TRUST MANAGEMENT IN DISTRIBUTED
RESOURCE CONSTRAINED EMBEDDED SYSTEMS

A Dissertation Presented
by
Peter C. Chapin
to
The Faculty of the Graduate College
of

The University of Vermont

In Partial Fullfillment of the Requirements
for the Degree of Doctor of Philosophy
Specializing in Computer Science

January, 2014

Accepted by the Faculty of the Graduate College, The Unityen§Vermont, in partial ful-
fillment of the requirements for the degree of Doctor of Péolphy, specializing in Com-
puter Science.

Thesis Examination Committee:

Advisor

Christian Skalka, Ph.D.

Alan Ling, Ph.D.

Margaret Eppstein, Ph.D.

Chairperson

Jeffrey Frolik, Ph.D.

Dean, Graduate College

Cynthia J. Forehand, Ph.D.

Date: October 25, 2013

Abstract

Many embedded systems, such as wireless sensor networks,us@ of highly resource
constrained devices. Security goals for such systems tefattis on keeping data confi-
dential from outsiders or ensuring data integrity duringnoaunication. However as em-
bedded systems from different administrative domainseiasingly come into contact, for
example via short hop radio links, a need arises for one sy&teallow partial access to
its resources from adjoining systems. This dissertatigrioggs two approaches for pro-
viding distributed trust management facilities to reseuronstrained embedded systems,
in particular wireless sensor networks. The first is a disgroach using a secure remote
procedure call mechanism call&partanRPCThe second is a staged approach using a
two stage programming system call®dalaness/nesTn addition to describing these two
approaches this dissertation also presents the resultgabfaging them both in test en-
vironments and with a realistic application. Both appraschre feasible but the staged
approach is far more flexible and, depending on applicagguirements, more efficient.

Dedication

To my wife Sharon for her unwavering support, continuous encouragement, and patient

tolerance, and to my parents for showing me the value of education.

Acknowledgments

This dissertation would not have been possible without gsstance and guidance of
many people. | would especially like to thank my adviser €tein Skalka for many years
of valuable feedback. | would also like to thank my collaltora Sean Wang, Scott Smith,
and especially Simone Willet and Michael Watson for theralnable assistance in making
the work | describe here a reality. Finally I'd like to thartketfaculty and staff of the

Department of Computer Science at the University of Vernfimntreating an environment

that allowed me to flourish.

Table of Contents

DediCAtION.ot il
ACKNOWIEAgMENTSo ii
ListOf Tableso Vii
LISt Of FIQUIES . . o e e e e e e Viii
1 INtrodUCHION . . .o et e 1
1.1 Motivation. 4
1.2 SecurityModel 7
1.3 Related Work and Contributions 10
1.3.1 Summary of Contributions 16

1.4 Dissertation Organization 17

2 Trust Management e 18
2.1 Components of Trust Management Systems 20
2.1.1 Structure of an Authorization Decision 21

2.2 Features of Trust Management Systems 24
2.2.1 FormalFoundation, 25

2.2.2 Authorization Procedure. Authorization Complexity. 25

2.2.3 Public Key Infrastructure (PKI) 27

2.2.4 Threshold and Separation of Duty Policies 27

225 LocalNameSpaces. 27

2.2.6 Role-Based AccessControl 28

2.2.7 DelegationofRights, 28

2.2.8 Certificate Validity 29

2.2.9 Credential Negation 30

2.2.10 Certificate Revocation 31

2.2.11 Distributed Certificate Chain Discovery 31

2.3 Foundations of Authorization, 32
2.4 The RT Trust ManagementSystem 34
241 Features e 35

243 SemantiCS e 41
244 Implementation 43

3 SpartanRPC and Sprocket. 44
3.1 Overview and Applications 45
3.2 Technical FoundationsA47
3.3 Dutiesand Remotability 48
3.3.1 Syntaxand Semantics 48
3.3.2 RemotableInterfaces L. 50

3.4 DynamicWIres e 51
3.4.1 Component IDs, Component Managers 51
3.4.2 Syntaxand Semantics, 52
3.4.3 Callbacks and First-ClassIDs 54

3.5 Security Policy Specification 55
3.5.1 RPCServerSidelLogic 55
3.5.2 RPCClientSidelLogic 56
3.5.3 Example 57

3.6 The SpartanRPC Implementation 58
3.6.1 Authorization and Security Protocols 59
3.6.2 Identifying Services Overthe Air 67
3.6.3 Rewriting SpartanRPCtonesC. 68

4 DScalaness/DNeST . ..o 74
4.1 Overview of DScalaness/DnesTDesign 716
4.1.1 Modules as StagingElements L. 81
4.1.2 TYPING . . . o 82
4.1.3 Cross-Stage Migration of Types and Values. 82

4.2 TheDnesTlanguageo, 83
4.2.1 Syntax and FeaturesofDnesT 83
4.2.2 SemanticsofDnesT 86
4.2.3 DnesTTypeChecking 92

4.3 TheDScalanessLanguage, a5.
4.3.1 SyntaxofDScalaness. 96
4.3.2 Semanticsof DScalaness 97.
4.3.3 Serializationand Lifting 101
4.3.4 DScalaness TypeChecking 102
4.3.5 Foundational Insights and Type Safety104

5 SCalaneSS/NeST .. e 106
51 NesT 106
5.1.1 Component Specifications 107
5.1.2 ExternalLibraries. 109

242 Example 39

5.1.3 Structure Subtyping 113

514 SafeCasts. e 114
5.1.5 ArrayOperations 115
5.2 Scalaness e 118
5.2.1 Scala Compiler Organization 120
5.2.2 Liftable Types 120
523 Lifting 124
5.24 MetaType e 125
5.2.5 Module Type Annotations 126
5.2.6 ComponentDeclarations 127
5.2.7 Runtime Support 130
Evaluation 135
6.1 FieldExample 135
6.2 Sprocket 137
6.2.1 MemoryOverhead 138
6.2.2 Transient and Steady State Processor Overhead 141
6.2.3 Transient Times for Directed Diffusion 143
6.2.4 Snowcloud with Sprocket 146
6.3 Scalaness/nesT 150
6.3.1 Snowcloud with Scalaness 150
6.3.2 MemoryUsage 152
CONCIUSION . L. e 154
7.1 FutureWork 156
A Scalaness/NesT Sample 158
R EIENCES . . .o 168

Vi

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

RAM consumed by various storageareas
Memory consumption of testprograms
Maximum message transferrate
Processing time for transient operations e e
Transient time in single hop directed diffusion
Transient time in multi-hop directed diffusion
RAM and ROM comparison for SpartanRPC Snowcloud
RAM and ROM comparison for Scalaness Snowcloud

Vii

List of Figures

11
2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2

Motivational Scenario L Lo 6
Structure of an Authorization Decision 22
Duty Implementation and Invocation Examples 49
Component Manager Interface and Type Definitions 52
Example ComponentManager 53
Security Enabled DynamicWire 58
SpartanRPC Security Protocol Elements i e w. .. 60
Intersection Certificate Format (parenthesized numbellcate byte countsp1
Session Key Processing Architecture 63
Duty PostMessage 65
Client/Server Authorization Architecture 69
Dynamic Wire Rewriting 71
Server Skeleton Generation e 72
Server Skeleton Wiring 73
Scalaness/nesT Compilation and Execution Model 75
DScalaness/DnesT Example 79.
Program SyntaxofnesT 84
Syntactic Definitions for Dynamic Configurations 87
Dynamic Semantics of Selected Expressions 88
Boot and Runtime Semantics 89
Semantics of Tasks and Configurations 90
Semantics of Declarations 91
SubtypingRules 93
Typing Rules for Selected DnesT Expressions 94
Selected Declaration and Module TypingRules 95
The Syntax of DScalaness 96
DScalaness Module Semantics 100
DScalaness Module TypingRules 102
ExamplenesTModule 108
Example LibrarylC/EC configurations 111

viii

Representation of External Components112

WiringnesT Components o 113
Module Type Syntax 126
Generated Runtime Support for Composition132
Generated Instantiate Method 134
A Snowcloud Sensor Node (L,C) and Harvester Device (R).136
Running Snowstorm 151

Chapter 1

Introduction

Embedded systems present difficult programming challe(gesgtola and Picco 2011
For reasons of size, power consumption, disposabilityporescombination of these things,
embedded devices are often highly resource constrainedexXample, a typical device
might have only 48 KiB of program ROM, 10 KiB of RAM, and use aaml16 bit micro-
controller running at 8 MHzrfioteiv 2006. Yet embedded applications are increasing in
complexity and often provide mission-critical or even $@feritical services. Such systems
need to be both efficient and correct.

This dissertation specifically looks at the problem of pdovy distributed trust man-
agement in resource constrained embedded systems. tidstenanagementefers to a
general approach for authorizing access to resources imaroement where the iden-
tity of requesting principals is not known to the authoriz&rtrust management system
provides a way for the authorizer to define an access politgrims of arbitrary certified
attributes that the requester must possess. Many trustgearent systems have been de-
scribed in the literatureGhapin, Skalka, and Wang 200&nd they vary in complexity,
expressivity, and mathematical foundations. Howevel tikattempt to provide a well

structured approach to the problem of access control inlwidistributed and dynamic

environments.

Trust management systems are typically designed for usetthbp@zers with resource
rich machines such as commercial web servers. Yet therenaivedeled applications that
could also benefit from trust management. For example, ‘so@as” that communicate
with each other about road conditiorSeepold, Madrid, Gomez-Escalonilla, and Nieves
2009, or body area networks that provide medical monitoringuezs Shnayder, Chen,
Lorincz, Jones, and Welsh 2006hen, Gonzalez, Vasilakos, Cao, and Leung 20dthy
encounter many unknown principals during their operatidime security and safety of
these applications, and many others, will depend on thdityato distinguish trustworthy
principals from unreliable or malicious ones.

For reasons of space and time efficiency, many embeddedsysie programmed in
low level languages such as C. Programming at that levehgtioated and error prone. It
is desirable, therefore, to provide programmers with coiarg abstractions to shield them
from low level complexities. These abstractions shouldrbthe programming language
itself, and this dissertation is about providing enrichetguages that can address the needs
of modern embedded systems in general and the embeddedanagement problem in
particular. Thislanguage base@pproach moves some of the work of producing correct
programs to the language compiler and runtime system. lageieatures can be formally
analyzed and rigorously tested once and then applied to rappljcations. This is in
contrast to each application being an ad-hoc construcfieastomized components with
limited use beyond the application for which they were adat

The value of formal foundations cannot be overstated. bicatisystems where safety
or security is at stake, a rigorous understanding of the am@sms being used is essential.
For example, trust management systems that provide a phgdsfined policy language
are preferable to systems that use informal methods.

The focus of this dissertation is on a kind of embedded systdlad awireless sensor

2

network(WSN). Such systems consist of a network of small sensorstaators that are
connected by way of short hop radio links. Commonly such ogtw/include one or more
base stations, or “hubs,” with wider connectivity that geas an interface between the
sensor network and external systems. Wireless sensor rietwaoe an area of intense
study with many envisioned applications ranging from emwinent, asset, and structural
monitoring to emergency respongeufler, Estrin, and Srivastava 200dorincz, Malan,
Fulford-Jones, Nawoj, Clavel, Shnayder, Mainland, Wedstd, Moulton 2004 Yet despite
the use of sensor networks to demonstrate the systemslugsbierein, the techniques can
be used with a wide range of embedded applications.

Two approaches to solving the problem of providing trust aggament-style distributed
authorization in resource constrained embedded systardisoussed here. The first ap-
proach is based on a new remote procedure call (RPC) diseiplamedSpartanRPC
(Chapin and Skalka 201@hapin and Skalka 2013 In this method all trust manage-
ment computations are done directly on the embedded devit@sever, the complexity
of the system is hidden from the programmer behind a simgknsion to the widely used
nesC programming languagédy, Levis, von Behren, Welsh, Brewer, and Culler 2003
In order to implement thislirect approach, a compiler calleé8prockethas been created.
Sprocket takes an extended dialect of the nesC languagpusaind outputs an equivalent
program in ordinary nesC. In addition Sprocket outputs theessary runtime support to
process authorization requests and policy statements iEhtrust management language
(Li, Mitchell, and Winsborough 20Q2.i and Mitchell 2003.

The second approach presented is basedtaged programmingTaha and Sheard
1997 Sheard and Jones 200Rlainland, Morrisett, and Welsh 2008&.iu, Skalka, and
Smith 2012. In a staged environment, a first stage program is used t@asenand spe-
cialize a lower level, second stage program. Specializdd can often be considerably op-

timized. However, flexibility is retained because the fitage program can be re-executed

3

at a later time to re-specialize the second stage prograreeaked.

Unlike with many staging systems, the work described hees stages with different
programming languages and that execute on different meshire., in different address
spaces. When applied to embedded systems the second (ajdtfge must be in an
embedded systems language running on the embedded hardvbemeas the first stage
need not be as restricted.

This dissertation also describ8salanes¢Chapin, Skalka, Smith, and Watson 2013
an extension of ScalaOdersky, Spoon, and Venners 201ith features that allow the
programmer to compose and specialize components writtarr@auced dialect of nesC
callednesT An important and novel feature of Scalaness is that it elde®cala’s type
system, so that a well-typed Scalaness program will alwayegte a well-typed nesT
program. Thisross-stage type safepyoperty means the type correctness of the program
that ultimately runs on the embedded device is guaranteetthdyirst stage Scalaness
compiler.

Scala was chosen as the basis for the first stage languagylBogpragmatic reasons,
primarily to build a system that could be used for real agians. Scala is a rich language
that runs on the Java Virtual Machine (JVM) and has accedsetddva ecosystem. Also
the Scala compiler has a plugin architecture, and it wasraily intended to implement
Scalaness as a compiler plugin. Unfortunately, as destitbehapter Shat proved diffi-
cult and Scalaness was instead implemented as a direct oadidifi to the Scala compiler

itself.

1.1 Motivation

As an example of an application that illustrates the corgceptrust management in em-

bedded systems, consider a first responder situation inwhidtiple social entities must

4

interact and cooperate. Recent work has shown the effeetsgof wireless sensor net-
works in such scenario$G@o, Pesto, Selavo, Chen, Ko, Lim, Terzis, Watt, Jeng, Chen,
Lorincz, and Welsh 20Q8.orincz, Malan, Fulford-Jones, Nawoj, Clavel, Shnaydeaih4
land, Welsh, and Moulton 2004n their ability to coordinate multiple data collectiondan
communication devices in an ad-hoc, easily deployabladastiHowever, data collection
and communication in this scenario (and other similar onas3t be a secured resource,
dueto, e.g., HIPA requirements in the case of medical resppdrurthermore, security must
be coordinated on-site in a sensor network comprising dulmmks administered separately
(police, medical units from different hospitals, etc.)gdaro prior coordination between ad-
ministrations can generally be assumed. Trust managemt#draation is well suited for
this kind of scenario.

For instance, if an EMT team deploys a sensor network to mappdtient locations and
vital signs, a security policy can be imposed whereby redpmnpolice departments can
deploy their own sensor network, and through it access matientity and location data
but not medical data directly from the EMT network. This direct dataxess will often
be necessary due to real-time constraints and lack of let@wnnectivity in emergency
situations.

SpartanRPC'’s ability to do trust management on the netwodes themselves would
be invaluable in this scenario. However, Scalaness mayba&sseful. In the staged case,
powerful base stations could communicate perhaps by wayavéd files manually carried
from one machine to the next. Since the first stage programs doeneed to execute
frequently such sharing could be done while each serviceigeo is setting up at the
location of the emergency. Other environmental and sectattors could be provided
to the first stage program at that time, allowing the nodensoft to be quickly and easily
customized for the particular disaster at hand.

More generallyFigure 1.1shows two wireless sensor networks owned by separate ad-

5

Internet

Stage 1 |

Exchange/verify certs

A « ———— Authorize access EES— B
Negotiate session keys

=4
50
/éO/QO

Intra-domain communication:

Stage 2 L TR, (Re)image motes

Cross-domain communication:

Figure 1.1: Motivational Scenario

ministrative domainsA and B. The lower part of the figure shows the networks as con-
sisting of multiple sensor nodes. Each node in the netwaleniexample of a resource
constrained embedded system. The two networks overlapaicesso that nodes from the
two networks can potentially communicate with each other.

In some applications it may be desirable for the network$res certain information
while keeping other information private. As one examplegnd B may agree to use each
other’s nodes for accurate time synchronization to theituallbest interest without want-
ing to share any other functionality. Alternatively, pgoldhe networks are willing to carry
data from foreign isolated nodes thus increasing each 'stbennectivity and enhancing
their useful lifetimes, all without being able to accessreather’s primary functions.

In other scenarios one of the networks, gaymay be reduced to a single mobile node
that wanders into the field of an established netwérkn that case3 may wish to query
A or otherwise interact with it, yett and B may have no prior associatiorsection 6.1
describes a specific scenario of this type used during tHeati@n of the work presented

here.

Trust management systems provide exactly the kind of flexipblicy-driven autho-
rization control needed to address these situations. Titigydb define access policy for
unknown principals, the hallmark of trust management, is@aarly important in the case
of mobile embedded systems where encountering new prisdgeoutine.

SpartanRPC addresses this problem directly by providingyafar the embedded de-
vices themselves to execute trust management logic. Irc#sa no additional supporting
infrastructure is needed but the nodes are required to @mgixe computations.

Scalaness, as a staged programming system, requires shppond the nodes where
the first stage program can execute. This additional supgsrown on top ofigure 1.1
where Scalaness programs execute on the base statigharad B to compute node pro-
grams for deployment that are specialized with appropsatsion keys. The Scalaness
programs can communicate over the Internet to share cliatfeat other security tokens

as required.

