it is not clear how DoS attacks could be mitigated without
significant changes to the underlying security protocols. For example, a constant flood
of certificates over the correct channel would place receiving nodes in a constant state
of signature verification, potentially consuming large amounts of CPU time and energy.
Mitigation of such attacks is outside the scope of this work but has been discussed in
the literature [Raymond and Midkiff 2008].

A note on multicast security. Fan-out wirings are a common idiom, and provide a
form of multicast communication. However, the use of MACs for security in a multicast
setting presents well-known challenges. In particular, while n-way Diffie-Hellman can
be used to negotiate secret keys between n actors, such a scheme cannot be used in light
of the possibly heterogeneous authorization requirements we anticipate. For example,
suppose a node A fan-out wires to service s on distinct nodes B and C, and suppose
also that A is authorized for s on both nodes but that B is not authorized for s on C
and vice-versa. If a single session key were negotiated between A, B, and C in this
case, then B could make unauthorized use of C ’s version of s and vice-versa. While
a variety of techniques have been proposed to mitigate this problem [Canetti et al.
1999], most typically rely on very large multicast groups and are not applicable in our
setting. Thus, we handle fan-out wirings using multiple MACs as described above.

6.2. Identifying Services Over the Air

RPC service endpoints are identified by the 4-tuple (N,C, I,D) where N is the TinyOS
ID of the node on which a duty is implemented. C is the local component ID assigned
to each component that provides a remotable interface. I is an interface ID, required
since a component may provide more than one remotable interface. Interface IDs are
component-level unique. Finally D is a duty ID, which must be interface-level unique.

In the current version of SprocketRT , (C, I) values are assigned statically by an arbi-
trary (automated or social) process. SprocketRT accepts configuration files that define
the association between (C, I) values and the entities to which they refer. Duties are
numbered in the order in which they appear in their enclosing interface definitions.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. Chapin and C. Skalka

Some RPC systems, such as ONC RPC, allow each node to provide a registry of RPC
services available on that node [Srinivasan 1995]. When a large number of RPC ser-
vices are provided by a node it becomes unreasonable to expect clients to have hard
coded knowledge of the endpoint identifiers for all those services. Instead clients com-
municate with the single well known registry to obtain endpoint identifiers that were
dynamically assigned. In contrast we assume this configuration information is known
a priori to all interacting actors. It is unclear if sensor networks could benefit from a
more sophisticated technique for defining and communicating endpoint identifiers, but
it would be an interesting topic for future work.

6.3. Rewriting SpartanRPC to nesC

There are five major features requiring SpartanRPC-to-nesC rewriting by SprocketRT :
interface definitions, call sites where remote services are invoked, duty definitions,
dynamic wires, and server components providing remote interfaces. In addition
SprocketRT generates a stub component for each dynamic wire, and a skeleton compo-
nent for each remote interface. Finally SprocketRT generates configurations that wrap
server components. Here we summarize rewriting strategies for these features.

6.3.1. Interfaces, Call Sites, and Duty Definitions. Duty declarations in interfaces are
rewritten to command declarations by substituting command for duty. Since nesC com-
mands are allowed to have arbitrary parameters, duties with parameters present no
complications. SprocketRT verifies that if an interface contains a duty, then the only
declarations in that interface are duties. SprocketRT further verifies that the parame-
ters of each duty, if any, conform to the restrictions described in Sec. 2.2.

Call sites where duties are posted are rewritten to command invocations by sub-
stituting call for post. Only post operations applied to duties are rewritten in this
way. Finally, duty definitions are rewritten to command definitions by also substitut-
ing command for duty.

6.3.2. Authorization Interfaces. The rewriting process makes use of two interfaces that
mediate the interaction between the SprocketRT generated code and the security pro-
cessing components of the run-time system. Fig. 9 shows how a message, entering from
the left, is extended with authorization information by the client and then passed to
the server where the authorization information is checked.

Client Authorizer Server Authorizer

AuthorizationClient
(interface)

AuthorizationServer
(interface)

ACNullC ACRT0C ASNullC ASRT0C

Auth.Message Message

Fig. 9. Client/Server Authorization Architecture

The AuthorizationClient interface abstracts the details of how an authorized mes-
sage is prepared before being sent. The AuthorizationServer interface abstracts the
details of how authorized messages are processed after they are received. This design
allows for pluggable authorization mechanisms. Future versions of SprocketRT could

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:19

Dynamic Wire
ClientC.I -> [SelectorC].I ;

Rewritten as. . .
components Spkt_n ;
ClientC.I -> Spkt_n ;
Spkt_n.ComponentManager -> SelectorC ;
Spkt_n.AuthorizationClient -> AuthorizerC ;
Spkt_n.Packet -> AMSenderC;
Spkt_n.AMSend -> AMSenderC;

Fig. 10. Dynamic Wire Rewriting

potentially support other authorization schemes than those described here, in a mod-
ular fashion.

The authorization interfaces provide their services in a split-phase manner so that
potentially long-running authorization computations can be performed while allowing
the node to continue other functions. In the current implementation, two kinds of au-
thorization are supported. On the client side the precise method used depends on the
dynamic wire over which a particular communication takes place. On the server side
it depends on the presence of a requires clause on the remotely provided interface.