1.2 Security Model

Although many security properties may be of interest to eddbd systems applications,
only one is the focus of this worla system is said to be secure if only authorized users of
a resource can access iln this context aesourcecould be a physical device on a node,
e.g., a sensor or an actuator, or it could be a pure softwarpaoent providing, e.g., a
computation, communication, or storage service. This vidaly concerned with access
to physical devices via application level software; acogasphysical attacks or attacks
against low level device drivers is not considered in the @ehaded here.

Each resource is presumed to haveaathorizerwho controls access to that resource.
A user is authorized for a resource if and only if the auther&zaccess policy for that

resource grants access.

In the manner of many trust management systems, and iRThesystem specifically,
each principal, also called amtity, is represented directly by a public/private key pair.
Consequently the requester of a resource does not neechenéigate to the authorizer to
prove her identity, nor provide identity-to-key bindingticates. She only needs to prove
that she has access to the private key of an authorized fuiblate key pair. Accordingly
authorizers define policies in terms of the (public) keysrikelves. While keys can be
given names, such names are purely for local convenieneghiive no significance to the
security of the system and need not be shared.

An important consequence of the lack of identity-to-keydings is that impostor keys
can not be created. If an attacker generates a new publatprkey pair, it would be re-
garded as an entirely new entity. Access would be evaluatsedon that entity’s certified
attributes (if any). Itis not possible for a “bogus” prinalfo pose as a legitimate principal.
As is typical for trust management systems, this moves thblpm of associating a spe-
cific attribute with the correct key to those who create thehaite certificates. However,
those certificates are created off line before resourcesadseequested and evaluated; re-
guesters and authorizers are not concerned hathcertificates are created and the means
used to produce them is outside the scope of this securitymod

In order to improve the efficiency of normal message trasdfetween a requester and
an authorizer, symmetric session keys are computed usiimgesDiffie-Hellman key
agreement protocoD(ffie and Hellman 200Bas described isection 3.6.1In this protocol
each of two communicating entities compute a common sharecktsby combining the
public key of its peer with its own private key. No secret mh@tion is transmitted over
the network and an eavesdropping third party is unable tqoebethe same shared secret
without access to either private key.

Yet for the reasons given earlier, this simple approachvemkeeless not vulnerable to

a man in the middle attack. The key used by the authorizerttwaue access is the same

8

as that used to compute the session key. Consequently ozdytiarlate user will be able to
compute the same session key. Either the man in the middleetibe authorized or else
the man in the middle is a legitimate user of the resource agyw

A man in the middle would be able to pose as a legitimate sefuien the point of view
of the requester. However, requester messages are notemtbisecret so an eavesdrop-
per could read them in any case. Since the systems descebedise only unidirectional
communication, requesters that wish to receive resulta o authorizer must provide a
suitable service of their own for authorizers to use. In tieegte the roles of requester and
authorizer are reversed, and the service provided by tlggnatirequester could be pro-
tected by an appropriate policy to prevent unauthorizesckadm returning fake results.

Ultimately the session key is used to compute a messagerdiatteon code (MAC) on
requester messages. Verification of this MAC proves thatgfjaester is in possession of
a session key that was previously computed using an auétbpablic key. The MAC on
request messages then serves to verify authorizatmonauthorized user can compute a
valid MAC

Other security properties are not directly supported by thork. Notably, neither
SpartanRPC nor Scalaness address the issue of node tagnmradienial of service attacks.
Both systems as described here are also vulnerable to sailods of replay attacks. Issues
of data confidentiality are also outside the immediate sodpieis work.

However, SpartanRPC and Scalaness do not interfere witididliéon of other security
services to an application. For example, an applicatiooiBpgrotocol that adds a mono-
tonic counter to messages could be layered on top of eitlségsyto protect against replay
attacks. Scalaness, in particular, could be used to suppadntan approach by letting a first
stage program compose and specialize the mechanism, ogaggropriate parameters at
first stage execution time. Confidentiality of messagesdtaldo be added by encrypting

message contents with the previously negotiated sessjon ke

9

As usual itis assumed that the cryptographic primitivesluiseboth systems are secure
in the sense that it is computationally infeasible for artpeiter of interest to defeat the

cryptographic protections directly.

1.3 Related Work and Contributions

The first trust management systems were inspired by earhlydimtiional work in authenti-
cation logics such as BANBurrows, Abadi, and Needham 19%nhd authorization logics
such as ABLP Abadi, Burrows, Lampson, and Plotkin 1993owever, the concept of
trust management as an independent area of study was freduced with PolicyMaker
(Blaze, Feigenbaum, and Lacy 19%aze, Feigenbaum, and Strauss 19%&licyMaker
policies are implemented as arbitrary programs in a sutadafe” programming language.
This gives the system great flexibility but also introdugesactability.

KeyNote Blaze, Feigenbaum, loannidis, and Keromytis 1)99% direct descendant of
PolicyMaker. KeyNote restricts PolicyMaker by specifymgimited language for creating
policies. However, a full analysis of KeyNote’s policy larage Li and Mitchell 20033
shows that certain authorization problems neverthelesaireundecidable. KeyNote has
been used to enforce IPsec security requiremdBlezé, loannidis, and Keromytis 2002
Blaze, loannidis, and Keromytis 2003

SDSI/SPKI Rivest and Lampson 199&llison, Frantz, Lampson, Rivest, Thomas, and
Ylonen 1999 provides a relatively simple, yet expressively intemggtirust management
language that is a precursor to tR&, system used here. The semantics of SDSI/SPKI
have been analyzed by several authéddsadi 1998 Halpern and van der Meyden 1999
Howell and Kotz 2000Li 2000; Clarke, Elien, Ellison, Fredette, Morcos, and Rivest 2001
making it one of the best studied trust management systeBSI/SPKI has been used to

provide security in component based programming languagigd Liu and Smith 2002

10

QCM (Gunter and Jim 199Gunter and Jim 200Q&and its successor SD3ifn 2001
Jim and Suciu 2001cast distributed authorization as a kind of distributethdase prob-
lem. As a result, these systems are able to leverage wéliestulatabase techniques and
abstractions. These systems reveal a deep and interestingation between authorization
logics and database theory that inspired later work witaloige query languages such as
Datalog and Datalqg(Li and Mitchell 2003a

Other notable examples of trust management systems in€ladsandraBecker and
Sewell 2004, a system that has been studied in the context of the Unitegdém’s pro-
posed nationwide electronic health records database. tAés&xtensible Access Control
Markup Language (XACML) QASIS 2006& and the Security Assertion Markup Lan-
guage (SAML) QASIS 2006k, define XML policy and assertion languages that make use
of many trust management concepts.

While there has been a great deal of research on securitpgosaetworks, much of
that work has focused on low level concerns such as link lageurity, key distribution
(Camtepe and Yener 2005and secure network protocol&(pta, Millard, Fung, Zhu,
Gura, Eberle, and Shantz 2Q@»uladgar, Mainaud, Masmoudi, and Afifi 2006ystems
such as TinySedKarlof, Sastry, and Wagner 20p4nd MiniSec Luk, Mezzour, Perrig,
and Gligor 2007 are based on shared secrets and generally assume thairametwork
comprises a single security domain. Furthermore, thesemgssupport confidentiality
and integrity properties, but not access control.

Extending sensor network software platforms with suppartskcure interactions be-
tween domains has been studied in previous research on $Skrisor networkslng,
Hong, Ha, Kim, and Kim 2009 However, that work was focused on extending the In-
ternet to sensor networks (aka “IP for WSNs”), whereas @p&PC is a more general
system for enhancing secure communicatiwitlin a sensor network. Research on sensor

network security has also addressed secure roukaddf and Wagner 2003 cryptogra-

11

phy Bertoni, Breveglieri, and Venturi 2006and hardware issueBérrig, Stankovic, and
Wagner 2004 In contrast to these low-level systems, SpartanRPC gesvanguage-level
abstractions for secure RPC services.

More closely related is a system for establishing fine-grajri'node-level” policies
in sensor networksGlaycomb and Shin 20)1 However, this work is more focused on
group-based key negotiation and distribution, and whitois offer a policy language, it
is rooted in implementation details and not as a separaleeifggation. Also, that work
does not provide a language API for integrating their sysieim secure applications as
does SpartanRPC.

Previous related work also illustrates interest in andulssdplications of RPC in em-
bedded networks. For example, the Marionette system usesrdayer RPC for remote
(PC-based) analysis and debugging of sensor netwlvki#téhouse, Tolle, Taneja, Sharp,
Kim, Jeong, Hui, Dutta, and Culler 2006The Fleck operating system provides a small
pre-defined set of RPC services for sensor network apmitsitiwhile the trustedFleck
system extends this with a form a secure RPMD,(Corke, Shih, and Overs 2008lu,
Tan, Corke, Shih, and Jha 2010S-RPC provides an RPC facility for sensor networks
that allows remote services to be added to the system dyafynjReinhardt, Mogre, and
Steinmetz 2011l SpartanRPC differs from these systems in that it exteimel®esC pro-
gramming language (unlike trustedFleck) to allow progranuhefinition of secure RPC
services (unlike S-RPC) that can be accessed by nodes whthinetwork itself (unlike
Marionette). SpartanRPC is similar to, and inspired byyRRC (May, Dunning, Dowd-
ing, and Hallstrom 2007 TinyRPC, however, does not provide security and hasréiffe
semantics that are not as expressive as SpartanRPC’s appiogarticular, SpartanRPC
allows asynchronous invocations to be sent to a dynamisallcted subset of neighbors.

Teeny IME allows application programs to access an abstract “tu@eesythat is the

union of tuple spaces on the local node and the immediateghhering nodesCosta,

12

Mottola, Murphy, and Picco 2007 This provides an alternative to RPC for uniformly
accessing remote and local data. However, interaction twéhmiddleware is by way of
a dedicated API; there is no attempt to provide a true RPC amgsim. Also TeenyME
does not address issues of access control.

Secure Middleware for Embedded Peer to Peer systems (SMERR)eneral frame-
work for creating security sensitive applications from stduted network of embedded
peers Brogi, Popescu, Gutiérrez, Lopez, and Pimentel 20@MEPP Light Vairo, Al-
bano, and Chessa 2008 a reduced version of SMEPP to address the resource amnstr
of wireless sensor networks. SMEPP Light provides a pulslighscribe communication
model using directed diffusionrntanagonwiwat, Govindan, Estrin, Heidemann, and Silva
2003 to distribute “events” to all subscribers and symmetrig keyptography to pro-
vide confidentiality and data integrity within a group of msd However, SMEPP Light is
not integrated into a programming language and does notgeg@remote procedure call
mechanism. Furthermore, SMEPP Light only supports a simmadel of access control
based on group membership.

High level macroprogramming languages such as Kait@snimadi, Gnawali, and
Govindan 2005 and RegimentNewton, Morrisett, and Welsh 20D provide a way to
program the entire network as a single entity. These sysédtaspt to hide not only the
inter-node communication from the programmer, but alscetité@e node level programs.
SpartanRPC operates at a much lower level making it potsntieore flexible and also,
unlike these macroprogramming systems, SpartanRPC addrascess control issues in
networks containing multiple security domains.

Whole network programming of wireless sensor networks s laeen investigated
using mobile agents in systems such as AgiHak, Roman, and Lu 20Q0%nd Wiseman
(Gonzéalez-Valenzuela, Chen, and Leung 201Blowever, like the macroprogramming

systems mentioned previously, neither of these systemessldssues related to access

13

control in the presence of multiple security domains.

The potential of applying staged metaprogramming teclesda sensor networks was
explored in the functional sensor language Fladrifland, Morrisett, and Welsh 20D8
Flask allows functional reactive programming (FRP)-basteeam combinators to be pre-
computed before network deployment, but it is possible toegate ill-typed Flask ob-
ject code since cross-stage static type checking is nobqeeid. Humellammond and
Michaelson 200Bis a domain specific language for real-time embedded dgrimgram-
ming. It includes a metaprogramming layer but that layerasenike nesC’s configuration
files in that there is a very restricted syntax for a few sgenetaprogramming operations
including component wiring, macros, and code templating.

MetaML (Taha and Sheard 199Taha 2004 and MetaHaskellMainland 2012 are
foundations the work described here builds on. MetaHaskads support heterogeneous
language staging where the lower stage language is defineg@log-in and several instan-
tiations have been defined including one for a low-levelké-language. Like this disser-
tation’s approach, they guarantee type safety of all loiagescode produced. They use
a more traditional metaprogramming model, however, notptioeess separatiomodel
needed for embedded systems metaprogramming where diffei@ges execute on dif-
ferent machine architectures and in different addressespadlso neither MetaML nor
MetaHaskell address the issues of metaprogramming moduat@asition and type spe-
cialization. In contrast, Scalaness follows the foundwtlavork on Framed ML (ML))
(Liu, Skalka, and Smith 2032subsection 4.3.8iscusses how it serves as the theoretical
underpinning of the Scalaness system.

Lightweight Modular StagingRompf and Odersky 20)@lescribes a method of ex-
pressing staged computations using a Scala host framewtrkuw any compiler modi-
fications. The approach allows cross-stage type safetydmg dot supporlynamic type

construction a method by which second stage types can be manipulatedtastdige val-

14

ues. This feature provided by Scalaness is important faneghg the layout of data
structures by tuning the types used for their members.

Actor based sensor metaprogramming has been studiggchieofg 200), this work
also focuses on high level dynamic reprogrammability butintyped. More broadly,
metaprogramming is known to be useful for increasing theieficy of systems appli-
cations. One example is Temp€@dnsel, Hornof, Marlet, Muller, Thibault, Volanschi,
Lawall, and Noyé 1998 a system that integrates partial evaluation and typeiajpeation
for increasing efficiency of systems applications. Ghlipala 2010 allows for type safe
metaprogramming for web applications.

The units of staged code composition in nesTrapelules Countless different module
systems exist, but they are primarily designed to achiepars¢e compilation and sound
linking (Cardelli 1997.The different design goals of nesT lead to different desigoices
in nesT modules. For example, data crossing nesT moduledaoies needs to conform
to the property of process separation, a non-issue in stamdadule system designs. In
addition, nesT modules allow values/types across the yraf modules to be flexibly
constructed, including dynamic construction of types. Medystems such as ML mod-
ules MacQueen 198¢and Units Flatt and Felleisen 199&llow types to be imported/ex-
ported as Scalaness supports. However, there are seatakie of ML modules including
type hiding that Scalaness does not aim to support.

NesT modules are more expressive in their support of firssal@dules as values and
the possibility of dynamic construction of “type exportsThat said, first class modules
are not new Mitchell, Meldal, and Madhav 199JAncona and Zucca 2002The novelty
of nesT arises in its application to program staging andnhberporation of dynamic type
construction.

The type parametricity of System F and ECardelli and Wegner 1985and the prac-

tical type systems it inspired such as Java’s generics, tivedd types as first class values.

15

C++ templates support types as meta values in template sixpatut type safety of gen-
erated code is not guaranteed without full template expansConceptsGregor, Jarvi,
Siek, Reis, Stroustrup, and Lumsdaine 20@6proves on this, but types are still not first

class values.

1.3.1 Summary of Contributions

The main contributions of this work include a demonstratifar the first time, of the
feasibility of using trust management in resource conséidiembedded systems such as
sensor networks. No previous work has attempted to impléesgport for such a general
and flexible authorization system on such small devices/i®us work on sensor network
security has tended, instead, to focus on low level issugs, providing confidentiality on
links, or on relatively ad-hoc solutions to specific probgm. g., key distribution.

In contrast, the SpartanRPC language, together with itéeim@ntation in Sprocket,
provide language based support for general purpose distdtauthorization in sensor net-
works. Trust management authorization can now be used amdiye for building more
elaborate security services in complex embedded netwpkssng multiple security do-
mains where fine grained access control is required. SgaiPt@ralso provides a new re-
mote procedure call discipline for nesC featuring asynebuos invocations and an ability
to dynamically control the subset of neighbors to which gachote invocation is directed.

This work also introduces Scalaness/nesT as a well fourtdedstage programming
system for developing general embedded applications. dimedations of Scalaness are
presented in the distilled languages DScalaness and DAasmplementation of the sys-
tem has been created by modifying the open source Scala levmpi

Scalaness offers a unique combination of staging with estege type safety, process

separation, and dynamic type construction that make it apiodtool for creating flexible

16

and efficient embedded applications. Scalaness treatsusienhanagement problem as
simply one application of many, and this work demonstratesahess by using it to re-
implement a solution to embedded trust management in seeseDrks.

This work also describes the use of both SpartanRPC andrigsal@n a realistic field
example with non-trivial application requirements. Thisuaple shows that both systems
can be used to solve real-world problems and are not merglgystems of theoretical

interest only.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Trmahagement systems are de-
scribed, in general, inhapter 2outlining the different features provided by common trust
management systems and motivating their use. Special fegigen to theRT family of

trust management systems used in this work. The design ofe®RPC is described, as
well as the details of its implementation,éhapter 3 Of particular note is the description

of the added support faR7}, trust management to a general RPC mechanism. Scalaness
and nesT are introduced in more detaildmapter 4 and then the syntax and semantics
of both languages are described, using simplified “distilleersions of those languages
calledDScalanesandDnesT The implementation of the practical Scalaness/nesT syste
is described irchapter 5relating the features of the implementation to the eaftianda-
tional presentation. An evaluation of both systems is mlediinchapter 6using simple
test programs in the context of a realistic field example. ddreclusion is documented in
chapter 7 Finally, in Appendix Athe full source code of a simple Scalaness/nesT sample

is demonstrated, with commentary.

17

Chapter 2

Trust Management

Distributed applications that span administrative domdiave become commonplace in
today’s computing environment. Electronic commerce, lpgHformance scientific com-
puting, groupware, and multimedia applications all regigllaborations between distinct
social entities. In such systems each administrative donaéso called a security domain,
controls access to its own resources and operates indepgndé other administrative
domains. The problem of how to best specify and implemerdgsgcontrol in such an en-
vironment has been a topic of considerable research. Teessldhis problem the concept
of trust management was introduc&lgze, Feigenbaum, and Lacy 1996

Most existing embedded applications entail only a singl@iadtrative domain that
owns the embedded devices. Security in that context is gnosticerned with preventing
access by outsiders. However some applications have beenlmhrl, such as scenarios
involving emergency responskqrincz, Malan, Fulford-Jones, Nawoj, Clavel, Shnayder,
Mainland, Welsh, and Moulton 2094hat could easily benefit from a facility that allowed
multiple domains to interact in a controlled manner. As eduael systems in general, and
sensor networks in particular, become more pervasiveatsitus where multiple domains

interact will become more common. Devices in several domwiifl then be motivated to

18

use each other’s resources in an effort to increase theiregftly, functionality, or lifetime.
Hence the need for fine-grained application level accessamill increase.

At the heart of all trust management systems isahorization procedurenhich de-
termines whether access to a resource should or should mpabted based on a number
of conditions. While a number of techniques have been pegptscharacterize authoriza-
tion in trust management systems, the most promising asethased on rigorous formal
foundations. This argument is not new, in fact it has moédatust management research
since its inceptionWoo and Lam 1998 When security is at stake it must be possible to
specify policies in a precise, unambiguous way, and to haméigdence that those policies
are correctly enforced. Formally well founded trust mamaget systems achieve this, pro-
viding a setting in which reliability can be rigorously dsliahed by mathematical proof. In
particular, various logics have served as the foundatiotréist managemenApadi 2003
Bertino, Catania, Ferrari, and Perlasca 2003

It is important to clearly distinguish betweauthorizationand authentication The
latter addresses how to determine or verify the identityrafgipals in a transaction. Au-
thorization, on the other hand, is about what the principa¢éspermitted to do once their
identities are known. Although any real implementation ofaathorization system will
rely on authentication to establish identities, and keydemtity bindings may even have
an abstract representation in the system, authorizatinarghly treats authentication and
(public) key infrastructure as orthogonal issues.

Authorization in trust management systems is more expreskan in traditional ac-
cess control systems such as role based access control (RBA@hu, Coyne, Feinstein,
and Youman 1996 In those simpler models, an assumption is made that alcipals
are known to the authorization procedure a priori. Accesmged on the identities of au-
thenticated principals. But in a distributed environmengating a single, local database

of all potential requesters is untenable. Where there aflépteudomains of administra-

19

tive control, no single authorizer can be expected to hanectknowledge of all users of
the system. For example, a sensor network owned by a urtivengght want to provide
access not only to the university’s students, but also tilivisprofessors, guest lecturers,
and other entities known to cooperating institutions.

Finally, basing authorization purely on identity is not #isiently expressive or flexible
approach, since security in modern distributed systenenaitilizes more sophisticated
features (e.g., delegation) and policies (e.g., separafialuty Simon and Zurko 199.

These issues are addressed by the use of trust managententsys

2.1 Components of Trust Management Systems

Trust management systems in practice comprise a numbemnofidns and subsystems,
which can be divided into three major componetite& authorization decisigreertificate
storage and retrievalandtrust negotiation The authorization decision is where the se-
mantics of the trust management system are made manifesaypyfrsome core logical
structure. Certificate storage and retrieval is relevattiéghysical location of certificates
that are representations of access control elements sucedentials and policies. For ex-
ample, systems have been proposed for storing SPKI cetgificessing DNSNKikander and
Viljanen 1998 and for storing SDSI certificates using a peer-to-peer élwer Ajmani,
Clarke, Moh, and Richman 20R2Trust negotiation\(Vinsborough, Seamons, and Jones
200Q Yu, Ma, and Winslett 2000Seamons, Winslett, and Yu 200Yu, Winslett, and
Seamons 20Q1Winsborough and Li 2002Winsborough and Li 2004is necessary for
access control decisions where some elements of accesgepdr the credentials used to
prove authorization with those polices should not be ablir disclosed. For example,
in (Winsborough, Seamons, and Jones 3@08cheme is proposed whereby access rights

held by requesters are protected by their own policies, atidduthorizers and requesters

20

must show compliance with policies during authorizatios.,, ithey must negotiate.

The importance of these other components notwithstanthiegliscussion in this chap-
ter focuses on authorization decisions. This is becausautteorization decision is the
basis of any trust management system. Furthermore, ndieablystems proposed in the
literature have been developed sufficiently to includeifteaite storage implementations or
trust negotiation strategies. Finally, the applicatiohguwst management described in this

dissertation do not use a formal approach for certificatellagnnor any trust negotiation.

2.1.1 Structure of an Authorization Decision

The authorization decision component of a trust managesystém includes more than
just a core authorization semantics. The weydtemhere is defined as the set of compo-
nents that provide an implementation, not just an abstpetiBcation of the authorization
semantics. In this section, the components of a generioda#tion decision are identified
and its structure is characterized.

Figure 2.1lillustrates the structure of an authorization decisiorisgnaphic is meant as
a rough sketch, not a formal specification, and not all triemtagement systems contain all
the components described. The graphic is read from top tormngand shows the flow of
information through a particular authorization procesghwutput computed in response
to an authorization request. The diagram is intentionadlgue about the nature of the
output: in the simplest case, the output is a simple “yes’nar’ ‘decision as to whether or
not to grant resource access, but in systems that suppstrnigotiation, the output could
be a partial answer that provides direction for additionghit. Within the scope of this
dissertation, focus is concentrated on the case where tpetds a boolean value, hence
the terminology authorizatiotlecision The core authorization semantiEsmplement the

authorization decision, and may be a specialized inferegstem, or a proof search in a

21

Policy
Certificates
Authorization Query

Certificate Validation

< O Qv

Authorization Mechanism

Tp : Policy Compilation
Tc : Credential Encoding

Ty : Query Compilation

Output D : Distributed Certificate Discovery

Figure 2.1: Structure of an Authorization Decision

generic programming logic such as Prolog, for example. Tileaxization semantics takes
as input parameters fromi, P, and(, which are now described in detail.

Local policy P is defined in some specification language, that is transfdinte terms
understood by the core semantics by the transformatiortiam€y. This translation may
just consist of parsing from concrete to abstract synta¥%;zaomay compile statements in a
high-level policy language into lower level terms for theeesemantics. For example, TPL
(Herzberg, Mass, Michaeli, Naor, and Ravid 2D@@ovides an XML-based “trust policy
language” that is compiled into Prolog.

Credentials for a particular requester may be defined agplatal policy. An earmark
of trust management systems, however, is their ability tereklocal policies with creden-
tials conferred by non-local authorities. This is realizsda set of available certificatés
that are transformed by a functidf; into credentials defined in terms understood by the
core semantics. The transformati@p provides a level of indirection allowing systems

to choose between various certificate wire formats and Pkdh as X.509 Iaternational

22

Telecommunications Union 20D0r WS-Security QASIS 2006¢. When working with
resource constrained embedded systems it is desirable tweusficate formats that are as
compact as possible, as describedéction 3.6.1but that does not affect the behavior of
the trust management system.

The transformatiofd; also has special significance for the semantics of trust gena
ment systems, since it is often not a straight parsing or datign procedure. Rather,
certificates may be rejected, or their credential represiemts enhanced, by certificate va-
lidity information. Validity information is external to thauthorization semantics in some
systems, but internal to it in others, so the certificatedetion component of the autho-
rization decisiorV/ is represented as a dashed box.

For example, any given certificate= C' almost always defines a finite lifetime for the
certification, also called a validity intervalMinslett, Ching, Jones, and Slepchin 1997
Some trust management systems such as HEaAdr, Schneider, and Felten 20G2ip-
port lifetime information in the authorization semantiesd in such a casé. can map
the lifetime information in: to its credential representation. However, other systeymsd
represent lifetimes in the authorization semantics pethse is, inL), and in such cases the
onus is orl - to filter out expired certificates. For example, SPKI progidenechanism for
certificates to be checked on-line to see if they have beakeelEllison, Frantz, Lamp-
son, Rivest, Thomas, and Ylonen 1998ut this mechanism is not part of SPKI’s formal
structure. This means on the one hand SPKI’s revocatiogyoéinnot be expressed in the
SPKI policy language itself, nor enforced by its authoi@masemantics. On the other hand
it allows a SPKI implementation to apply a different revacatpolicy without changing
their underlying logical structure, and in general the diffiies associated with formalizing
certificate revocationStubblebine 1995Stubblebine and Wright 199Rivest 1998acan
be avoided, while a means for certificate revocation in tistesy is still available.

In addition to policyP and certificate€”’, the authorization decision takes as input a

23

guestion or goal) that is specialized for a particular access request. As ampbe, some
trust management systems, such as SDSIRRg(Li, Mitchell, and Winsborough 2002
Li and Mitchell 2003b, define roles. These systems allow one to prove that a phatic
principal is in a particular role. Resources are associaigdroles, and the authorization
decision is based on whether the requester is a member oéliwant role. The trans-
formation7y, translates the goal into terms understood by the core sasafinally, the
core semantics combines policies and credentials edtallisy input certificates to deter-
mine whether the authorization goal is satisfied, and oatfyés” or “no” based on this
determination.

However, as denoted by the dotted line, some systems alsalpra “feedback” mech-
anism D between the semantics of authorization and certificateectdin. Rather than
merely answering “no” outright in case an authorizationlgaanot be reached, the system
might identify credentials that are missing and attemptaitect them. This functionality
is sometimes calledistributed certificate chain discove(li, Winsborough, and Mitchell
2003 or policy directed certificate retrievdGunter and Jim 200Qb

Whatever the specifics, itis clear that this functionaligk®s for a more flexible system
in terms of certificate distribution and storage, but présarsignificant challenge to system
designers, particularly in the embedded case where acodasetnet resources may be

severely limited.

2.2 Features of Trust Management Systems

This section both describes and discusses a number ofdsatlevant to many trust man-
agement systems and comments on their potential appligebiembedded systems. This
is not intended to be an exhaustive listing, but rather teigea focus on features that are

generally considered important for trust management egjpdins.

24

2.2.1 Formal Foundation

Since authorization systems are used in security-seasitimtexts, mathematically precise
descriptions of their behavior and formal assurances of ttwegrectness is essential. A
variety of formalisms serve as effective foundations far definition of trust management
authorization semantics. The formalisms used can be dhiitte three main categories:
logics, database formalisms, and graph theory.

In the case of trust management systems based on logic, tiheri@ation problem is
expressed in terms of finding a proof of a particular form@presenting successful re-
source access, with the policy represented as a collectisnitable axioms. Credentials
relevant to a particular decision become additional hygstls to be used in the proof. Trust
management systems based on database formalisms (atpalalgebra) see the autho-
rization decision as a query against a distributed datalJdsecertificates issued by a prin-
cipal contain, in effect, tuples from relations that a pipat controls. Trust management
systems based on graph theory define the authorization@eaisterms of finding a path
through a graph. The request is represented by a particothe im the graph. Principals
are also graph nodes and the certificates they issue derggs.ed

It is not unusual for a particular trust management systebetdescribed by more than
one formalism. In fact, some aspects of trust managemennare naturally expressed
using one formalism or another. Also, Datalog serves as dalfitabase formalism and a
programming logic, and several trust management systemsiding R1; that is used in

this work, have been specified in Dataldg &nd Mitchell 2003

2.2.2 Authorization Procedure. Authorization Complexity

Trust management systems differ in exactly how the authbaa decision is implemented.

In a broad sense this is due to differences in the way thermagstee described; systems

25

using the same style of formalization tend to use similahauation procedures. This is
particularly evident among the systems using programnuoggs$ such as Datalog as both
their formal foundation and implementation. However, soragations between systems
result in significant differences in how authorization isqguted even when the underlying
formalism is the same, for example, if certificate revocai®present in one system but
not another. In some cases no authorization procedure éngilie details of computing

authorization is entirely left to the implementers.

The computational complexity of the authorization deaisgclearly of practical inter-
est, especially to developers of resource constrainedmgstideally, authorization should
be decidable and tractable, but there is a trade off betweeexpressiveness of the certifi-
cate and policy language and the complexity of the authboizalecision. For example,
the systems that use Datalog with constraints (Datglogn have various levels of com-
putational complexity depending on the constraint domaieduli and Mitchell 2003
Yet even trust management systems with undecidable degsacedures can be poten-
tially useful; realistic policies may be decidable everhé general policy language is not.
Furthermore, practical implementations can time-out @auzation decisions and return a
failed access indication in order to avoid problems with-tenmination.

For constrained systems the resources required to maketlaoriaation decision is a
matter of critical importance. Implementing a full Prologzatalog interpreter in a small
embedded device would seem to be prohibitively difficult.wdwger, choosing a system
that is sufficiently limited (while still allowing for suffiently rich access policies) enables
various optimizations that can bring the implementatiost @ato a reasonable range. This

was a major factor in choosing1; for the work described here.

26

2.2.3 Public Key Infrastructure (PKI)

It is common for trust management systems to treat keysttir@g principals. This creates
a conceptually clean design. In contrast, some systemsdrégahuman or machine par-
ticipants as the principals and encode a relationship tvpeincipals and the keys that
identify them. In the former case, key bindings are not repnéed in the authorization
semantics, whereas in the latter case they are. Although &derpin the implementation
of trust management systems, the question here is: to wienteoes a particular trust

management system directly concern itself with the detdikey management?

2.2.4 Threshold and Separation of Duty Policies

Many systems support threshold policies, where at leasit of a set ofn entities must
agree on some point in order to grant access. Thresholdgmlce appealing since agree-
ment provides confidence in situations wherein no singleaity is trusted by itself. The
concept of separation of duty is related to threshold padicln the case of a separation of
duty policy, entities from different sets must agree befreess is granted.

As an example, a bank might require that two different castapprove a withdrawal
(same set—threshold policy). The bank might also requia¢ dhcashier and a manager,
who are not the same person, approve a loan (different sefgaration of duty policy).
In general threshold policies and separation of duty pedicdannot be implemented in
terms of each other, although some trust management syst@visle support for both

(Li, Mitchell, and Winsborough 2002

2.2.5 Local Name Spaces

Itis desirable for trust management systems to allow eactirastrative domain to manage

its own name space independently. Requiring that namesbalgyl unique is problematic

27

and, in general, infeasible. Although there have been ati®mt creating a global name
space International Telecommunications Union 2Q00fhese attempts have at best only
been partially successful. The ability to reference naralmame spaces is also a keystone
of modern trust management, in that it allows local policgoasider requesters that may

not be directly known to the local system.

2.2.6 Role-Based Access Control

In a large system with many principals it is often conventenise role based access control
(RBAC) (Ferraiolo and Kuhn 199%andhu, Coyne, Feinstein, and Youman 1996such

a systenrolesare used to associate a group of principals to a set of paongssThe use of
roles simplifies administration since the permissions@eio a potentially large group of
principals are defined in a single place. RBAC is a conceptwaidation of many modern
authorization technologies.

Some trust management systems support RBAC by casting tkssacontrol decision
as a role membership decision. Access will be granted if dogiester is a member of
an appropriate role but the precise meaning of the rolegrmg of the permissions that
are connected to them, is defined outside the trust managem@nonment. In contrast
some trust management systems include a mechanism in i@y fjanguage to define
permissions explicitly. In these systems the access datepision is directly rendered for
a particular permission. Finally, in some cases roles atgravided directly but can be

simulated by assigning an appropriate interpretation it@isleé objects within the system.

2.2.7 Delegation of Rights

All trust management systems allow an authorizer to de¢egiathority. In other words, an

authorizer can specify third parties that have the authooitcertify particular attributes.

28

This is one of the defining characteristics of a trust managisystem. However, in many
applications a requester will also want to delegate somdl @f &is or her rights to an
intermediary who will act on that requester’s behalf.

Delegation of rights is important in a distributed enviramh For example, a request
may be made to an organization’s front end system that aesesternal servers where
the request is ultimately processed. The classic threattehitecture of web applications
follows this approach. In many environments the back endesermay have their own
access control requirements, in which case the requesliene®d to delegate his or her
rights to the front end system for use when making requegdtsetoternal servers.

Trust management systems differ in their support for riglekegation. Delegation
credentials may be formally provided, or delegation canibristed via more primitive
forms. Also, delegatiodepthcan be modulated in some systems—rather than being purely
transitive, delegation of rights may only be allowed to lamsferred between fixedprin-
cipals. In some cases rights can be delegated arbitrariiptoat all. A system that has this

latter feature is said to support boolean delegation depth.

2.2.8 Certificate Validity

Since an authorizer receives certificates from unknown arteinpially untrustworthy en-
tities, the validity of those certificates must be checkedudlly, signatures must be ver-
ified and the certificate must not have expired, since in madertificates will almost
always have a finite lifetime in order to ensure that obsaoletermation cannot circu-
late indefinitely. In some systems certificate validity igpkitly treated as part of the
structure of the trust management authorization semanties component. described in
subsection 2.1.1In such cases certificate lifetimes can be directly repiteskin creden-

tials and taken into account in policB&uer, Schneider, and Felten 20Q2and Feigen-

29

baum 2002Skalka, Wang, and Chapin 2007

In other systems, certificate validity is defined externalhd checked as part of the
translation of certificates into credentials—the compafigr—and not formally reflected
in the authorization semantic&l{ison, Frantz, Lampson, Rivest, Thomas, and Ylonen
1999. Note that it is a topic of debate whether authoriz&iw¢st 1998aor certificate au-
thorities (McDaniel and Rubin 2001should determine validity intervals for authorization

decisions.

2.2.9 Credential Negation

Policy languages sometimes allow policy makers to spebifiy & credentiahot be held.
For example, access to a resource may require that regeiestepossess a credential en-
dowing them with a felon role. In systems using logic as a @ation for the semantics of
authorization, this is expressed as credential negatibat i, authorization is predicated
on the negation of a role attribute expressed as a credeNt& that this makes the seman-
tics nonmonotonic—as more credentials (facts) are add#teteystem, it is possible that
fewer authorizations succeed. As noted$eé&mons, Winslett, Yu, Smith, Child, Jacobson,
Mills, and Yu 2003, this makes credential negation a generally undesiraarife, since
nonmonotonic systems are potentially unsound in prackoe.instance, if a certificate is
not discovered due to a network failure, access might betegahat would otherwise have
been denied. In the embedded environments consideredlisris, a major concern.
Monotonicity also allows undecidable (or intractable)heuization logics to be used
safely. An authorizer could simply abort an excessivelglomning computation and deny
access. While this approach might prevent some legitingapeasts from succeeding, in a

monotonic system it remains sound since it would never gracess inappropriately.