The full RT0 mechanism is supported by client and server components ACRT0C
and ASRT0C respectively (details about this mechanism are discussed in Sec. 4 and
Sec. 6.1). In addition a “null” authorization is supported by client and server compo-
nents ACNullC and ASNullC respectively. The null authorization components perform
no operation. They are used for dynamic wires that do not require authorization and
remote interfaces provided publicly by servers.

6.3.3. Dynamic Wires. In the following, we use italics for metavariables that range
over arbitrary identifiers. The reader is referred to the rewriting schema defined in
Fig. 10. Configurations containing dynamic wires are rewritten to configurations that
statically wire the using component ClientC to a stub Spkt n that interacts with the
appropriate component manager SelectorC and that handles radio communication.
Every stub generated by SprocketRT is uniquely identified over the scope of the entire
program by an arbitrary integer n. The AuthorizerC component is ACNullC in the case
where no authorization is requested.

In contrast a dynamic wire using either an enable or as clause is rewritten the same
way except that the AuthorizerC component is ACRT0C. Furthermore, the list of en-
abled credentials is added to local certificate storage by SprocketRT . Certificates in
storage are periodically beaconed at run-time as described above. Finally, the entity
on whose behalf the RPC invocation is performed is specified in the session key nego-
tiation message sent to the server, also as described above.

The Spkt n stub provides the same interface provided by ClientC . Wherever a duty
is posted by ClientC in source code, the rewritten call invokes code in the stub that was
specialized to handle that duty. The stub calls into the component manager at run time
to obtain a list of the dynamic wire’s endpoints and then prepares a data packet con-
taining remote endpoint addresses and marshaled duty arguments. Finally the stub
calls through the AuthorizationClient interface to perform whatever authorization is
needed.

6.3.4. Remote Services. For nodes supporting RPC services, SprocketRT generates a
skeleton component for each remote interface provided. This skeleton contains a task

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. Chapin and C. Skalka

corresponding to each duty provided in the interface, and every generated skeleton
is distinguished by a unique integer n taken from the same numbering space as the
generated stubs.

When messages are received on a node that provides RPC services, they are exam-
ined to see if they are duty postings and thus to be handled by a skeleton. If so, the
AuthorizationServer interface is used to authorize the message. If authorization suc-
ceeds, the task corresponding to the specified duty is posted. That task simply calls
into ServerC through the original interface I . Thus the task-like behavior of duties
is ultimately implemented using actual nesC tasks inside the server skeletons. Duty
parameters are conveyed via module-level variables accessed by the duty tasks (since
nesC tasks do not take formal arguments).

For each component that provides at least one remote interface, SprocketRT creates
a configuration that wires the corresponding skeleton(s) to that component. This new
configuration wraps the original component and replaces uses of the original compo-
nent in other configurations in the program.

7. EMPIRICAL ANALYSIS OF OVERHEAD

The practicality of our system depends on its cost in terms of memory and processor
overhead. In this section we report on performance measurements made on our im-
plementation. In summary, we show that our combined use of public and private key
cryptography in the underlying security protocol imposes a low amortized cost over
time, despite high costs for initial authorizations.

Test Environment and Programs.. Since many communication chips now support
hardware AES encryption, we were primarily interested in demonstrating perfor-
mance using that feature. In particular, the popular MEMSIC TelosB wireless sensor
mote [MEMSIC] uses a Chipcon CC2420 transceiver with hardware encryption. Un-
fortunately, the standard TOSSIM simulation environment does not model hardware
encryption for TinyOS 2.1, so all of our tests were performed on real hardware. We
used TelosB motes, with 10 KB of RAM, 48 KB of ROM and an 8 MHz MSP430 micro-
controller running TinyOS 2.1.2 [TinyOS].

We exercised our system using both small test programs and using our implemen-
tation of the directed diffusion example described in Sec. 5. The small test programs
consisted of a simple client/server pair where the client repeatedly sent a message con-
taining a single 16 bit value to the server. The purpose of these tests was to explore the
overhead induced by our system with minimal obscuring effects from application logic.
The percentage overhead observed with the small programs is thus a worst case over-
head. In contrast, the directed diffusion example allowed us to test the behavior of the
system in a more realistic, long-running setting. It serves as a demonstration that our
system is feasible in practice, and allowed us to exercise our system in a multi-mote,
multi-hop network environment.

7.1. Memory Overhead for Security Features

The SprocketRT run time system uses several memory caches to hold key material, cre-
dential information, and the minimum model implied by the set of known credentials.
These caches are statically allocated but must be stored in RAM since their contents
are dynamic. Table I summarizes the RAM consumption of the various storage areas
used by the current implementation.

The number of items in each cache are tunable parameters. The optimum settings
depend on the intended application. The values in Table I attempt to strike a balance
between usability and flexibility on one hand and excessive memory consumption on

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:21

Table I. RAM consumed by various storage areas

Storage Area # Items Bytes/Item Total Bytes

Session Keys (nk) 10 22 220

Public Keys (np) 12 40 480

Credentials (nc) 12 16 192

Model (nm) 16 6 96

Total 988

Table II. Memory consumption of test programs

Test Program RAM Bytes ROM Bytes

Baseline Client 349 10982

Baseline Server 283 10490

SpartanRPC Client 2222 23108

SpartanRPC Server 2126 23394

the other. In applications where these needs are more clearly known a priori, the sizes
of the caches can be adjusted to potentially result in lower memory consumption.

Table II shows the overall memory consumption of two small client/server pairs. The
baseline pair handle all communication through normal Active Message packets that
are explicitly programmed by the user. The SpartanRPC pair uses our system which
includes support for certificate distribution and verification, session key management,
authorization logic, and MAC computations.

Although the overhead incurred by the SprocketRT runtime system is significant
on our test platform, nearly 80% of RAM and 50% of ROM resources are still avail-
able. Furthermore, these memory usage numbers scale to denser neighborhoods and
extended RPC services.

7.2. Transient and Steady State Processor Overhead

The execution performance of our system displays two distinct behaviors. The first is a
transient behavior that occurs after a node boots when certificates are exchanged and
session keys are negotiated between the new node and its neighbors. The second is a
steady-state behavior that occurs during normal operation. The transient overhead of
our system is large but the steady state overhead is not. In a quasi-static environment
where new nodes enter the network infrequently the transient costs are amortized and
it is the small, steady state overhead that dominates.

To explore the steady state overhead three tests were conducted.

(1) A baseline test where the message handling was done explicitly using traditional
Active Message interfaces.

(2) A duties test where the SprocketRT system was used but no authorization was
requested. This is equivalent to using the authorization components ACNullC and
ASNullC in Fig. 9.

(3) A MAC test where authorization was requested but where the session key stor-
age areas were preloaded with appropriate session keys.

Table III shows the maximum rate at which messages could be sent and received by
the test programs mentioned above. Note that the MAC test made use of the hardware
assisted AES support provided by the CC2420 radio chip. These results show that
maximum message send rates decrease by a factor of 7% due to the addition of our
duties program logic (our security API), and further decreases by a factor of 25% due
to MAC calculations. We note that the latter overhead would be incurred in any system
using CC2420 MAC calculations.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. Chapin and C. Skalka

Table III. Maximum message transfer rate

Test messages/s % Reduction

Baseline 128 –

Duties 119 7.0

MAC 87 32.0

The transient runtime overhead of our system can be subdivided into three primitive
operations: the time required to transmit and verify a certificate, the time required to
build the minimum model, and the time required to negotiate a session key. Two of
these operations require lengthy public key computations and dominate the transient
behavior of our system. Thus the performance of our system in this regard is closely
tied to the performance provided by TinyECC, which we used with default settings (no
optimizations). Table IV shows the times required for each of the primitive transient
operations in our implementation.

Table IV. Transient processing time

Operation Time

Certificate Verification 82s

Minimum Model Construction 370µs

Session Key Negotiation 80s

The time required to build the minimum model is directly related to the number and
nature of the credentials involved. In our test we used a collection of five representative
credentials, one of each type. In any case this time is entirely negligible compared to
the other transient operations.

The time quoted for session key negotiation represents the time required for both
negotiating partners to compute the session key. In the current implementation the
two negotiating nodes do this sequentially with the server node computing the session
key before responding to the client node. This was done in case the session key compu-
tation failed on the server to ensure that the client does not falsely believe a session
key was successfully negotiated.

7.3. Transient State Times for Directed Diffusion

As argued above, the overhead imposed by our system is primarily the time the net-
work spends in a initial transient state when credentials are verified and session keys
are negotiated. Subsequently, the network enters a steady state during which the main
cost is a 32% reduction in maximal message send rates due to hardware MAC compu-
tation. In order to evaluate the performance of our system in a realistic application,
we therefore quantified the transient state times of the secure directed diffusion ap-
plication described in Sec. 5. In our experiments we elected a single node to repeatedly
express an interest and we observed how long was required for that interest to flood
the network. This time depends on three major factors:

(1) The number of certificates transferred.
(2) The number of neighbors for each node.
(3) The number of hops to the “far” edge of the network.

We conducted two experiments, one on a single hop (star) network and another on a
multi-hop (mesh) network.

In the single hop case, transient time T can be described by the following equation:

T = ncB + V + nnK

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:23

where B is the certificate broadcast interval, V is the certificate verification time,
K is the session key negotiation time, nc is the number of certificates and nn is the
number of neighbors. Since B was set to 90 seconds, which is greater than V , certificate
verification for nc certificates takes time ncB+V given a 90 second system initialization
period. And since session keys need to be negotiated with nk neighbors in turn, T also
comprises a nnK delay. Table V shows the transient time required to flood a network
where all nodes are one-hop neighbors of the root node. Values are given for three
different policies with different numbers of certificates transferred from the root to the
neighbors.

Table V. Single hop transient time

neighbors 1 Cert 2 Certs 3 Certs

1 4m03s 5m27s 6m52s

2 5m16s 6m50s 8m24s

3 6m32s 7m57s 9m30s

4 7m50s 9m22s 10m51s

Table VI. Multi-hop transient time

Run 1 hop 2 hops 3 hops

1 4m05s 7m24s 9m10s

2 3m12s 5m12s 6m30s

3 3m57s 7m37s 9m15s

4 4m09s 7m15s 8m49s

Average 3m51s 6m52s 8m23s

We explored the behavior of our system in a multi-hop environment by creating a
linear mesh network. Each node (except the root) had a single downstream neighbor.
All nodes were booted simultaneously and the time required for interest information
to reach each node was observed. The policy used required only a single certificate to
be transferred between nodes. Table VI shows the results of several runs.