30

2.2.10 Certificate Revocation

Certificate revocation is similar to credential negatiout, #llows previously granted ac-
cess rights to be explicitly eliminate®ivest 1998a Like certificate validity, this can be
implemented in the translatid, from certificates to credentials. For example, in SPKI/S-
DSI (Ellison, Frantz, Lampson, Rivest, Thomas, and Ylonen 199@ne revocation lists
can be defined that filter out revoked certificates prior toveogion to credentials for the
authorization decision. At first glance it may appear thatifogate revocation entails non-
monotonicity. However, it has been demonstrated thatfiwate revocation can be encoded
monotonically in both the Proof Carrying Authorizationrfrawork Bauer, Schneider, and
Felten 2002 and a logic-based PKI infrastructurki @nd Feigenbaum 2002 The tech-
nique points out a relation between certificate revocatioh eertificate validity, in that
monotonic revocation can be based on lifetimes and the neameint to renew certificates.
Various high-level approaches to, and nuances of, cetgfiea/ocation are discussed in

(Rivest 1998a

2.2.11 Distributed Certificate Chain Discovery

Where do certificates for a particular access request cang?fin common scenarios the
requester presents all relevant certificates when reaugessticess. It is also easy to imagine
settings in which authorizers maintain local database®uificates. In fact, these are the
scenarios that are assumed in this work.

More generally, however, certificates could be stored amyerin the network, as long
as the local system has some way of finding them. Of coursendhe potentially enor-
mous number of certificates on the network, it is necessadgfine some means of selec-
tively retrieving only certificates that might pertain to arficular authorization decision.

Formally well founded techniques for doing distributedtiigate chain discovery have

31

been described irL{, Winsborough, and Mitchell 20035 unter and Jim 200Qb

2.3 Foundations of Authorization

This dissertation’s focus is specifically on trust managensgstems that use a program-
ming logic as their formal foundation. This approach hasaitieantage that a specification
of the system’s semantics can also serve, in principle samplementation. In addition,
programming logics such as Prolog and Datalog are a weliedushd well understood
formalism.

Programming logics provide useful abstractions for augadion semantics. They have
served as target languages for the compilation of highat-keuthorization languageski(
and Mitchell 2003aWoo and Lam 1998 as well as the foundation for enriched autho-
rization languagesL{ and Mitchell 2006 Jim 2001 DeTreville 2002 Li, Mitchell, and
Winsborough 2002.i, Grosof, and Feigenbaum 2003nd have been used for the formal-
ization and study of trust management systelonafid Mitchell 2006 Polakow and Skalka
2006.

Both Prolog and Datalog atdorn-Clauselogics, in which all formulae are restricted
to the formhead+« body, where« is a right-to-left implication symboheadis a propo-
sition, andbodyis a conjunction of propositions. If variablés appear in a rule, the rule
is implicitly universally quantified over those variablélshe head of each rule is the con-
sequent of the body. Bodyis empty then the rule isfact

As a simple example of how logics can apply in a trust managéfmamework, imag-
ine that delegation should be transitive. Supposedhiayation(X,Y') is defined to mean
that the rights ofX have been delegated 6. Suppose also thatrt(X,Y') represents

a delegation certificate passing rights directly frafrto Y. The following Horn clauses

32

obtain transitivity of delegation:
delegation(X,Y") < cert(X,Y) delegation(X,Y') < cert(X, Z), delegation(Z,Y")

Lettinga, b, ¢, ... denote constants, the following represents a collectiatetdgation cer-

tificates:
cert(a, b) cert(b, c) cert(b, d) cert(c, e)

From these facts and the definition éflegation, the querydelegation(a, e) will succeed
while delegation(d, e) fails.

Datalog was developed as a query language for databasgsolt a full programming
language. In contrast Prolog is Turing complete and thuseregpressive than Datalog.
This extra expressivity is useful in certain contexts. Bamaple, a full-featured authoriza-
tion logic called Delegation Logic has been defined as atsritension of Datalog at a
high level, that is ultimately compiled to Prolog for praeti implementationl({i, Grosof,
and Feigenbaum 2003

Nevertheless, Datalog has certain advantages in the @adtion setting: the combi-
nation of monotonicity, a bottom-up proof strategy, anddbad’s safety conditionany
variable appearing in the head of a rule must also appeaeibaldy) guarantee program
termination in polynomial time. In contrast, Prolog’s tdpwn proof search can cause
non-termination in the presence of cyclic dependenciesekample, if we added the cer-
tificate cert(e, b) to the above fact set, some queries would not terminate. froislem
is resolved bytabling as in XSB KSB Inc. 2006, but it has been argued that this solu-
tion adds too much size and complexity to the implementdtomuthorization decisions
in general i, Mitchell, and Winsborough 2002and for embedded systems particularly.
And while Datalog is not capable of expressing structured,daatalog with constraints

(Datalog), a restricted form of constraint logic programmidaffar and Maher 1994has

33

been shown sufficiently expressive for a wide range of trumhagement idiomd.(and

Mitchell 20033.

2.4 The RT Trust Management System

This section provides a detailed review of thé' family of trust management systems, (
Mitchell, and Winsborough 2002 Focus is onRT because it is the trust management
system used in the demonstration applications. Althoughctivice ofRT was largely
arbitrary, it offers an effective combination of expre#sivease of use, and efficient imple-
mentability. AlsoRT has a strong formal foundation based on Datalog and itsntaria

RT is actually a trust management framework and not a singé tnanagement sys-
tem. The systems in thRT framework have varying expressiveness and complekity (
Mitchell, and Winsborough 2002.i, Winsborough, and Mitchell 20Q03.i and Mitchell
2003h. RT stands for “role based trust management” because it usiey pold credential
statements to associate principals, cadatitiesin the RT literature, to roles. The signif-
icance of the roles is defined externally. The base syst&f, provides credential forms
for simple role membership as well as indirection roles amergection roles as described
below.

RT; is an extension of:T; providing parameterized roleR7 further extendsR7;
to allow for the description of structured resourceisand Mitchell 2003aLi and Mitchell
2003b. The systemRT? provides a mechanism to describe the delegation of rights an
role activations, and?7” provides support for threshold and separation of duty fesic
RTT and RT? can be used in combination withT,, RT}, or RTC to create trust man-
agement systems such BE/, RT{?, and so forth. A rich complexity analysis has also
been developed for thRT framework for problems beyond simple authorization, eae

inclusion and role membership bounds, Mitchell, and Winsborough 2005

34

2.4.1 Features

The RT framework represents entities as public keys and does teohpt to formalize the
connection between a key and an identity. i€ framework allows each entity to define
roles in a name space that is local to that entity. An autkoligz expected to associate
permissions with a particular role; to access a resourcguester must prove membership
in the role. In this way thékT framework provides role based access control, but it does
not deal with permissions directly in the trust managemegtl

To define a role, an entity issues credentials specifyingdless membership. Some
of these credentials may be a part of private policy, othexg be signed by the issuer and
made publicly available as certificates. The overall mewstiiprof a role is taken as the
union of the memberships specified by all the defining credisnt

Let A, B,C, ... range over entities and lets, ¢, ... range over role names. A rofe
local to an entityA is denoted byA.r. RT, credentials are of the form.r «— f, wheref

can take on one of four forms to obtain one of four credenyiads:

1. Ar+— F

This form asserts that entity is a member of roled.r.

2. Ar +—— B.s

This form asserts that all members of rd¥es are members of rold.r. Credentials
of this form can be used to delegate authority over the meshieof a role to another
entity.

3. Ar<— B.s.t

This form asserts that for each memléepf B.s, all members of rolé”.t are mem-

bers of roleA.r. Credentials of this form can be used to delegate authovity the

35

membership of a role to all entities that have the attribaf@esented by.s. The

expression.s.t is called dinked role

4. Ar—fin---Nf,

This form asserts that each entity that is a member of alkréle. .., f, is also a

member of roled.r. The expressiorf; N --- N f, is called anntersection role

For all credential formsA.r «+— f, the principalA is called theissuerof the credential.
A credential is transformed into a certificate when it is sigiby the issuer’s private key.
Recall that the entities are represented by their public kisectly, i.e., thed and E in
A.r +— F are public keys.

RT, enhancesRT; by allowing roles to be parameterized. For example, therseco
credential form above is extended tor(h;, he, ..., h,) «— B.s(k;, ke, ..., k,) where
the h; andk; are parameters. Role parameters are typed and can be mtig@ting point
values, dates and times, enumerations, or finite sets oesanfghese datatypes. ARil;
credential isvell formedif the parameters given to the roles have the right type aedadh
variable in the credential appears in the body of that crealen

As an example of a7} credential Li, Mitchell, and Winsborough 2002 suppose
companyA has a policy that the manager of an entity also evaluatestitdy. This can

be expressed iR7} using a policy statement such as
A.evaluatorOf (1Y) «— A.managerOf(?Y)

This policy can't be feasibly expressed iY}, because the role parameters might take on
an arbitrarily large number of values. Rl individual credentials would be needed for
each possible value of the role parameter.

RTE further enhances the expressive poweRdf by allowing structured constraints

to be applied to role parameters. In addition the restinctio variables only appearing in

36

the body of a rule is liftedl(i and Mitchell 2003aLi and Mitchell 2003h. For example,
suppose a hodf wishes to grant access to a particular range of TCP portoseténtities
that are employed by the information technology departm&he host might have as its
local policy:

Host.p(port € [1024..2048]) <— IT.employee

This example assumes that an entity is granted access tti@i@arTCP port if that entity
is a member of thélost.p role with the port specified as a parameter.

To accommodate threshold structures, representing agradiatween a group of prin-
cipals, the systen7” interprets roles as sets of sets of entities, cafiddcipal sets
These principal sets can be combined with role product ¢peya and®.

New credential forms are as follows:

1. Ar+— B;.ry ®Bs.rg ®---©® By.1p,

Each principal sep € A.r is formed byp = p; U - - - U p, Where eachy; € B;.r; for

1 <1<k,

2. Ar<— B;.r; ® Bs.ry @ -+ - Q By.1y,

Each principal sep € A.r is formed byp = p; U - - - U p, wherep; N p; = (for all

1# jandp; € B;.r;for1 <i < k.

The features introduced Gy allow threshold policies and separation of duty policies
to be written (i, Mitchell, and Winsborough 2002

RTP adds the concepts of role activations and delegatiord<g via the delegation
credential form4 ““2" B. In this cased delegates ta@3 therole activationof C' as D.r.
Empowered with this role activatioB can then access whatever faciliti€scan access

from role D.r. This presupposes thdthas been delegated the activat©@ms D.r, which

37

holds whend = C and A is a member of rolé).r in the basic case. Hence, delegated acti-
vations don’t carry any authority unless there is a chainebégiation credentials where the
credential at the head of the chain was issued by the entityiomed in the role activation.

While the original RT" framework does not support revocation in its policy langyag
it is proposed to incorporate revocatidd,(Mitchell, and Winsborough 2002y lever-
aging a monotonic approach developedlingnd Feigenbaum 200dased on certificate
lifetimes. While lifetimes and the requirement for fresksare encoded logically, the pro-
posal suggests the use of external certificate revocaststb implement verification; this
is an interesting example of the possible interplay betwbersemantics of authorization
per se and components external to them.

A variant of the RT" framework has been developed that associates risk valubs wi
credentials $kalka, Wang, and Chapin 2007These risks are tracked through the autho-
rization process so that the role membership is parametkby the total membership risk.
The set of risks and their ordering is left abstract, and casgecialized to a number of
applications, e.g., risk can be defined as remaining cext#itifetime, so that role mem-
bership is parameterized by the minimal lifetime of cerdifes used for authorization.

Finally RT+, extendsRT; by adding an integer delegation depth control to most cre-
dential forms Hong, Zhu, and Wang 2005a capability that?7; lacks. RT'+, delegation
depths limit the delegation of authority by tracking the rftngnof namespaces (administra-
tive domains) such delegations cross. Delegation deptisasaiowed to be unlimited, in
which caseRT'+, degenerates t&75.

Although the work presented in this dissertation made us&%f exclusively, sup-
porting more advanced variations of tR€” framework, or indeed other trust management

systems entirely, would be an interesting avenue for fuliexeelopment.

38

2.4.2 Example

Suppose Alice is a cancer patient at a hospital being trdst&bb, a doctor. Alice grants
Bob access to her medical records and also allows Bob toatelsgch access to others as
he sees fit.

Bob defines his team as a particular collection of individuabether with the people
supporting them. A person supporting one of Bob’s team mesntecomes a team mem-
ber herself, so Bob’s definition is open ended and can paigntefer to a large number of
people he does not know directly. Here we assume that Bodrs tecludes both medical
and non-medical personnel, e.g., other doctors as wellcaptienists. Once his team is
defined, Bob then delegates his access to Alice’s medicafdsdo only the medical staff
on his team and not the administrative staff.

Suppose further that Bob consults with another doctor, ICandAlice’s condition. Bob
modifies his policy to add Carol temporarily to his team. Carders some blood tests that
are then analyzed by Dave, a lab technician and one of Caugbport people. The policy
is intended to allow Dave to access Alice’s medical recoalthat he may, for instance,
input the blood test results.

Dave signs the test results when he uploads them to the hbdpiabase. He also
includes appropriate credentials so that the databasauwtlhiorize his access. These cre-

dentials must include

e Bob has delegated his access to Alice’s medical recordsdpl@®n his team who

are members of the medical staff.
e Carol is on Bob’s team.

e If someone is on Bob’s team, than any person on their suptaiftis also on Bob’s

team.

39

e Dave is one of Carol’s support people.
e Dave is a member of the hospital’s medical staff.

On the basis of these relations, one may deduce that Davechassato Alice’s medical
records.

Complex access control scenarios such as this are diffcelkpress using traditional
methods. Neither Alice nor Bob realize that Dave needs torbatgd access to Alice’s
medical records. Although Dave’s role as one of Carol’s swippeople might be enough
to grant him access to the records of Carol’s patients, Baeationship to Bob, and hence
to Alice, is indirect; it is Bob’s act of adding Carol to hisara that causes Dave to gain
access to Alice’s records. Observe also that Bob’s teantypdirecursive. A primary
purpose of trust management systems is to provide langwesgerés and authorization
semantics that support such complex policies.

To express this example usiiy’ only the facilities of RT}, are necessary. This shows
that even the simplest member of tR&” family can be used to express interesting policy
statements. Alice defines a ralecords whose members are able to access her medical

records. She creates the policy

e Alice.records + Bob

e Alice.records + Bob.alice _delegates

The first rule grants her doctor, Bob, access to her recofus s&cond rule allows Bob
to further delegate that access by defining the membershipalice _delegates role.

Bob’s standing policy is

e Bob.team < Bob.team.support

e Bob.alice _delegates <« Hospital.medical _staff N Bob.team

40

The first rule defines Bob’s team as including all the suppersgnnel specified by the
members of his team. In the second rule, Bob uses an intenseote to specify that only
the medical personnel on his team should have access tosAlelical records.

When Bob consults with Carol he ad8®b.team <« Carol to his policy to add
Carol, and indirectly all of Carol's support people, to fearn.

The only part of Carol’s policy relevant to this example ga®ave in hesupport
role: Carol.support + Dave. Finally Dave has a credential from the hospital as-
serting his membership in theedical _staff role. RT, can use these credentials to
prove that Dave is a member Afice.records and thus able to access Alice’s medical

records.

2.4.3 Semantics

The original formal semantics @?1" is based on Datalod-{, Mitchell, and Winsborough
20032. Specifically eactRT credential is translated into a Datalog rule. The meanirgy of
collection of RT credentials is defined in terms of the minimum model of theesponding
Datalog program. In the case of tR'C, Datalog with constraints is useki @nd Mitchell
20033.

The translation fromR1; to Datalog requires only a single predic&®emberto as-
sert when a particular entity is a member of a particular.rol@e translation rules are
shown below where Datalog variables are shown prefixed withto distinguish them

from constants.

1. Ar+—— F

isMembe(E, A, r).

2. Ar +—— B.s

41

isMembe(?x A, r) < isMembe(?x, B, s).

3. Ar<— B.s.t

isMembe(?x, A, r) < isMembe(?y, B, s),isMembe(?x, ?y, t).

4. A.r +—— B].S] Nn---N Bn.Sn
isMembe(?x A, r) < isMembe(?x, By, s1), . ..,isMembe(?x, B, s,).

The authorizer associates a permission with a particular sayA.g, named theyov-
erning role Access is granted t& if and only if the Datalog querysMembe(E, A, g)
succeeds.

An alternative set-theory semantics has also been defimedTg (Li, Winsborough,
and Mitchell 2003. In this semantics each rolé.r is represented as a set of entities
rmem A.r) that are members of that role. For a given set of credergiliese sets are the

least sets satisfying the set of inequalities
{rmem(A.r) D expffrmeni(e) | A.r «<— e € C}

where expirmen(e) is the set of entities in a particular role expressioA role expression

includes both linked roles and intersection roles. In patér:

expirmeni(B) = {B}

expirmenj(A.r) = rmemA.r)

expirmen(A.ry.ry) = U rmem(B.r)
Bermema.r)
exprmeni(fiN---N fi) = [expfrmeni(f;)
1<j<k

The set-theory semantics fdt7;, was developed primarily to provide theoretical sup-
port for a distributed credential chain discovery alganittiLi, Winsborough, and Mitchell
2003. The set-theory semantics facilitate proving soundnessampleteness of that

algorithm.