The reason for variations in transient times over each run was due to a randomized
element in the protocol, specifically a randomized ±10% interval in certificate broad-
cast times to avoid collisions. In these results it is essential to note that for hops > 2,
extra transient time is comprised solely of session key negotiation times (80s per ses-
sion key, see Table IV) that are forced by duty postings as interests propagate through
the network. Certificates are broadcast and verified in parallel throughout the network
upon system boot up, during the same time period required for the root’s interest to
propagate through the first and second hops.

8. A PROTOTYPE APPLICATION

To evaluate the performance of SpartanRPC in a real application setting, we have
used the system to implement secure versions of data collection and sampling con-
trol protocols in an environmental monitoring system. The Snowcloud system [Frolik
and Skalka 2013; Moeser et al. 2011] is a WSN developed at the University of Ver-
mont for snow hydrology research applications. It is based on the MEMSIC TelosB
mote platform running TinyOS, and has seen multiple field deployments. Typical de-
ployed systems comprise 4-8 sensor nodes but the technology is currently scalable to
arbitrary numbers of nodes. For data collection and sampling rate control, the system
also includes a handheld “Harvester” device. This device incorporates a TelosB mote
to establish a network connection when in radio communication with the deployment.
Users transport the device to and from deployment sites, and interact with the sensor
node network by issuing commands from a simple push-button interface. A Harvester
device and a deployed Snowcloud sensor tower are pictured in Fig. 11. The scheme
described here has been implemented and tested in our test network at UVM, which
uses the same software and hardware platforms as in our active deployments.

In our secured version of the Snowcloud system, the goal is to treat data collection
and sampling rate control as protected resources requiring authorization. Further-
more, sampling rate modifications should require a higher, “administrator” level of

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. Chapin and C. Skalka

Fig. 11. A Snowcloud Sensor Node (L,C) and Harvester Device (R).

authorization than data collection. That is, only system engineers should be able to
perform control operations, whereas data end-users making field visits should be able
to collect data. Snowcloud sensor node code in particular makes use of nearly every re-
source available on the mote– including timing, sensor I/O, radio messaging, and flash
memory, not to mention CPU and main memory. Thus, it is a robust example of the
interaction of SpartanRPC with mote resources in real applications.

The system described here is also informative since it can be easily ported to other
similar application settings. That is, WSN application settings wherein multiple users
of various authorization levels need to interact with the same network in control or col-
lection capacities, as mediated by security policy. The SpartanRPC API allows straight-
forward retasking of authorized service implementations to these various settings.
Furthermore, the RT authorization logic supports collaboration between multiple so-
cial domains, by allowing security policy to be managed in a decentralized manner as
we illustrate below.

8.1. Security Policies

To specify and implement the security policies informally described above, we consider
the sensor network and the Harvester single node “network” as separate security do-
mains, each with their own set of credentials. The sensor network is always endowed
with administrator-level credentials. If a Harvester is to be used by a system engineer,
its mote is also endowed with administrator-level credentials, whereas a Harvester
to be used by a data end-user is only endowed with user-level credentials. When a
Harvester is introduced to the sensor network, its resource accesses are mediated by
its authorization level. Since credentials are unforgeable, a user-level Harvester can
never be used for sensor network control even if it is reprogrammed.

Sensor nodes within the network possess four credentials, as follows. In these cre-
dentials the Snowcloud domain is abbreviated SC . Authority to collect data and control
sensors in the network are governed by the roles SC .Col and SC .Con , respectively. Cre-
dential (1) says that control authority contains collection authority. (2) says that nodes
in the Snowcloud domain have control authority. (3) says that any entity in a Snow-
cloud collaborator’s Usr role has collection authority. (4) says that the node identified

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:25

by NId is in the Snowcloud domain.

(1) SC .Col ← SC .Con (2) SC .Con ← SC .Node (3) SC .Col ← SC .Collab.Usr

(4) SC .Node ← NId

When invoking remote services, the node will do so on behalf of the entity NId . It will
also be imaged with the NId private key for session key negotiation.

Any Harvester within the Snowcloud domain is then provided with the credential
SC .Node ← HId and the HId private key issued by Snowcloud domain administration.
This will provide that Harvester with collection and control authority in the domain.
For Harvesters to be provided to collaborators, the Snowcloud administrators issue
a credential establishing the institution as a collaborator, while the institution itself
may define and manage policy for their Usr role membership. For example, the Univer-
sity of New Hampshire (UNH) can be established as a collaborator with credential (5)
issued by Snowcloud domain administration, and may specify role membership with
the credential (6) issued by UNH domain administration:

(5) SC .Collab ← UNH (6) UNH .Usr ← UsrID

These two credentials, along with the UsrID private key, are imaged on Harvesters
issued to UNH collaborators for data collection, but which remain unauthorized for
control.

8.2. Implementation

Resources themselves are accessed through a secure command dissemination protocol,
that is modeled upon the TinyOS Dissemination protocol (as described in TEP 118). In
short, protected RPC services establish network level broadcast channels requiring au-
thorization for use. Commands are communicated to the network over these channels,
and different channels are used for different sorts of commands.

In more detail, command broadcast services can be specified as a duty in a remotable
interface:

interface SpDisseminationUpdate { duty void change(command_t new_value); }

To implement e.g. the control command channel, the following module can be defined
and included on sensor nodes in the Snowcloud domain:

module ControlDissemC {
provides remote interface SpDisseminationUpdate requires "SC.Con";
uses interface SpDisseminationUpdate as NeighborUpdate;
provides interface ComponentManager;

}
implementation { ... }

In the implementation, the provided SpDisseminationUpdate interface accepts com-
mand invocations from neighbors, but requires them to be authorized for the
SC .Con role. Commands are relayed to all other neighbors (i.e. disseminated) via
the used NeighborUpdate interface; those neighbors are identified by the provided
ComponentManager.

To use this component, both sensor and Harvester nodes can configure it through the
following component instantiation and wiring, where the component’s NeighborUpdate
interface is wired remotely to neighbors:

components ControlDissemC as ControlChan;
activate "*" for

ControlChan.NeighborUpdate -> [ControlChan].SpDisseminationUpdate;

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 P. Chapin and C. Skalka

Note that a node must be endowed with the appropriate credentials for this wiring to
be useful.

This same code pattern can be used to implement a data collection request channel,
protected by the SC .Col role instead of SC .Con . In response to an authorized control
command invocation, sensor nodes will modify their behavior appropriately, whereas
in response to authorized data collection requests sensor nodes will report their data
using collection tree protocol (TEP 123) to the Harvester.

Note that since the only “border” between security domains in this scenario is be-
tween the Harvester and its neighbor(s), Snowcloud scalability is not affected. Only
authorization between the Harvester and its one-hop neighbors needs to be established
no matter what the network size, and since areal coverage is the goal of a deployment,
network densities remain fairly constant where neighborhoods are on the order of 1-5
nodes in conceivable deployments.

8.3. Results

Results can be characterized according to both the application end-user experience and
to quantitative aspects. As detailed in Sec. 7, a one-time transient overhead is imposed
for initial credential exchange and session key negotiation when a Harvester is first
introduced to the network. However, since data collection for a network after several
months of deployment can take up to an hour, this overhead is relatively insignificant.
And steady-state overhead is small, and does not affect data collection rates. Further,
subsequent field visits will not impose transient overhead since negotiated keys can be
cached in non-volatile memory. Thus, authorized user experience is not significantly
impacted by the addition of security.

From a quantitative perspective, the most important measurements to consider for
this application, beyond the general ones already considered in Sec. 7, are RAM and
ROM consumption of the insecure and secured versions of the Harvester collection
protocol. We have to consider whether layering SpartanRPC security over a realistic
application will overrun the resources available to a mote platform. Relevant measure-
ments are as follows.

Table VII. RAM and ROM use for Snowcloud versions

Program RAM Bytes ROM Bytes

Insecure Harvester 2274 24316

Secure Harvester 4771 35834

Insecure Sensor Node 2868 36254

Secure Sensor Node 5417 48616

Both RAM and ROM consumption are significantly increased by the addition of
SpartanRPC security to this application. However, these numbers are within operating
parameters, and the Sprocket implementation of SpartanRPC described in Sec. 6 has
not yet been optimized for space efficiency in any way; improvements in this respect
can be made but are out of scope for this work.

9. RELATED WORK

Extending wireless sensor network software platforms with support for secure interac-
tions between domains has been studied in previous research on SSL for WSNs [Jung
et al. 2009]. However, this work was focused on extending the Internet to WSNs (a.k.a.
“IP for WSNs”), whereas SpartanRPC is a more general system for enhancing secure
communications within a WSN. Research on WSN security has also addressed secure

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:27

routing [Karlof and Wagner 2003], link layer security [Karlof et al. 2004], cryptogra-
phy [Bertoni et al. 2006], key distribution [Çamtepe and Yener 2005], and hardware
issues [Perrig et al. 2004]. In contrast to these low-level systems, SpartanRPC pro-
vides language-level abstractions for secure RPC services. Perhaps even more closely
related in this same vein is a system for establishing fine-grained, “node-level” policies
in WSNs [Claycomb and Shin 2011]. However, this work is more focused on group-
based key negotiation and distribution, and while it does offer a policy language, it
is rooted in implementation details and not a separable specification as in our sys-
tem. Also, they do not provide a language API for integrating their system into secure
applications as in SpartanRPC.

Previous related work also illustrates interest in and useful applications of RPC
in embedded networks. For example, the Marionette system uses network layer RPC
for remote (PC-based) analysis and debugging of WSNs [Whitehouse et al. 2006]. The
Fleck operating system provides a small pre-defined set of RPC services for WSN appli-
cations, while the trustedFleck system extends this with a form a secure RPC [Hu et al.
2009; Hu et al. 2010]. S-RPC provides an RPC facility for sensor networks that allows
remote services to be added to the system dynamically [Reinhardt et al. 2011]. Spar-
tanRPC differs from these systems in that it extends the nesC programming language
(unlike trustedFleck) to allow programmer definition of secure RPC services (unlike
S-RPC) that can be accessed by nodes within the network itself (unlike Marionette).
Our system is similar to and inspired by TinyRPC [May et al. 2007], except the latter
does not provide security and has a different semantics that are not as expressive as
our approach.