42

2.4.4 Implementation

Li et al. describe an implementation strategy i, in terms of a construct called a cre-
dential graphG. (Li, Winsborough, and Mitchell 2003 Each node inj. represents a
role expression with directed edges corresponding to eacential. In additiongerived
edgesare added to represent the indirect relationships betwsdes that are introduced by
linked roles and intersections. An entity is a member of a ipland only if, there exists
a path from the entity to the role @. Li et al. prove that credential graphs are sound and
complete with respect to the set-theory semanticB4.

In addition Li et al. describe a distributed credential adiscovery algorithm that finds
a path inG. given initially incomplete credentialdi, Winsborough, and Mitchell 2003
The algorithm assumes that either the issuer or subject oédential can be contacted
on-line and queried for more credentials on demand, an gssmthat may not be true in
an embedded systems context.

The most straightforward implementation 8f; is to simply compute the minimum
model of the Datalog program implied by the union of policgtetnents and credentials
provided by the requester. This can be done by updating retelmerships repeatedly until
a fixed point is reached, a process that is guaranteed tortatenin time polynomial in the

total number of credentiald{and Mitchell 2003

43

Chapter 3

SpartanRPC and Sprocket

This chapter describes SpartanRR&h@pin and Skalka 201@hapin and Skalka 2013
and its implementation in the Sprocket compil€h@pin 2013

SpartanRPC is a dialect of nesC that provides built-in sttpjpo authorized remote
procedure calls. SpartanRPC as a language allows potgemtiahy different forms of ac-
cess control to be used, however Sprocket currently onlpatp the use of th&T, trust
management system. Sprocket also uses radio links to ingplidgnamic wiregas de-
scribed insection 3.4 and thus targets TinyOS and wireless sensor networks. tawe
there is nothing in the design of SpartanRPC that would pdecthe use of other commu-
nications channels.

The use of a trust management system allows embedded dekelapspecify high
level authorization policies that permit different segpudomains to interact without prior
introduction. In a sensor network context this might arideen; for example, the wearer
of a body area network enters a region of space covered byrapoé#tan network. These
networks may have never encountered each other, yet wistcésa sensitive functions,
such as for medical monitoring and control.

Trust management systems use public key cryptography ajiteesome mechanism

44

for evaluating authorization requests in the light of anegsgpolicy (thel. in Figure 2.).
Although the feasibility of using public key cryptography sensor nodes has been shown
by several authorsQupta, Millard, Fung, Zhu, Gura, Eberle, and Shantz 20@&lan,
Welsh, and Smith 20Q8ertoni, Breveglieri, and Venturi 2008umar and Paar 2006&ee,
Sakiyama, Batina, and Verbauwhede 2008 and Ning 2008 Szczechowiak, Oliveira,
Scott, Collier, and Dahab 20p&ombining this with the necessary authorization deaisio
to support a full trust management system, and showing #mealidity and practicality of
doing so on resource constrained devices, has not beepsivdemonstrated. As will be
shown inchapter 6the Sprocket runtime system exacts a significant performaeaalty
on the nodes, particularly with respect to system startue.ti Yet despite this problem

useful work can still be accomplished.

3.1 Overview and Applications

The SpartanRPC language allows network administratorgefioelR7; policies that me-
diate access to specified resources on network nodes. ItaSR&C a resource is user-
defined functionality programmed in an extension of nes@, artessible in RPC style
by client code programmed in the same extension of nesC., Whike previous systems
have explored the problem of establishing multiple segwi@mains in a wireless sensor
network Claycomb and Shin 20)1and others have considered RPCs in sensor networks
(May, Dunning, Dowding, and Hallstrom 200Bergstrom and Pandey 200Reinhardt,
Mogre, and Steinmetz 20)L1SpartanRPC provides a readily-accessible mechanism tha
combines these features. Furthermore, SpartanRPC’s uB&,oéllows specification of
fine-grained, decentralized security policies.

In addition to the first responder application describedhapter 1 various other po-

tential applications of SpartanRPC exist. For examplegtsynchronization is another

45

important sensor network function that is security sevisjtsince many higher-level proto-
cols rely on it. A number of previous authors have considessdire time synchronization
in the presence of “insider” attackMéanzo, Roosta, and Sastry 20@aneriwal, Popper,
Capkun, and Srivastava 2008vhereby nodes within the network may be compromised
and function as malicious actors capable of corrupting tbeopol.

In particular, the FTSP protocol can be attacked by a singhepromised “root” node
injecting false timing information into the networlMénzo, Roosta, and Sastry 2005
even when symmetric keys are used for secure informatiomagge. However, the threat
model in this work treats all nodes in a network as equally m@misable. In cases where
a connected sub-component of a network running an FTSP quio® more resistant to
compromise, due to, e.g., the use of tamper-proof hardveapslicy can be established
whereby only nodes in the most tamper-resistant sub-coemiai the network may func-
tion as roots. FTSP time sync updates on any given node caafined to require a root
authorization level. This implies that nodes requiringusedime synchronization must be
at most a single radio hop from a root node, but nodes willingdcept possibly corrupted
time sync data can extend the network indefinitely. Noteith#tis scenario, SpartanRPC
policies adapt to heterogeneity in network device hardywasenetwork administration as
in the first responder example ahapter 1

Other potential applications of this system include secatging protocols in hetero-
geneous trust environmentsgrlof and Wagner 2003transport and network layer proto-
cols (Perillo and Heinzelman 2005racking protocolsBrooks, Ramanathan, and Sayeed
2003, and even node-based web servers supporting secure théaupta, Millard, Fung,

Zhu, Gura, Eberle, and Shantz 2005

46

3.2 Technical Foundations

Language-Based Security. SpartanRPC provides language-level abstractions for-defin
ing remote services and associated security policies. r@mgers are presented with an
extension of nesC, with new features for defining remotessccentrolled services, and for
invoking those services securely. This hides the impleatent details of the underlying
security protocols and only requires masteryzaf,, a simple authorization logic. Spartan-
RPC programs are compiled in the same manner as nesC progndats the SpartanRPC

compiler rewrites SpartanRPC programs to ordinary nes@.cod

Asynchronous Remote Procedure Call. As other authors have observeddy, Dun-
ning, Dowding, and Hallstrom 200,/RPC is an appropriate abstraction for node services
on the network and supports whole-network (vs. node-spgpifogramming. Secure RPC
is well-studied in a traditional networking environmentdas a natural means of layering
security over a distributed communication abstraction.

It is necessary for RPC invocation in a wireless sensor métwabe asynchronous,
since synchronous call-and-return to a remote node wogildifgiantly impede perfor-
mance in the best case and cause deadlock in the worst. Intoraeinimally impact
the nesC programming model, SpartanRPC defines RPC ingacasi a form ofemote
task Local tasks are units of programmer-defined asynchronoongpatation in nesC, so
treating remote computational services as remote taskkiftparadigm. Remote tasks can
be invoked on one-hop neighbors, providing a link layer meron which network layer

services can be built.

PK-Based Authorization Policies. SpartanRPC provides language-level abstractions for
specifying RPC authorization policies. T trust management system allows network

entities to communicate credentials for authorizing servnvocations. In SpartanRPC

47

these credentials are implemented with ECC public kBgstoni, Breveglieri, and Venturi
2006, which are validated during the initial authorization ppaECC is significantly more
tractable than RSA in a resource constrained setting. €urtbre, following an initial

authorization phase SpartanRPC protocol establishesracsiWdES key for subsequent
invocations of a given service by the same node. Since haedARS is available on
common radio chipsets, highly efficient performance forusednvocations is obtained

following authorization. This is demonstrated with emgatiresults reported ichapter 6

3.3 Duties and Remotability

Because of the slow, unreliable nature of wireless comnatioias it is unrealistic for RPC
services in wireless sensor networks to be synchronousgeddsthe semantics of tasks
are considered a more appropriate abstraction. They arguitetright however, as RPC
services will typically require arguments to be passed—adufe not provided by nesC
tasks—and while the poster of a task defines it, an RPC seirwo&es remotely defined

functionality. SpartanRPC therefore defines a new RPCadigin called aluty.

3.3.1 Syntax and Semantics

Duties are declared in nesC interfaces and syntacticalyméle nesC command declara-
tions. Instead of using the reserved wammrand the new reserved wordiut y is used.
Duties are allowed to take parameters (with restrictiordisissed below) but must return
the typevoi d. For example, the following interface describes an RPCisefer remotely

controlling a collection of LEDs:

i nterface LEDControl {
duty voi d setLeds(uint8_t ctl);

}

48

nodul e LEDControllerC {
provi des renote interface LEDControl;

}

i mpl enent ation {
duty voi d LEDControl.setLeds(uint8_t ctl) { ... }

}

nodul e LoggerC {
uses i nterface LEDControl;

}

i npl enmentation {
void f() { ... post LEDControl.setLeds(42); }

}

Figure 3.1: Duty Implementation and Invocation Examples

Duties are defined in modules in a manner similar to the wgta®mmands, or events
are defined. The reserved watdt y is again used on the definition. Similar to commands
and events the name of the duty is qualified by the name of tiegface in which it is
declared. Including a duty in an interface definition autboadly implies that the interface
can be remotely invoked, or ismotablein the sense formalized subsection 3.3.2Any
remotable interface provided by a component must be spgadieenot e in its provides
specification. The first code samplekigure 3.1shows arLEDControllerC ~ compo-
nent that provides theEDControl interface remotely, i.e., that allows remote nodes to
control LED status lights on a board.

A module on the client node that wishes to use a remote iteganply posts the duty
in the same manner as tasks are posted. The upesif emphasizes the asynchronous
nature of the invocation. An example duty posting is illagéd inFigure 3.1 The standard
component semantics of nesC provide a natural abstractiovhere” the RPC call goes,
just as a normal command invocation will go through a compobimgerface that is discon-
nected from its implementation. Like a normal command iaf@n, configuration wirings

determine where duty control flows. However, in SpartanRB{y thvocation flows to a

49

component residing on a different node. The invoking moduaiest be connected to the
remote modules by way of a dynamic wire as describeskution 3.4

When a duty is posted by a client it may run at some time in tteréuon the server
node. The client node continues at once without waiting lier duty to start, i.e., duty
postings are asynchronous in the same manner that task3raze posted the client has no
direct way to determine the status of the duty. Also, dueeauthreliability of the network a
posted duty may not run at all. The success or failure of aplotying is not signaled to the
client in the implementation just as, for example, the neicer non-receipt of a message
send is not signaled in theMSend protocol in TinyOS. Hence any error semantics for

duty postings must be implemented by the application d@ezlo

3.3.2 Remotable Interfaces

SpartanRPC imposes certain requirements on RPC serviggtides for ease of imple-
mentation. First, since sensor network nodes do not share gassing nesC pointers to
duties is disallowed—such a reference would be meaningles$ise receiving node. Thus

remotable types are defined as follows:

Definition 3.3.1 A type isremotablaf and only if it satisfies the following inductive defini-
tion: The nesC built-in arithmetic types, including enuatam types, are remotable, and

structures containing remotable types are remotable.

Since a remotable interface describes RPC services, sigfaires are required to declare
duties taking only arguments of remotable type; also, rabletinterfaces can only contain

duties, to ensure meaningful remote usage.

Definition 3.3.2 An interface igemotablef and only if it contains only duties, and those

duties have argument types and return types that are rerfeotab

50

3.4 Dynamic Wires

In an ordinary nesC program the “wiring” between componeastslefined by configura-
tions is entirely static. The nesC compiler arranges focatinections and at run time the
code invoked by each called command or signaled event ief@edined.

In a remote procedure call system for distributed embeddeta@ments, especially
those communicating using radio links, this static arramgat is insufficient. A node
cannot, in general, know its neighbors at compilation tiaerather must discover this
information after deployment. In addition, the volatilaywireless links, and of the nodes
themselves, means that a given node’s set of neighborshailige over time. This section
discusses the facility in SpartanRPC to alldynamic wiringsfor control flow from duty
invocation via remotable interfaces to duty implementatioherein the programmer has

control over wiring endpoints and how they may change dupiiogiram execution.

3.4.1 Component IDs, Component Managers

The discussion begins with how remote components are fashfor wiring. In order to
uniquely identify components on a network of devices, rexblgt components are specified
via a two-element structure called@amponent_id defined on the left side dfigure 3.2
Thenode_id member is the same node ID used by TinyOS and is set when thee nod
is programmed during deployment. The local ID member is dnitrary value defined
by the programmer of the server node. Only components tleaviaible remotely need
to have ID values assigned, however, the ID values must bguamin the node The
component_set structure defined on the right side Bigure 3.2wraps an arbitrary
array ofcomponent_id values.

A component manages a component that provides t®mponentManager inter-

face defined at the bottom &igure 3.2 It dynamically specifies a set of component IDs

51

t ypedef struct { t ypedef struct {

uintlé t node_id; i nt count;
uint8_t local_id; component_id *ids;
} component_id; } component_set;

i nt erf ace ComponentManager {
command component_set elements();

}

Figure 3.2: Component Manager Interface and Type Definitions

that ultimately serve as dynamic wiring endpoints.

As a simple example, consider the component mandgeroteSelectorC as shown
in Figure 3.3 This example component manager always returns a compseiaeuntaining
a single component. However, in general, multiple comptsen neighboring (one-hop)
nodes could be selected. Hence dynamic wires are inher@ntlylti-cast communication
channel. In a more complex example the component managdd wompute the compo-
nent set each time the dynamic wire is used, filling in an anfagjomponent IDs based on

information gathered earlier in the node’s lifetime.

3.4.2 Syntax and Semantics

In SpartanRPC the syntax and semantics of nesC is extenddiduothe target of a con-
nection to be dynamically specified by a component managee. syntax of wirings, or
connections, is extended as follows:
connection ::= endpoint '->" dynamic_endpoint
dynamic_endpoint ::= ‘[IDENTIFIER '] (." IDENTIFIER)
Given a dynamic wiring of the forn€.l - >[RC].I , its semantics are informally

summarized as follows. FirsRCis statically required to be a component manager, and

52

nodul e RemoteSelectorC {
provi des interface ComponentManager;
}

i mpl enment ati on {
/I OXFFFF is the special broadcast address.
/I Local component #1 on each node selected.
component_id broadcast = { OxFFFF, 1 };
component_set broadcast _set = { 1, &broadcast };

command component_set ComponentManager.elements() {
return broadcast set;

}
}

Figure 3.3: Example Component Manager

| must be remotable. At run time, if control flows across thisewiia posting of some
dutyl.d within C, the commanelements in RCis called to obtain a set of component
IDs. The duties.d provided by those remote components will then be postedehdbt
nodes via an underlying link layer communication, the det#iwhich are hidden from the
SpartanRPC programmer. Thus, duties can only be postedighboes. Note that since
this call toelements may return more than one component ID, this is a sort of fan-ou
wiring.

For example, théoggerC component mentioned iRigure 3.1could be wired by the
programmer to LED controller components on a dynamicalbngfing subset of neighbors

using a configuration such as:
LoggerC.LEDControl - > [RemoteSelectorC].LEDControl;

The server’s configuration does not need to wire anythindgpéorémote interface ex-

plicitly.

53

3.4.3 Callbacks and First-Class IDs

It is assumed that the component IDs for well known servic#ishe agreed upon ahead
of time by a social process outside of SpartanRPC. By braidcato a “well known”
component ID, a node can use services on neighboring nodlesuwknowing their node
IDs. The use of well known ID values is analogous to the use @f known TCP port
numbers to provide easily accessible Internet services.

If a node expects a reply from a service that it invokes, tkieking node must set up a
component with a suitable remote interface to receive thacgss result. In SpartanRPC
remote invocations can only transmit information in onediion. Bidirectional data flow
requires separate dynamic wires. This design provides waldsplit-phase” semantic
wherein the invoker of a service can continue executingewvaiting for the result of that
service, a common idiom for nesC programming. For instaacggrvice might require
the client to provide the node ID and component ID of the conemd that will receive the
service result as arguments to the service invocation. €hescould store those values
for use by a server-side component manager. It is permitted Eomponent to be its own
component manager making it easy for a service to returrudt lIBsposting the appropriate
duty.

For example, assume that the LED controller on the servarngthe old state of the
LEDs whenever the LED value is changed. The server configuratould include an

appropriate dynamic wire as follows
LEDControllerC.LEDResult -> [LEDControllerC].LEDResult;

The client must provide the LEDResult interface remotelydoeive this result. In
this example the_.EDControllerC ~ component is its own component manager. This
makes it easy for thelements command to access global data that was recorded in-

sideLEDControllerC ~ when the service it provides was previously invoked. Thia is

54

common SpartanRPC idiom.

3.5 Security Policy Specification

This section discusses how to extend the language settsugilded previously with secu-
rity features. The goal is a language framework where RP@cssr require authorization
for use, and where authorization policies support collatbon between multiple social do-
mains. The authorization model can be viewed as a clienes@nteraction; respective

sides of the interaction protocol are summarized sepgrassiollows.

3.5.1 RPC Server Side Logic

RPC service providers establish policy by assigning gaugnolesA. g to remote interface
implementations. Service providers also possess a setsafresl credential§, which
establish an authorization environment including, pesh@pt not necessarily), the access
policy. As will be described in detail, the sétmay grow as additional credentials are
communicated to servers. Finally, in the presence of sgcwtient invocations of any
RPC service are not anonymous, but are performed on behaliroé entityB, which
must be a member of the governing ralg; to use the protected service.

In summary, access to an RPC level is allowed if and only ifttupertyC - B € A.g

holds, where:
e B is the identity of the RPC client.
e A.gis the governing role of the RPC service.

e C are the credentials known to the RPC server.

55

RPC service programmers specify governing roles as partoofule definitions, specifi-
cally at remote interfacpr ovi des clauses. Hence, governing roles are associated with
interfaceimplementationsnot interfaces themselves. This allows application fldixyh

in that the same interface can be implemented with variotiwauzation levels within the

same network. Syntax is as follows:
provides renote interface I requires Ag

Note the minor modification to previously introduced syrfiaxremote module defini-

tions, via ther equi r es keyword.