TeenyLIME allows application programs to access an abstract “tuple space” that is
the union of tuple spaces on the local node and the immediately neighboring nodes
[Costa et al. 2007]. This provides an alternative to RPC for uniformly accessing remote
and local data. However, interaction with the middleware is by way of a dedicated
API; there is no attempt to provide a true RPC mechanism. Also TeenyLIME does not
address issues of access control.

Secure Middleware for Embedded Peer to Peer systems (SMEPP) is a general frame-
work for creating security sensitive applications from a distributed network of embed-
ded peers [Brogi et al. 2008]. SMEPP Light [Vairo et al. 2008] is a reduced version
of SMEPP to address the resource constraints of wireless sensor networks. SMEPP
Light provides a publish/subscribe communication model using directed diffusion to
distribute “events” to all subscribers and symmetric key cryptography to provide con-
fidentiality and data integrity within a group of nodes. However, SMEPP Light is not
integrated into a programming language and does not provide a remote procedure call
mechanism. Furthermore SMEPP Light only supports a simple model of access control
based on group membership.

High level macroprogramming languages such as Kairos [Gummadi et al. 2005],
Regiment [Newton et al. 2007], and even Flask [Mainland et al. 2008] provide a way
to program the entire network as a single entity. These systems attempt to hide not
only the inter-node communication from the programmer, but also the entire node
level programs. SpartanRPC operates at a much lower level and also, unlike these
macroprogramming systems, addresses access control issues in networks containing
multiple security domains.

Whole network programming of wireless sensor networks has also been investi-
gated using mobile agents in systems such as Agilla [Fok et al. 2009] and Wiseman
[González-Valenzuela et al. 2010]. However, like the macroprogramming systems men-
tioned previously neither of these systems address issues related to access control in
the presence of multiple security domains.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 P. Chapin and C. Skalka

10. CONCLUSION

We have designed and implemented SpartanRPC, a dialect of nesC with a light weight,
link-layer, secure RPC API. SpartanRPC is a middleware technology supporting se-
cure WSN applications comprising multiple security domains. It is ideal for settings
in which multiple networks administered by distinct social entities cooperate to obtain
a holistic behavior. As discussed in Sec. 9, currently no other WSN security architec-
tures support multiple security domains or principled techniques for communication
between them. Thus, SpartanRPC provides crucial tools for next-generation WSN ap-
plications wherein multiple, distinct security domains interact.

RPC communication in our system is implemented using a modification of existing
nesC abstractions, specifically module wirings. In SpartanRPC, module wirings con-
nect to remote services dynamically. Furthermore, these connections are mediated by
authorization levels specified by an access control policy defined in the trust man-
agement language RT [Li et al. 2002], and authorization is proved by presentation of
RT credentials by requesters. Our implementation is based on public keys, supporting
an open-world security model where shared secrets need not be known a priori. Un-
derlying security protocols defend against man-in-the middle attacks through the use
of a Diffie-Hellman protocol, ensuring that only authorized principals may access re-
sources. We have reported on testing and performance evaluations, providing evidence
of the practicality of SpartanRPC in its intended application space. We have also used
SpartanRPC to implement a secure real-world WSN application for environmental
data collection, demonstrating the effectiveness of the API and of the authorization
logic.

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

Guido Bertoni, Luca Breveglieri, and Matteo Venturi. 2006. ECC hardware coprocessors for 8-bit systems
and power consumption considerations. In Proceedings of the Third IEEE International Conference on
Information Technology: New Generations. IEEE Computer Society, 573–574.

Antonio Brogi, Răzvan Popescu, Francisco Gutiérrez, Pablo López, and Ernesto Pimentel. 2008. A Service-
Oriented Model for Embedded Peer-to-Peer Systems. Electron. Notes Theor. Comput. Sci. 194 (April
2008), 5–22. Issue 4.

Richard R. Brooks, Parameswaran Ramanathan, and Akbar M. Sayeed. 2003. Distributed Target Classifi-
cation and Tracking in Sensor Networks. Proc. IEEE 91, 8 (August 2003), 1163–1171.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. 1999. Multicast security: a taxonomy
and some efficient constructions. In Proceedings of the Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’99), Vol. 2. 708–716.

Seyit A. Çamtepe and Bülent Yener. 2005. Key Distribution Mechanisms for Wireless Sensor Networks: a
Survey. Technical Report TR-05-07. Rensselaer Polytechnic Institute.

Peter Chapin. 2014. Sprocket Home Page. (December 2014). https://github.com/pchapin/sprocket. Accessed
July 2014.

Peter C. Chapin, Christian Skalka, and X. Sean Wang. 2008. Authorization in trust management: Features
and foundations. Comput. Surveys 40, Article 9 (August 2008), 48 pages. Issue 3.

Chipcon. 2004. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver. Preliminary datasheet rev
1.2. (June 2004).

William R. Claycomb and Dongwan Shin. 2011. A novel node level security policy framework for wireless
sensor networks. J. Netw. Comput. Appl. 34, 1 (Jan. 2011), 418–428.

Paolo Costa, Luca Mottola, Amy L. Murphy, and Gian Pietro Picco. 2007. Programming wireless sensor net-
works with the TeenyLime middleware. In Proceedings of the ACM/IFIP/USENIX 2007 International
Conference on Middleware (Middleware ’07). Springer, New York, NY, USA, 429–449.