3.5.2 RPC Client Side Logic

In order to use a secure remote module, RPC clients wire sdfdrainsecured modules (see
subsection 3.4)2 but with two additional capabilities: (1) the client sgexs under what
RT entity the invocations will be performed, and (2) the clietgty also specify credentials

in their possession which are to be activated for use in tacation. Syntax is as follows:
activate "Cy,...,C," as "B" for CIl -> [M]J

For any invocation made through this wiring the credentials. . ., C,, will be remotely
added to the RPC server’s authorization environment foathtborization decision, via a
process detailed isection 3.6 Note that these credentiaiseed not establish authorization
entirely by themselvesather they will beaddedto the server’s existing credentials, all of
which will be used in the authorization decision. A speciaihi of theenabl e clause us-
ing" =" for the list of credentials is also supported. This form aades that all credentials
known to the client should be communicated to the server.

Each node is deployed with a collection of ECC key pairs, areetich entity the

node represents. When an invocation is made the eBtitgentioned in theas clause

56

of the dynamic wire is used in the request. Td® clause is optional; if it is omitted a

distinguishedlefault entityis used for the invocation.

3.5.3 Example

Suppose that an existing network deploymietA is imaged with a component called
SamplingRateC which provides a means to control sampling rates throughmten-i
face such aSamplingRate . Further, since sampling rate modification is a sensitive
operation, the network administrators requietA.control authorization to use this

component:

nmodul e SamplingRateC {
provi des renote
i nterface SamplingRate requires "NetA.control”

}

Any node supporting this component will transparently neze?1” credentials from
neighboring nodes and attempt to use those credentialgabliek that each client entity
is a member of th&letA.control role in the formal sense described above.

Suppose also that nodesNietA are deployed with the credential
NetA.control +— WSNAdmin.control

Here the roleWSNAdmin.control is administered by some overarching network au-
thority. However, this authority need not be physicallyegent” in the network during
operation. Instead the credential above repred¢eta ’s access control policy: any entity
blessed by SNAdminas a controller can contrdletA .

Suppose further that another subnet, caNedB , wishes to modify the sampling rate
of NetA . Anode inNetB might be imaged with the following credentials, among palgsi

others:

57

activate
"WSNAdmin.control <- NetB.control,
NetB.control <- NetB" as "NetB"
for
ClientC.SamplingRate - > [RemoteSelectorC].SamplingRate;

Figure 3.4: Security Enabled Dynamic Wire

WSNAdmin.control + NetB.control (3.1)
NetB.control + NetB (3.2)

Note that credential (1) is issued by théSNAdminauthority, while credential (2) is
issued byNetB . Critically, direct communication witiNetA authorities to obtain these
credentials is unnecessary.

In order to invoke this service the wiring as showrfFigure 3.4could be made on the
client side. Note the activation of the necessary credenta well as the specification of

client identity asNetB .

3.6 The SpartanRPC Implementation

This section describes the Sprocket implementation of gat&8nRPC system usingl;
trust management for authorization. Sprocket rewritesat&8pRPC program into a pure
nesC program and provides a supporting runtime system.rédrogewriting converts re-
mote duty postings into a nesC messaging protocol. The raakdf the runtime system
is to implement the encapsulated, underlying securityquas for authorization of remote

duty postings.

58

3.6.1 Authorization and Security Protocols

Sprocket implements SpartanRPC authorization using a ic@tibn of public and sym-
metric key cryptography. The TinyECC librarkig and Ning 2008 was used for public
key functionality, and AES encryption for symmetric key @tionality. TinyECC uses
elliptic curve cryptography for more efficient public keyeygtions in sensor networks.
Using AES has the benefit of hardware support on many currebedded platforms, e.g.,
those employing the Chipcon CC2420 radio.

There are three security protocols for authorized dutyipgstillustrated irFigure 3.5
each operating asynchronously. First, a credential exgghprotocol, whereitRT" creden-
tials are communicated between nodes and authorizatiomfaus entities are computed,
i.e., theminimum modehs described isection 3.5 Second, a session key negotiation
protocol, where symmetric keys for multiple authorizedvess invocations between a
duty client and server are computed. And third, an authdrsgrvice invocation proto-
col, wherein duty posting requests are checked to ensurappepriate authorizations.
This decomposition of authorized service invocation iriceeé protocols supports effi-
ciency especially through the use of symmetric keys for iplgltservice invocations. Its

asynchronous nature is also appropriate in an asynchrdnoy®S setting.

Credential Exchange

SpartanRPC credentials are implemented as signed cadsficAll SpartanRPC-enabled
nodes contain a certificate sender component and a cedifeegiver component, to trans-
fer certificates between nodes and to verify them and ineerie credentials they rep-
resent. Both components run as background daemons. A BR&Gxenabled node is
deployed with a collection of certificates in read-only atge representing that node’s cre-

dentials, which are determined by some external means. @wcaode is booted, the

59

| | | |
| [Certificate| |, Certificates | [Certificate]
| L [|
i Sender i i Receiver i
| : L (Ko, G, 1) | : |
. |Session Key__. Lo Session Key |
| | | |
| | | . |
i Sender ™ i (Kap, C, 1) i Receiver i
| | Post + MAC | i
| Client : = Server :
| l | l
| | | |
L - . L - .
Node A Node B

Figure 3.5: SpartanRPC Security Protocol Elements

certificate sender starts a periodic timer. When the times fithe node link-layer broad-
casts (i.e., only to neighbors) all certificates in its diedie storage that are mentioned in
theenabl e clauses in its program. To prevent adjacent node certifluatadcasts from
colliding, the certificate broadcast interval is modulataadomly by+10%. For example

if the nominal broadcast interval is one minute, the actimaétvaries randomly between
54 and 66 seconds.

The certificate distribution strategy is robust in the fateew nodes being added to the
network or intermittent radio connectivity. If a node fditsreceive certain certificates from
its neighbors it will have another opportunity to do so whiease neighbors rebroadcast
their certificates. There is a trade off between the broddotesval, responsiveness, and
network energy consumption. A short broadcast intervalalauthorizations to succeed
“quickly” since neighbors become aware of the necessaerrigals early, but at the cost
of increased radio traffic and power consumption.

Once a newly received certificate has been verified, the otiedlé represents is ex-
tracted and stored. The credential storage also contan®h minimum model implied

by the currently known collection of credentials. Each timeew credential is added to

60

Ar<+ BsnC.it
41 A@OQ) |r| B@0) |s| C(40) |t | sig(42)| chk(2)

Figure 3.6: Intersection Certificate Format (parenthesized numbelisate byte counts)

storage, the minimum model is updated. This is done by redaapplying authorization
logic inference rules implied by the credentials to the entrmodel until a fixed point is
reached, i.e., a logical closurki @nd Mitchell 20033 Thus, each node maintains a local
view of authorization levels for network entities based eceived credentials.

The certificate representation of &1i’ credential contains the public keys denoting
entities mentioned in the credential. Roles are identifigde byte numeric codes and
are scoped by the entity defining the role. Credential forradéstinguished by numbers
{1,2,3,4}. Certificates are also signed by their issuing authoritynw@aiently, the issuing
authority is always mentioned in a credential (e.g., thaeirggauthority ofA.r «— B is
A) so the public key required to verify the certificate is alwaycluded with it for free.
This does not introduce a security problem. Since entitieddentified directly by their
keys, an attacker who creates a new key is simply creatingvaengty.

The over-the-air format for the intersection certificatdlisstrated inFigure 3.6 The
other certificate forms are organized in a similar way. @edies range in size from 124
bytes for the membership credential to 166 bytes for thesetdion credential. This is
larger than the maximum payload size limit of TinyOS T-Frahotive Message packets as
transported by IEEE 802.15.8¢ciety 2003Hui, Levis, and Moss 20081t is much larger
than the default maximum payload size of 28 bytes used byd8.evis). Consequently
the certificates are fragmented into four messages reguarmaximum payload size of 43
bytes. Notice that SpartanRPC limits intersection rolegisb two subroles and does not
allow an arbitrary number of subroles as describedention 2.4 This does not limit

expressivity because intermediate roles can be defineddssary.

61

Message fragments are sent back to back with a 200 ms delagdreeach to allow the
receiver time to assemble them. Fragments are sent in oittenw fragment identifiers.
To stay synchronized with the sender, receivers expectdeive all the fragments in a
timely manner. If a fragment is not received within 750 msha previous fragment, the
partial certificate is discarded on the assumption thatxpeaed fragment was lost.

Verification of RT certificates is the most computationally expensive compbookthe
system as discussed subsection 6.2.2Thus, it is important to minimize the amount of
effort spent on verification. To this end, a 16-bit Fletchkeeaksum is appended to each
certificate to ensure integrity over unreliable channelsoAnodes maintain a database of
certificate checksums, to quickly check whether a certéitats already been received and
verified. Fletcher checksums are commonly used in sensworks and other embedded
systems since their error detection properties are alnsagt@d as CRCs with significantly
reduced software computational coBlgtcher 1982

Currently certificates carry no lifetime information an@ @onsidered to be valid for-
ever. This is not ideal since a certificate issuer may evdéigtahange his/her policy but
currently has no way to revoke old certificates. Howeverjragld feature for certificate
revocation introduces non-monotonicity into the semantitthe authorization logic.{
and Feigenbaum 200Rivest 1998l Adding an expiration time to the certificates is more
logically appealing but would require nodes to support tieaé services and some degree
of time synchronization. This is a non-trivial extensionlod basic system that was beyond

the scope of this work.

Session Key Negotiation

Public key cryptography is much too computationally expenso use for authorizing
routine duty postings. Sprocket’s run time system addeeiEs by negotiating session

keys between the client and server nodéggure 3.7shows the session key processing

62

architecture of a node.

Reques? l Reply Repfyl Request

Sender Receiver

\/

SessionKeyStorags

A1

Figure 3.7: Session Key Processing Architecture

The client maintains a session key storage that is indexedebiriple(NV, C, I') where
N is the remote node I, is the remote component ID, arids the remote interface ID. A
session key is thus created for each combination of theseTlDs server also maintains a
session key storage indexed @y, C, I). In this caseV is the node ID of the client and,
I are the component and interface IDs on the server to whidltlileat is communicating.
Since any given node can be both server and client, eacloedssy storage entry has a
flag to indicate the nature (client-side or server-sidehefdession key.

The first time a client attempts to access a service on a pkatiserver, it will send
a session key negotiation request as shown in the middlepat Figure 3.5 When a
server receives a session key negotiation request messagea tlient nodeV containing
the public keyK, of the requesting entity (as mentioned in te clause of the dynamic

wire) and the(C, 1) address of the desired service, the following steps aretake

1. Authorization of K, for service(C, I) is checked using th&7" minimum model

computed by the certificate receiver. If authorizationsfaibthing more is done.

2. A session key is computed using elliptic curve Diffie-Hellhmieey agreement and
added to the session key storage under the progef’, I) value. The key is stored
as a remote client key.

3. A message is returned to the client containing the serveidipkey K, and the

63

original (IV, C, I') values used by the client. This is so the client is able to agmp

the same session key and associate it with the proper endpwinits perspective.

The session key negotiation protocol is a simple Diffie-kelh key agreement proto-
col that combines the public key of the peer entity with thiggie key of the local entity.
The implementation does not include any nonces as would be, dor example, with the
ECMQYV protocol (SO 2009. As a result any renegotiated session keys between the same
entities would be identical. However, this is not a seriorgbfem because the implemen-
tation does not currently renegotiate session keys anyfaghermore the ECMQV pro-
tocol entails three exchanged messages and additionalutatigqms and so would further
increase the burden on the nodes.

A potentially more serious concern is that the simple protaescribed here would
normally be vulnerable to a man in the middle attack wherebgaive attacker negotiates
independent session keys with each peer and is then abledilymtessages sent between
those peers. However, in &il’ trust management context this is not a concern because
authorization is entirely based on key rather than on angtigebound to that key. An
active man in the middle who creates a “bogus” key would synpg creating a new and
presummably unauthorize@ll” entity.

The session key negotiation protocol described here ala@ygputes the same session
key between noded’, and N for the same requesting entity. This is also not a problem
since the server node usgs, /) to look up the session key in its storageNf previously
negotiated a session key wil¥y; for service(C', I;), an attempt byV4 to use that session
key to access an unauthorized servi¢g, I,) will fail because the server has no entry
for (N4, Cs, I5) in its session key storage. In fact, this design creates @émization
opportunity calledsession key stealinghere, in the case of a successful authorization for

(Cs, 1), a previously computed session key {6k, 7;) can simply be copied by the server

64

Node ID Compgnent ID

Interface ID” %, /
L ln args MAC :
n Components n Components

Figure 3.8: Duty Post Message

from (Ny4, C1, ;) to (N4, Cy, I5) without being recomputed. However, at the time of this

writing Sprocket does not implement session key stealing.

Authorized RPC Invocations

Authorized RPC invocations are made using message authgaoti codes (MACs) on in-
vocation messages, created with AES session keys. Veficat a MAC for a particular
service on the receiver side constitutes authorizatiomesa session key for a particular
client and service is negotiated only after client creddstiave been collected and verified
that establish the appropriate authorization for the serfigure 3.8shows the format of
authorized invocation request messages.

Since invocation of an RPC service on multiple hosts can keeerafionce in a fan-out
wiring (seesection 3.4, a single invocation request message may apply to mukgieers
in the neighborhood of the client. To conserve bandwidth;dat invocation messages
include multiple MACs, since separate session keys aretiago with each of. servers,
allowing a single message to invoke the same service on thierself the duty arguments
consumed bytes of data, then invocation messages consimen + d + 4n bytes. In
practice this puts significant restrictions on the amournadé that can be passed to duties.

As described above this implementation uses a 43 byte megsadoad for sending
certificate fragments. Experience suggests that usingatine payload size for invocation
messages allows for reasonable values of Bahdn.

Alternatively an implementation could send multiple ination messages with one for

65

each server, reducing the number of MACs required on eaclsageso one. However,
that greatly increases radio traffic since the duty argumant active message overhead
must be duplicated for each message.

To conserve space in the invocation messages, only a 32 b@ MAised. Such a
small MAC would not normally be considered secure. Howewagless sensor networks
generate data so slowly that attacking even such a short MA®t considered feasible
(Karlof, Sastry, and Wagner 2004uk, Mezzour, Perrig, and Gligor 20D7Nevertheless,

in other environments a larger MAC may be necessary furti@easing message size.

Security Properties

It must be stressed that this scheme is intended to enfother&ation, which is achieved
via the protocols described above. Integrity is a side efdécthis, since MACs are used
to enforce authorization, which are computed over compieéssage payloads and are
verified by the receiver. Although confidentiality is noteditly supported by the current
system, it could be easily added. In particular payload$idoeiencrypted using negotiated
session keys (payloads are currently sent as plaintext).

Sprocket does not provide any form of replay protection duhe box, but this can
be added at the application level. For example an applicatiald pass a counter as an
additional duty argument. The server could verify that thent increases monotonically
as a simple form of replay protection. Delegating replaytgrtion to the application is
appropriate since SpartanRPC is intended to be a low lefralsinucture on which more
complex systems can be built. Furthermore the need forygplatection is likely to be
application specific.

Perhaps the most problematic vulnerability of this systeto denial of service attacks.
It is not clear how these could be mitigated without significehanges to the underlying

security protocols. For example, a constant flood of ceatiéis over the correct active

66

message channel would place receiving nodes in a constaata$tECC digital signature

verification, potentially consuming large amounts of CPidetiand energy. Mitigation

(Raymond and Midkiff 2008

A note on multicast security. Fan-out wirings are a common idiom, and provide a form
of multicast communication. However, the use of MACs forséyg in a multicast setting
presents well-known challenges. In particular, whilgvay Diffie-Hellman can be used
to negotiate secret keys betweeractors, such a scheme cannot be used in light of the
possibly heterogeneous authorization requirementsipatedd. For instance, suppose a
node A fan-out wires to service on distinct nodes3 and ', and suppose also thait

is authorized fors on both nodes but thd® is not authorized fox on C' and vice-versa.

If a single session key were negotiated betwden3, andC' in this case, therB could
make unauthorized use 6fs version ofs and vice-versa. While a variety of techniques
have been proposed to mitigate this problé€arfetti, Garay, Itkis, Micciancio, Naor, and
Pinkas 1998 most typically rely on very large multicast groups and aoé applicable in

a wireless sensor network setting. Thus, fan-out wiringsrasltiple, independent MACs

as described above.

3.6.2 Identifying Services Over the Air

RPC service endpoints are identified by the 4-tupfe C, I, D) whereN is the TinyOS
ID of the node on which a duty is implemented.is the local component ID assigned to
each component that provides a remotable interfags.an interface 1D, required since a
component may provide more than one remotable interfaterféce IDs are component-
level unique. FinallyD is a duty ID, which must be interface-level unique.

In the current version of Sprockét,, I) values are assigned statically by an arbitrary

67

(automated or social) process. Sprocket accepts configuides that define the associa-
tion betweenC, I) values and the entities to which they refer. Duties are nuethia the
order in which they appear in their enclosing interface di@dins.

Some RPC systems, such as ONC RPC, allow each node to proredestry of RPC
services available on that nod8r{nivasan 1995 When a large number of RPC services
are provided by a node it becomes unreasonable to expeuisdtehave hard coded knowl-
edge of the endpoint identifiers for all those services easiclients communicate with the
single well known registry to obtain endpoint identifieratthvere dynamically assigned.
In contrast it is assumed this configuration informationnswn a priori to all interacting
actors. It is unclear how many embedded systems could bémefita more sophisticated
technique for defining and communicating endpoint idemsfibut it would be an interest-

ing topic for future work.

3.6.3 Rewriting SpartanRPC to nesC

Sprocket rewrites five major features from SpartanRPC t&neserface definitions, call
sites where remote services are invoked, duty definitioyrsahic wires, and server com-
ponents providing remote interfaces. Additionally, Sgueicgenerates a stub component
for each dynamic wire, and a skeleton component for each teeinterface. Finally,
Sprocket generates configurations that wrap server compandhe following summa-

rizes rewriting strategies for these features.

Interfaces, Call Sites, and Duty Definitions

Duty declarations in interfaces are rewritten to commandagations by substituting the
reserved wora@onmand for the reserved wordut y. Since nesC commands are allowed

to have arbitrary parameters, duties with parameters pregecomplications. Sprocket

68

verifies that if an interface contains a duty, then the onlglalations in that interface are
duties. Sprocket further verifies that the parameters df elaty, if any, conform to the
restrictions described isubsection 3.3.2

Call sites where duties are posted are rewritten to commmaadations by substituting
cal | for post. Only post operations applied to duties are rewritten ia Way. Finally,
duty definitions are rewritten to command definitions by asbstitutingconmand for

duty.

Authorization Interfaces

The rewriting process makes use of two interfaces that rteetha interaction between the
Sprocket generated code and the security processing canisoof the run-time system.
Figure 3.9shows how a message, entering from the left, is extended awithorization

information by the client and then passed to the server wtherauthorization information

is checked.
Client Authorizer Server Authorizer
ACNuUIIC ACRTOC ASNulIC ASRTOC
AuthorizationClient AuthorizationServer
- i B — —— -
(interface) (interface)

Figure 3.9: Client/Server Authorization Architecture

The AuthorizationClient interface abstracts the details of how an authorized
message is prepared before being sent. AtitborizationServer interface abstracts
the details of how authorized messages are processedladteate received. This design
allows for pluggable authorization mechanisms. Futursives of Sprocket could support,

in a modular fashion, other authorization schemes tharettlescribed here.

69

The authorization interfaces provide their services inld-ppase manner so that po-
tentially long-running authorization computations cangezformed while allowing the
node to continue other functions. In the current implemigomatwo kinds of authorization
are supported. On the client side the precise method useshdsmn the dynamic wire
over which a particular communication takes place. On tieeseside it depends on the
presence of aequi r es clause on the remotely provided interface.

The full RT, mechanism is supported by client and server compor®@RTO0Cand
ASRTOCrespectively. In addition a “null” authorization is supfed by client and server
componentACNuUlIC and ASNulIC respectively. The null authorization components
perform no operation. They are used for dynamic wires thataaequire authorization

and remote interfaces provided publicly by servers.

Dynamic Wires

In the following, italics are employed for metavariableatthange over arbitrary identi-
fiers. The reader is referred to the rewriting schema defim&tgure 3.10 Configurations
containing dynamic wires are rewritten to configuratiorag gtatically wire the using com-
ponentCl i ent C to a stubSpkt _n that interacts with the appropriate component man-
agerSel ect or C and that handles the communication channel. Every stubrgiueby
Sprocket is uniquely identified over the scope of the entiogam by an arbitrary inte-
gern. TheAut hori zer Ccomponent iACNullC in the case where no authorization is
requested.

In contrast, a dynamic wire using either@nabl e or as clause is rewritten the same
way except that théut hor i zer C component iACRTOC Furthermore, the list of en-
abled credentials is added to local certificate storage bycRpt. Certificates in storage are
periodically beaconed at run-time as described above llfitize entity on whose behalf

the RPC invocation is performed is specified in the sessigm&gotiation message sent to

70

Dynamic Wire
ClientC.l -> [SelectorC]. I;

Rewritten as. . .
conmponents Spkt_ n;
CientC. I -> Spkt_n;
Spkt_ n.ComponentManager -> Sel ect or C;
Spkt_ n.AuthorizationClient -> Aut hori zer C;
Spkt_ n.Packet -> AMSenderC;
Spkt_ n.AMSend -> AMSenderC;

Figure 3.10: Dynamic Wire Rewriting

the server, also as described above.

TheSpkt _n stub provides the same interface providedby ent C. Wherever a duty
is posted byCl i ent Cin source code, the rewritten call invokes code in the stabwlas
specialized to handle that duty. The stub calls into the aorept manager at run time to
obtain a list of the dynamic wire’s endpoints and then prepar data packet containing
remote endpoint addresses and marshaled duty argumengdlyFihe stub calls through

the AuthorizationClient interface to perform whatever authorization is needed.

Remote Services

For nodes supporting RPC services, Sprocket generatesletsskeomponent for each
remote interface providedFigure 3.11shows the form of a generated skeleton for an
interfacel providing a single dutyl that takes a single integer parameter. This is for
purposes of illustration; the scheme is generalized in afools manner. In general, the
skeleton contains a task corresponding to each duty pravidéhe interface, and every
generated skeleton is distinguished by a unique integaken from the same numbering
space as the generated stubs.

When messages are received on a node that provides RPCesertliey are exam-

71

Server Component
nodul e Server C {
provi des renote interface | requires "A g";
ot her (local) uses/provides

}

Skeleton generated as. . .
nodul e Spkt_n {
uses interface |;
uses i nterface Receive,
uses i nterface AuthorizationServer,;

}

i mpl enment ati on {

int val ue_l;

task void d() {
call 1.d(valuel);

}

event message t =*Receive.receive(...) {

}
}

Figure 3.11: Server Skeleton Generation

ined to see if they are duty postings and thus to be handled skeketon. If so, the
AuthorizationServer interface is used to authorize the message. If authorizatio
succeeds, the task corresponding to the specified dutytiegobhat task simply calls into
Ser ver C through the original interfack. Thus the task-like behavior of duties is ulti-
mately implemented using actual nesC tasks inside the rsgkeéetons. Duty parameters
are conveyed via module-level variables accessed by thetdsits (since nesC tasks do
not take formal arguments).

For each component that provides at least one remote iogrigprocket creates a

configuration as shown iRigure 3.12Zhat wires the corresponding skeleton(s) to that com-

72

configuration ServerC_SpktC {
ot her (local) uses/provides
}
i mpl enment ation {
conmponents ServerC, Spkt_ n;
Spkt_n.l -> ServerC;
Spkt_ n.Receive -> AMReceiverC;
Spkt_ n.AuthorizationServer -> Aut hori zer C;
pass | ocal uses/provides directly to ServerC

}
Figure 3.12: Server Skeleton Wiring

ponent. This new configuration wraps the original comporaamt replaces uses of the
original component in other configurations in the program.

In this Figure, as is the case for client-side code, ¢ hor i zer C component is
eitherASRTOCor ASNulIC depending on whether the original remote interface specifie

authorization or not.

73

Chapter 4

DScalaness/DnesT

This chapter describes a staged programming system supptype safe dynamic code
generation for resource constrained embedded devices sy$iiem features programming
abstractions for specializing device code and allowindrafly adaptation to current de-
vice deployment conditions. The system has been implerdeagean extension to Scala
(Odersky, Spoon, and Venners 2Q1through modification of the Scala compiler.
Specific consideration is given to scenarios where a relgtpowerful hub device can
automatically combine dynamically specialized librargesd deploy them to a wireless
sensor network using some over-the-air deployment metiddas DelugeHui and Culler
2004). To this end a restricted form of staginfaha and Sheard 199¥aha 2004Consel,
Hornof, Marlet, Muller, Thibault, Volanschi, Lawall, andayié 1998 is used to achieve
well founded dynamic program generatiofirst stagecode is written in an extended
version of Scala, called Scalaness which is programmaerdiyeand suitable for running
on powerful hubs. The execution of a Scalaness programsyeeleksiduakecond stage
node program written in nesT, a type safe variant of the neeGramming language. The
second stage program is constructed from module compotreatsed as first class values,

which may be type and value specialized during the coursesbfsiage computation.

74

Stage 1 Stage 2

(| 1

Scalaness (Stage 1)
Computation .
Result \ Rewrite O Source Cod
ifi e -
e Samec x D Compiler
Scala [/ \.-

O Execution Environment

o]

7.

Compiler
S~ 1/0 with user =7 o
and/or WSN —> Parse
In Lab In Lab, or in situ on Hub In situ on Motes

Figure 4.1: Scalaness/nesT Compilation and Execution Model

Figure 4.1provides an overview of the Scalaness/nesT language ectlnie. Scalaness
source code is compiled in a modified Scala compiler to Jatecbge, and run in a stan-
dard JVM. At runtime this Scalaness program may generaté oede, which is subse-
guently rewritten to nesC and compiled using the standarg$ compiler. The resulting
image can then be installed on sensor network nodes.

Since the Scalaness program has at its disposal the resandefeatures of the full
Scala environment, including the JVM and its associatedlibs, there are few limitations
imposed on the first stage program. It could, at the prograrsmption, generate separate
images for each node on the sensor network or regeneratedecimages at a later time
to account for evolving network behavior.

Another interesting feature of the architecture, captumeligure 4.1 is the physical
platform on which different elements of the Scalaness/rfe®rkflow” may be executed.
Scalaness source code will typically be compiled in the paior to deployment but execu-
tion of the Scalaness program may be done on a separate detheefield where the user
will not be in a position to fix type errors in the generated ges:

Consequently a central contribution of Scalaness is digiie safety. In particular, the

75

Scalaness type system ensures that typeable Scalanessnpsogill always generate type
safe residual nesT program. Since type generalizatiotoiwed to be cross-stage, the tech-
nology supports a novel form of cross-stage type spectaizaln existing strongly typed
staged sensor programming environments the type corssctrfesecond stage programs
must be verified after execution of first stage cddiaifland, Morrisett, and Welsh 20D8
and could in fact produce an error which would invalidatedeployment. Such type er-
rors are always caught at first stage compilation time witl@wss. Previous work on the
staged programming calculyML) (Liu, Skalka, and Smith 2032rovides a theoretical
foundation for Scalaness/nesT type safety.

Both Scala and nesC are complex, industrial strength lagegiaNeither of them are
fully formalized. Thus in order to effectively study the S@ess/nesT staged programming
system, it is useful to consider simplified or “distilled”rgeons of those languages. Here,
the names Scalaness and nesT refer to the languages as enpdeimwhileDScalaness
and DnesTrefer to the distilled languages studied theoretically.e Timplementation is

described in more detail ichapter 5 The distilled languages are described in this chapter.

4.1 Overview of DScalaness/DnesT Design

The goal of DScalaness/DnesT is to describe a practicarpnoging system for writing
arbitrary embedded applications. In that respect it is gereeral than SpartanRPC, which
focuses on the specific problems of providing a convenier@ BRcpline together with
language level features for controlling resource accaessontrast, authorization is only
one application of many to which Scalaness/nesT could bkeabp

Scala is an appropriate choice as a basis for the first stagedge because its compiler
is open source and easy to modify and maintain. Also Scak&x# rich, flexible, and

user friendly set of features familiar to application pragmers working in traditional

76

(desktop, server) environments. Finally, Scala has ameagier community with a growing
collection of tools and other supporting resources.

However, Scala is not appropriate in the extremely resatoostrained environment of
a sensor network node or other small embedded system. IrasbnesT is implemented
by translation into nesC, which can in turn be compiled faryOS platforms. The nesT
language is roughly (although not exactly) a subset of nesCshares with nesC many
features appropriate for embedded systems programming.

DScalaness and DnesT will be demonstrated via an examplditisérates both type
and value specialization of DnesT modules. Although thergta is small it nevertheless
demonstrates the essential features of the system in agigg@manner.

It is well known that minimizing the number of bits used to regent a sensor node
address can produce significant energy savings. Each bardrhission consumes energy
similar to 800 instructionsMadden, Franklin, Hellerstein, and Hong 20@® the fewer
bits transmitted the better. However, sensor networksaaédc” in the sense that the dis-
tribution of the nodes is often unpredictable until depley) so the optimal data type used
to represent node addresses is an environmental propattynty need to be determined
in situ.

The example also value specializes DnesT modules withfgpeession keys for use
during secure communication. In particular, as with SpeRR2C, communication between
security domains in a sensor network can be mediated bymtiatieimplemented as keys,
with nodes lying at domain frontiers using different keyssend (to the other domain)
and receive (from the other domain) over secured links. eSihts unpredictable where
nodes will be physically distributed in space, approprisgs for each node need to be
establishedh situ. Defining node functionality using generic code that mushis&antiated
with specific keys allows adaptation to a deployment envirent, and allows expensive

computations for establishing session keys to be offloadmd the network nodes to a

77

higher powered device.

Figure 4.2shows the complete example. The definition begins with anpeterized
typemesgT(t) using the DScalanes®brvt binder, where an instaneesgT(7) denotes
the ground type obtained by substitutingor t in the definition ofmesgT.

Next, on line3 defines a typeadioT, which is the type of DnesT modules that provide
an API to the radio. The DnesT module language is a simplifezdign of the nesC com-
ponent language. In this example, any module of tigodioT exports aradio_x function
for sending messages, and importsaadle radio_r function that allows received mes-
sages to be handled in a user-defined manner. Both funca&esnessage references as
arguments. Furthermore, the module is parameterized biypeeof node addresses,
upper-bounded by 32-bit unsigned integer. Thus, any moafulype radioT can be dy-
namically specialized to an 8, 16, or 32 bit address spacedulMaype parameters are
always defined with brackets ... >.

Now on line7 another typecommT is defined which is the type of modules providing a
QOS layer over a specialized radio. Although this type ie plsrameterized by a bounded
address typet, as isradioT, the parameterization is subtly different syntacticaihda
semantically, sinceommT expects a program context where the radio has been spedializ
Thus, incommT, at is understood as being “some” type with an upper boundiaft
which occurs in the module signature, whereas the modwg# lias no parameters to be
instantiated. This sort of type is needed in the presendgmdmic type construction

Next on linesl2 and17 modules are defined for sending and receiving messages that
provide a layer of authentication security over the radibs€ve that in the implementa-
tion of send in moduleauthSend, messages are signed with a kayndk, whereas when
messages are received they must be signed with a possitelsedif keyrecvk before being
passed on to the user’s receive handler, as specified in madthRecv. These modules

are parameterized by an address typeand also theendk andrecvk key values.

78

© 2] ~ (<)) o IS w N -

N I N N T T < =
P O © ©® ~N o a » w N P O

N
N

23

abbrvt mesgT() =
{src : t dest : t data : uint8[] };
abbrvt radioT =
< at < uint >
{ export error _t radio _x(mesgT(at) =*);
i nport error _t handle _radio _r(mesgT(at)
abbrvt commT =
(at < uint) o < >
{ export error _t send(mesgT(at) *);
i mport error _t handle _receive(mesgT(at)

val authSend =

< at < uint; sendk © o uint8[] >
{ inport error _t radio _x(mesgT(at) =*);
export error _t send(m : mesgT(at) =*)

{ radio _X(AES _sign(m, sendk)); } };
val authRecv =
< at < uint; recvk : o uint8[] >
{ inport error _t handle _recv(mesgT(at) *);

export error _t handle _radio _r(m : mesgT(at) *)

{ i f (AES_signed(m, recvk))
handle _recv(m); } };

def authSpecialize

(nmax ©uintl6,
radioM : radioT,
keys . Array[Array[uint8]]) :commT

typedef adt < uint =

i f (nmax <= 256) uint8 el se uintl6;
val sendM = authSend(mesgT(adt);keys(0));
val recvM authRecv(mesgT(adt); keys(1));
sendM x radioM(mesgT(adt)) x recvM,;

}

val appMR =
< >{ export handle _recv(m : mesgT(uint8)
val appM =

< >{ inport send(mesgT(uint8) =*); export
image(appM x
authSpecialize(nmax, radioM, keys)

) {.} h
main() {...} }

X appMR); }

Figure 4.2: DScalaness/DnesT Example

79

To generalize a technigue for composing these modules wdlia to yield a module
of type commT, that is abstract with respect to neighborhood sizes, ragtementations,
and session key material, the DScalanegsiSpecialize function is defined on lin24.
The first-class status of DnesT modules in DScalaness isapdzere. Starting at lin25
the method is specified to take a module paramet@rioM of type radioT among its
arguments, and to return a module of tyja@amT as a result. It also takes an array of keys
as an argument, and on lin88 and 31 it instantiatessendMesg andrecvMesg with the
keys in the array. Finally it uses the typét in the instantiations, which in lin@8 is
dynamically constructed on the basis of the input variahkex.

This illustrates a key novelty of the system, the abilitydimamicallyset a type to use
on a node based on a decision made during the execution ofSbal&@ness program. Since
the value ohmax cannot be statically determined, the type analysis onlylgthatadt is
some subtype afint. Finally, on line32 the instantiated radio module is composed with
the instantiated send and receive modules via the DScalanegerator. The semantics of
module composition here is standa@hfdelli 1997; in a composition aka wiring; x s,
the exports ofu, are connected to imports @f. The function result is a module of type
commT.

To obtain a module defining a node image in a program contegtevheighborhood
size is known, a radio implementation has been providedsassion keys have been com-
puted. The results can then be composed ofwethSpecialize function with modules
specifying top-level message send and receive behavindsaaain application entry
point (here knowledge that address sizes can be limited tits8sbassumed, somax <
256). At line40a closed module is defined and a binary mote image can be mddyca
call to image.

In DScalanessimage is an assertion that its argument igunnable module, with

no unresolved parameters or imports. In the Scalaness nmepiation, this is the point

80

where nesT source code is actually generated. Successtal@fess/DnesT type check-
ing (which occurs during stage 1 compilation as pyure 4.) statically guarantees that
specialized code generated at the pointmige will run in a type-safe manner when it is

eventually loaded and run on a node.

4.1.1 Modules as Staging Elements

In DScalaness, DnesT modules can be treated as data to besempollowing tradi-
tional staged programming languag@&alfa and Sheard 1997The so-called “runnable”
modules—ones without imports or generic parameters—dafinaitial machine config-
uration. This supports a TinyOS node reprogramming moderetthe entire OS is re-
compiled and target nodes are reimaged and rebootedinTdge operation (invoked in
line 40 of the example) asserts its argument to be runnable and dilmapsodule code for
subsequent deployment.