W. Diffie and M. Hellman. 2006. New Directions in Cryptography. IEEE Trans. Inf. Theor. 22, 6 (Sept. 2006),
644–654.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. 1999. RFC-2693: SPKI Certificate
Theory. Internet Engineering Task Force.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

RPC Authorization in Sensor Networks A:29

John G. Fletcher. 1982. An Arithmetic Checksum for Serial Transmissions. IEEE Transactions on Commu-
nications 30, 1 (jan 1982), 247 – 252.

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. 2009. Agilla: A mobile agent middleware for
self-adaptive wireless sensor networks. ACM Trans. Auton. Adapt. Syst. 4, Article 16 (July 2009), 26
pages. Issue 3.

Jeffrey Frolik and Christian Skalka. 2013. Snowcloud. Technical Report. University of Vermont. Submitted.
http://www.cs.uvm.edu/∼skalka/skalka-pubs/frolik-skalka-snowcloudtr.pdf.

Saurabh Ganeriwal, Christina Pöpper, Srdjan Čapkun, and Mani B. Srivastava. 2008. Secure Time Syn-
chronization in Sensor Networks. ACM Trans. Inf. Syst. Secur. 11, 4, Article 23 (July 2008), 35 pages.

Tia Gao, C. Pesto, L. Selavo, Yin Chen, Jeong G. Ko, Jong H. Lim, A. Terzis, A. Watt, J. Jeng, Bor-Rong Chen,
K. Lorincz, and M. Welsh. 2008. Wireless medical sensor networks in emergency response: implemen-
tation and pilot results. In IEEE Conference on Technologies for Homeland Security. 187–192.

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. 2003. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI ’03). ACM, New York, NY, USA, 1–11.

Sergio González-Valenzuela, Min Chen, and Victor C. Leung. 2010. Programmable Middleware for Wireless
Sensor Networks Applications Using Mobile Agents. Mob. Netw. Appl. 15 (December 2010), 853–865.
Issue 6.

Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. 2005. Macro-programming Wire-
less Sensor Networks Using Kairos. In Distributed Computing in Sensor Systems, Viktor Prasanna,
Sitharama Iyengar, Paul Spirakis, and Matt Welsh (Eds.). Lecture Notes in Computer Science, Vol.
3560. Springer, Berlin/Heidelberg, 466–466.

Vipul Gupta, Matthew Millard, Stephen Fung, Yu Zhu, Nils Gura, Hans Eberle, and Sheueling Chang
Shantz. 2005. Sizzle: A standards-based end-to-end security architecture for the embedded internet.
In Proceedings of the Third IEEE International Conference on Pervasive Computing and Communica-
tions (PERCOM ’05). IEEE Computer Society, Washington, DC, USA, 247–256.

Wen Hu, Peter Corke, Wen Chan Shih, and Leslie Overs. 2009. secFleck: A public key technology platform for
wireless sensor networks. In Proceedings of the Sixth European Conference on Wireless Sensor Networks
(EWSN ’09). Springer, Berlin/Heidelberg, 296–311.

Wen Hu, Hailun Tan, Peter Corke, Wen Chan Shih, and Sanjay Jha. 2010. Toward trusted wireless sensor
networks. ACM Trans. Sen. Netw. 7, Article 5 (August 2010), 25 pages. Issue 1.

Jonathan Hui, Philip Levis, and David Moss. 2008. TinyOS 802.15.4 Frames. (June 2008). http://www.tinyos.
net/tinyos-2.x/doc/html/tep125.html. Accessed December 2011.

IEEE. 2003. IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). Standard. (October 2003).

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. 2003. Directed diffusion for wireless
sensor networking. IEEE/ACM Transactions on Networking 11, 1 (feb 2003), 2–16.

ISO. 2008. ISO/IEC 1170-3:2008 Information technology – Security techniques – Key management – Part 3:
Mechanisms using asymmetric techniques. (2008).

Wooyoung Jung, Sungmin Hong, Minkeun Ha, Young-Joo Kim, and Daeyoung Kim. 2009. SSL-Based
Lightweight Security of IP-Based Wireless Sensor Networks. In Proceedings of the International Confer-
ence on Advanced Information Networking and Applications Workshops, Vol. 0. IEEE Computer Society,
1112–1117.

Chris Karlof, Naveen Sastry, and David Wagner. 2004. TinySec: a link layer security architecture for wire-
less sensor networks. In Proceedings of the Second International Conference on Embedded Networked
Sensor Systems (SenSys ’04). ACM, New York, NY, USA, 162–175.

Chris Karlof and David Wagner. 2003. Secure Routing in Wireless Sensor Networks: Attacks and Coun-
termeasures. Elsevier’s AdHoc Networks Journal, Special Issue on Sensor Network Applications and
Protocols 1, 2–3 (September 2003), 293–315.

Philip Levis. TEP-111: message t. (????). http://www.tinyos.net/tinyos-2.x/doc/html/tep111.html. Accessed
August 2011.

Ninghui Li and Joan Feigenbaum. 2002. Nonmonotonicity, User Interfaces, and Risk Assessment in Cer-
tificate Revocation. In Proceedings of the Fifth International Conference on Financial Cryptography.
Springer-Verlag, London, UK, 166–177.

Ninghui Li and John C. Mitchell. 2003a. Datalog with Constraints: A Foundation for Trust Management
Languages. In Proceedings of the Fifth International Symposium on Practical Aspects of Declarative
Languages. http://www.cs.purdue.edu/homes/ninghui/abstracts/cdatalog padl03.html

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 P. Chapin and C. Skalka

Ninghui Li and John C. Mitchell. 2003b. RT: A Role-based Trust-management Framework. In Proceedings of
the Third DARPA Information Survivability Conference and Exposition. IEEE Computer Society Press,
201–212. http://www.cs.purdue.edu/homes/ninghui/abstracts/rt discex03.html

Ninghui Li, John C. Mitchell, and William H. Winsborough. 2002. Design of a Role-based Trust-management
Framework. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 114–130. http://www.cs.purdue.edu/homes/ninghui/abstracts/rt oakland02.html

Ninghui Li, William H. Winsborough, and John C. Mitchell. 2003. Distributed Chain Discovery in Trust
Management. Journal of Computer Security 11, 1 (Feb 2003), 35–86. http://www.cs.purdue.edu/homes/
ninghui/abstracts/discovery jcs03.html

An Liu and Peng Ning. 2008. TinyECC: A configurable library for elliptic curve cryptography in wireless
sensor networks. In Proceedings of the Seventh International Conference on Information Processing in
Sensor Networks (ISPN ’08). IEEE Computer Society, Washington, DC, USA, 245–256.

Konrad Lorincz, David J. Malan, Thaddeus R. F. Fulford-Jones, Alan Nawoj, Antony Clavel, Victor Shnayder,
Geoffrey Mainland, Matt Welsh, and Steve Moulton. 2004. Sensor Networks for Emergency Response:
Challenges and Opportunities. IEEE Pervasive Computing 3, 4 (2004), 16–23.

Mark Luk, Ghita Mezzour, Adrian Perrig, and Virgil Gligor. 2007. MiniSec: a secure sensor network commu-
nication architecture. In Proceedings of the Sixth International Conference on Information Processing in
Sensor Networks (IPSN ’07). ACM, New York, NY, USA, 479–488.

Geoffrey Mainland, Greg Morrisett, and Matt Welsh. 2008. Flask: staged functional programming for sensor
networks. In Proceeding of the Thirteenth ACM International Conference on Functional Programming
(ICFP ’08). ACM, New York, NY, USA, 335–346.

Michael Manzo, Tanya Roosta, and Shankar Sastry. 2005. Time synchronization attacks in sensor networks.
In Proceedings of the Third ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN ’05).
ACM, New York, NY, USA, 107–116.

Terry D. May, Shaun H. Dunning, George A. Dowding, and Jason O. Hallstrom. 2007. An RPC Design for
Wireless Sensor Networks. International Journal of Pervasive Computing and Communications 2, 4
(March 2007), 384–397.

MEMSIC. TelosB Mote Platform. Datasheet. (????). http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb\ datasheet.pdf. Accessed January 2014.

C. David Moeser, Mark Walker, Christian Skalka, and Jeff Frolik. 2011. Application of a wireless sensor
network for distributed snow water equivalence estimation. In Proceedings of the Western Snow Confer-
ence.

Ryan Newton, Greg Morrisett, and Matt Welsh. 2007. The regiment macroprogramming system. In Pro-
ceedings of the Sixth International Conference on Information Processing in Sensor Networks (IPSN
’07). ACM, New York, NY, USA, 489–498.

M. Perillo and W. Heinzelman. 2005. Fundamental Algorithms and Protocols for Wireless and Mobile Net-
works. CRC Hall, Chapter Wireless Sensor Network Protocols, 813–842.

Adrian Perrig, John Stankovic, and David Wagner. 2004. Security in Wireless Sensor Networks. Commun.
ACM 47, 6 (2004), 53–57.

D.R. Raymond and S.F. Midkiff. 2008. Denial-of-Service in Wireless Sensor Networks: Attacks and Defenses.
Pervasive Computing 7, 1 (jan–march 2008), 74–81.

A. Reinhardt, P.S. Mogre, and R. Steinmetz. 2011. Lightweight remote procedure calls for wireless sensor
and actuator networks. In IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM ’11). 172–177.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. 1996. Role-Based Access Con-
trol Models. Computer 29, 2 (1996), 38–47.

R. Srinivasan. 1995. RFC-1833: Binding Protocols for ONC RPC Version 2. Internet Engineering Task Force.

TinyOS. TinyOS Community Forum. (????). http://www.tinyos.net/. Accessed February 2012.

Claudio Vairo, Michele Albano, and Stefano Chessa. 2008. A secure middleware for wireless sensor networks.
In Proceedings of the Fifth International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services (Mobiquitous ’08). ICST, Brussels, Belgium, Article 59, 6 pages.

Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein Jeong, Jonathan Hui, Pra-
bal Dutta, and David Culler. 2006. Marionette: using RPC for interactive development and debugging
of wireless embedded networks. In Proceedings of the Fifth International Conference on Information
Processing in Sensor Networks (IPSN ’06). ACM, New York, NY, USA, 416–423.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