DnesT modules specify a list of imported function signasumnd a list of exported
functions implemented by the module. Module genericityhtamed via a sequence of
type and value parameter definitions. For example, as spaafFigure 4.2 any module
radioC satisfyingradioT has an address type paramedelt which specializes the
message type declared in the exporadio function.

All generic type parameters are assigned an upper boundvia the subtyping symbol
<. ThenodeC module additionally has value parametsedf andneighbor , which
are type cast during the call to the importeehd function. The concrete syntax used in
Figure 4.2precedes each import/export definition with keywargport /export for a
more readable presentation; this is not part of the forma<Irsyntax.

The other DScalaness operations on DnesT modules are tiaitam and composi-

tion. In lines30 and 31, the modulesauthSend andauthRecv are instantiated with

81

arguments specifying the type of message to be used, paaneetby a dynamically con-
structed type, and by the value of the desired key. In [8#snd40, modules are composed
using thex operator. The semantics of module composifi@rk 1. is standardCardelli
1997); imports of one module are connected to exports of the otbeesT module com-

position is analogous to nesonfiguration wiring

4.1.2 Typing

The most novel feature of the DScalaness type system is dgrigpe construction. Dy-
namic construction of DnesT types is allowed at the DScalauhevel for module instan-
tiation and specialization. On lin@8 in Figure 4.2 the address typadt is dynamically
constructed via a conditional expression.

Scala type checking has been formally studied and showndedtidable Cremet, Gar-
illot, Lenglet, and Odersky 2006DScalaness type checking is an extension of Scala type
checking; a new module type form is introduced to the Scale tanguage, type check-
ing cases have been added for the three module operatiateaniiation, composition, and
imaging. No other part of Scala type checking needs to be fieddiDnesT type checking

is defined as a standalone type system, and yields first stadeletypes.

4.1.3 Cross-Stage Migration of Types and Values.

A crucial feature of the DScalaness/DnesT programming iiegeocess separatiohe-
tween staged fu, Skalka, and Smith 2032Since first and second stage code are to be run
on separate devices, state is not shared between thess. sTdues, serialization may be
required when modules are instantiated. Furthermorestgpd base values may be rep-
resented differently on the first and second stages, regusome sort of transformation

during module instantiation. An example transformatiodigcussed irsubsection 4.3.3

82

4.2 The DnesT language

The DnesT design aims to distill a production language, ne#@G its fundamental ele-
ments, yielding a language that is amenable to formal aisdbys also practical. However,
since the focus here is on type safety, DnesT enhances, asuhia instances restricts,

those fundamental elements to obtain a type safe languagés@issed below.

Notation

Sequenceare notated:, . . ., x,,, and are abbreviated 7z, is thei-th element() denotes
the empty sequence, afid is the size. The notation € = denotes membership in se-
guences, andz denotes a sequence with headnd tailz. Append is denoted as2y. For
relational symbols? € {<,=,:}, the abbreviationz Ry = =1 Ry, ..., x, Ry, is used.
Soforexamplez : 7=z : 7q,..., 2, : T

The following naming conventions are also used for variangliage constructs. Meta-
variablef (of set.F) is used for function names$of set L) for field namesx (of set))
for term variablest (of setT) for type variablesi (of setM) for memory locationsy®
(of setZys) for 8-bit unsigned integers, and® (of setZ,:6) for 16-bit unsigned integers.

Finally, use ofn to range over both types of integers when their type is iveaie

4.2.1 Syntax and Features of DnesT

The syntax of DnesT is presentedHigure 4.3 It comprises a core language of expressions
for defining computations, a language of declarations féinaey variables and functions,

and a language for defining modules.

83

¢,7 ==t |T|uint8 |uintl6 |uint |uninit | types

{7 ol | 7

e u=vl|le|eopel|(r)e|f)|le=cl|l&le|er>e] expressions

if (e)eelsee|while(e)e]e;e|post f()

le u=ux|ele]|el]|xe

v u=n8|nt®|uninit
op u=+]*|&&|==] ...
id o=flx

c u=f(V):7={e}

s =fV):7

d —rx =c|7x = [e]|rz = {I=¢}]|c
T u=ix7

\% =X:7T

L =5

13 =c

€ n=3
poou=<TV>{yd; ¢}

o u=<T;V>{ue}

I-values
base values
operations
identifiers
command definition
command signature
declarations
type parameters
value parameters
imports
exports
export signatures
module definitions

module signatures

Figure 4.3: Program Syntax of nesT

84

Expressions

The DnesT language includes standard C-like constructs, asl conditional branching,
looping, sequencing of expressions, and function callayar structs, numeric base data-
types (and operations on them). Familiar syrnt@x ande.l is used for array indexing and
structure field selection, respectively.

A “null” value uni ni t is also provided. Function definitions and calls allow npléi
parameters as is usual in C-like languages. Memory locattioare program values(la
pointers). As in all C dialects, assignment can only be peréal on so-callettvalues/e,

a restricted subset of expression syntax.

As in nesC, no dynamic memory allocation is possible; all mgmayout is estab-
lished by static variable declarations. However, unlike@éull pointer arithmetic is not
supported for the sake of type safety. Instead an arrayrimemeéoperator- allows the suf-
fix of an array to be computed based on an integral shift distailype casting and array
operations have run time checks imposed, as explaingglsection 4.2.2

Also as in nesC, post operation is provided for posting tasks. The semanticssifsta
follow the “run-to-completion” model of TinyOS. Interrugpaire omitted from the language
to avoid concurrency issues in the semantics. Typical seretovork applications do not

use interrupts directly; they are needed instead in lowl ldv&ries.

Declarations

Programs in DnesT may refer to declarations of values anctifums which are scoped at
the module level and establish statically the memory laydwt DnesT module. A con-

venient form for explicit initialization of array and strialues is provided, though there
are no base values for either arrays or structures. Besameggience, declarations are

useful to support serialization of program objects passdmbm DScalaness, as discussed

85

in subsection 4.3.3

In the formal syntax and semantics of DnesT presented heretibns are nullary (i.e.,
parameterless) as a simplification. This does not limit esgivity since DnesT does not
permit recursion. Thus function parameters can be simdilaterinciple by way of module
level declarations. The actual implementation of nesalfunctions to be parameterized
as in nesC. Accordingly, syntactic liberties are taken meRamples in this chapter and

make use of non-nullary functions.

Modules

DnesT Modules are writter:T; V>{s; d; ¢} with T andV being generic type and term
parametersg being module scope identifier declarations, including fiemcdefinitions,
and. and¢ being imports and exports. Exports are explicitly definetheamodule.

A “runnable” module—one without imports or parameters—his DnesT model of a
device image. The declarations in the module defines aalinitichine configuration, and

the application entry point is defined in a required commesich.

Definition 4.2.1 A module of the form:@; @>{; d; ¢}, wheremain() : uninit € ¢, is

calledrunnable

4.2.2 Semantics of DnesT

The operational semantics for DnesT is defined as a smalielpn-~~ on dynamic con-
figurations inFigure 4.4 The semantics are decomposed into several distinatlations;
each computation “sub-relation” can be distinguished gyahty of the relevant config-
urations. The semantics for the non-module portions fal@tandard C-like language

formalizations I[Leroy 2006 Grossman 2003

86

T ou= mlo I/r tags

k = |mv] dynamic objects
le = | [m,v]

e = |k

v = v|m|[R]|{I=F} dynamic values
F = f:7=() codebase
M = m:T=7V memory
E == {}|E;e|k[E]|Ele] | El|k=FE|E=¢|a(r)E| evaluation contexts

*E|&E|Eope |kopE|if (E)eelsee |While(E)e

¢ == boot(d) | run(e) run levels

Figure 4.4: Syntactic Definitions for Dynamic Configurations

Semantics of Expressions

At the heart of DnesT is a C-like language of expressions boin |- and r-values. An I-
value is an object in memory that can be the target of an as> in particular a variable,
a structure field, an array member, or a dereferenced podtarvalue is a value resulting
from expression computation and may be a value that is n&ssacily in memory.

The DnesT syntax for necessary dynamic entities is givéigare 4.4 In DnesT, com-
puted values are represented as pgits/|, wherev is a base, pointer, array, or structure
value, andr is a tag indicating whether or not the value is in memory. Cotag r-values
not in memory are denoted, v|, e.g.,| o, 2] is the result of computing 1 + 1. The Il-value
object|m, v| indicates that the valueis in memory at locatiom:.

Memories are modeled as sequences of definitiong = v; observe that each mem-
ory locationm is typed at- and assigned a value Memories are interpreted as mappings,

writing M (m) = v when there exists somesuch thatn : 7 = v is the leftmost definition

87

Arrldx Star
M, [m, [®]][[m,n)] ~ M, M, % [m,m] ~ M, |m, M(m)]
AddrOf Cast
M, &|m,v| ~ M, |o,m| M, (1) Kk ~ docast (T, Kk, M)
Assign call Int
F(f) = (e)
Ma Lmvlle:LW7V2JWM[m'_>V2]7L7T7V2J M,’I’LWM, LO,TLJ
M, () ~ M,e
While Context
M,e~ M,é
M,whil e (e1) eg ~ M,if (e1) ez;whil € (e1) eg €l se uninit
M, E{e} ~ M,E{c'}

Figure 4.5: Dynamic Semantics of Selected Expressions

of m in M, and writingM [m — v| to denotgm : 7 = v) wherem : 7 = v/ is the leftmost
definition ofm in M.

Evaluation rules for selected expressions are giveligure 4.5 Here, computation
is on pairs of memories and expressions. The existence afaidm docast is assumed,
which performs a casting conversion. This function is addwo be defined by users, and in
certain cases may be a no-op (e.g., casting pointers tosantagn the latter are contiguous
in memory). In any case, ifocast(r, v, M) is defined, the cast conversion is required to be
type safe, in that the result must be of typeThis is discussed more subsection 4.2.3

Note that a pointer is modeled by an object of the farmm |. The operation |7, m |
looks up the value at addressin memory. The operatio& |m, | returns the address
of the object in memory as an r-value. Functions are defined mssumed-given codebase

F with a lookup semantics defined similarly to that for memefié.

88

RunTime BootTime
FFP Me~ P, M, F.P,M,d~ F P M,d

— —/

F,P,M,run(e) ~ F, P’ M’ , run(e) F, P, M,boot(d) ~ F', P', M’ boot(d)

RunStart

F, P, M,boot(}) ~ F, P, M, run(main())

Figure 4.6: Boot and Runtime Semantics

Semantics of Tasks

NesC uses a simple scheduling model of serial, run-to-cetiapl execution of queued
taskswhere each task is defined by a parameterless function. Beedemantics of DnesT
are thus supplemented with a correspondask collectionP of the tasks yet to run, and
defined with a single step transition relation on configoratiextended with task collec-
tions. The definition of task collections is left undeterednand also how tasks are added
and retrieved—this because it is unspecified how tasks eatenl by the scheduler. The
notationadd(P, f()) denotesP’” which is P plus the task consisting of the function c),
andnezxt(P) denotes a paiP’, f() which comprises the “next” tadk) in P, andP’ which is

P with f() removed. The task semantics, integrated with the expmessimantics defined
previously, are defined iRigure 4.7 As for expressions, the existence of a given codebase
Fis assumed. When it is necessary to be explicit about whidelwase is given for a

computationf' = P, M, e ~ P', M’, ¢ will be written.

Semantics of Declarations

The operational behavior of declarations is fairly stréigtward and is shown iRigure 4.8
Functions and first class mutable variables may be declarddnétialized. At run time

mutable variables are bound (via substitution) to an @&, |, wherem is the address

89

CoreStep
M,e~ M e

Post

P, M, E{post ()} ~ add(P,f()), M, E{uni ni t }
P,M, e~ P, M, ¢

TaskStart
next(P) = P’ {()

P, M,m ~ P', M, ()

Figure 4.7: Semantics of Tasks and Configurations

of the variable. Thus, for base and function type declanatite following rules apply,

respectively:
FDecl

F.P,M,(f:7=(e))d~ (f:7=(e))F,P,M,d

Baselnit
K= |m,v] m ¢ Dom(M)

F.P,M,(tx = |m,v])d~ F,P,(m:7=v)M,d[k/x
A contextual evaluation rule for declarations allows vialés to be initialized with arbitrary
expressions. This is omitted for brevity but is similar te ttxpression Context rule, using

a notion of declaration evaluation contexts denadfed

Semantics of Boot and Run Time

In the DnesT machine model, a top level program executiorbiaioed by loading and
running a fully instantiated module. The codebase, memaygut, and initial machine
configuration is generated at load time by evaluating théadations in the module. The
top level program is then started at tim@in entry point.

To differentiate load/boot and run segments of a computakioot() andrun() con-

structors are defined to inject declarations and expressida a uniform datatype. Top

90

DeclContext
FFP Me~s P M. e

F,P,M,Dle]ld~ F,P', M, D[¢'|d

Baselnit
K= |m,v] m & Dom (M)

F.PM,(rx = |n,v]))d~ F,P,(m:7=v)M,d[x/]

Structlnit
K= |m,v] m ¢ Dom(M)

F,PM,(tz = v)d~ F,P,(m:7=v)M,d[k/7]
FDecl

F.PM,(f:7=(e)d~ (f:7=(e))F,P,M,d

Figure 4.8: Semantics of Declarations

level computation is then defined as a single step reducéilaion~~ on configurations
F, P, M, X, whereX is of the formboot(d) or run(e) depending on whether the machine

is booting or running.

Definition 4.2.2 For a runnable module of the form@; @>{; d; ¢} the following is de-
fined:

bootload (<@; @>{;d; €}) = &, @, D, boot(d)

Now, for all computation relations-* is defined to be the reflexive, transitive closure
of ~~. The concern for type analysis is to rule out modules whidhembootloaded, will
evaluate to semantically ill-formed configurations. In domtext of DnesT this is defined
as follows. Notice that failing casts and out-of-boundyaaecess are not stuck cases, since

run time checks enable graceful failure behavior.

91

Definition 4.2.3 A configuration)M, e fails a run time checkf and only ife is of the form

(1) k and docast (T, k, M) is undefined, ot is of the form[m, v|[| 7, n|] andn > |7|.

Definition 4.2.4 A configurationF, P, M, ¢ is stuckif and only if it is irreducible and/
is neither of the formrun(E{e}) nor boot(D{e}) where, e fails a run time check. A

runnable modulg: goes wrondff bootload (i) ~* F, P, M, ¢ whereF, P, M, { is stuck.

4.2.3 DnesT Type Checking

The typing rules for DnesT combine a standard procedurgluage typing approach with
subtyping techniques adapted from previous foundatiormak fLiu, Skalka, and Smith
2012 Ghelli and Pierce 1998 The goal here is to specify the typing algorithm used in the

DScalaness implementation.

Subtyping

At the heart of the system is a decidable subtyping judgemeéentr; < 7, whereT in
the context of typing is called eoercionand defines a system of upper bounds for type
variables. Recursive type bounds definitions are not aliowe

The implementation of the subtyping algorithm is based olassic techniqueGhelli
and Pierce 1998with straightforward extensions to accommodate stmestand arrays as
defined inFigure 4.9

A subtyping relation typically callegromotionis also central to the approach; given
a set of subtyping coercioisand a type variablé, promotion will return the least upper

bound oft which is also a structured type, i.e., not a type variable.

Definition 4.2.5 The relation< promotesa type variable:
TETH) <™ —Jt.r =t

THt< T THrT< T

92

ReflS TopS Transs uints
TI—T(t) <7
T <7 T T —_— TFHuUint8 <uintl6 <uint
THtT
FnBodyS StructS
TEm <™ TEF <73
TH (1) < (72) TE{h Wl :m} < {l: 7}

Figure 4.9: Subtyping Rules

It is important to observe how promotion and subtyping aeddifferently. Since any sort
of I-value can be written to via assignment, subtyping irrmcemustbe imposed on I-
values occuring in write positions to maintain type soursgnd herefore type subsumption
is allowed only at program points where read-only contral/ft@wcurs—for example when

an r-value is directly assigned to an I-value.

Type Environments and Checking

The typing algorithm for source code expressions is basgddgementss, T F e : T,
whereG is an environment of free term variable typings, syntadifiatzefined equivalent
to value parameterg and imports. Type environments are also endowed with the same
lookup semantics as memories and codebases. Represenyaing rules for selected
expressions are given Figure 4.10 The derivation of any judgemett, T - e : 7 can be
interpreted as an algorithm where battandT are given as arguments ands returned as
aresult.

Note that type casting is only statically allowed if the tgpevolved arecompatibleas
specified in rule CastT. This relation, formalizedTas compatible(r, 2), is left abstract

and user defined. Recall that the semantics of DnesT reliesdonast function that im-

93

CastT CallT
G, Tke:T T + compatible(r,<) G,THf:¢ Th¢ < (1)
G, Tk (g)e:s G, THf():7
AssignT StarT
G, Ther:q G, Thex:q TFo=<a G,Tke:g Th¢< 7+
G, Thel=ez:q G, Tk*e: 7
NameT IndexT
G(id) =T G, Tkei:q G, Tkes:c Tk ¢ < 7] TF ¢ < uint
G,Trid: T G, Tk eles] : 7

Figure 4.10: Typing Rules for Selected DnesT Expressions

plements cast conversions. Any implementatiod@f:st must be type safe, which allows
the ruling out of run time cast failures in well typed progsaninformally, docast is type
safe if and only if the resulting expression has the type efdfist. Refer tolfu, Skalka,

and Smith 201pfor a thorough formal discussion of type safety for thidestyf casting.

Declaration and Module Typings

At the module level, it is necessary to first type check ancegae typing environments
from declarations, as specifiedkigure 4.11(rules for array and struct declarations omit-
ted for brevity). Given this, a module typing is obtained fpye checking module exports,
using a coercion obtained from the module type parametetsadyping environment ob-
tained from a combination of module value parameters, itspand variable type declara-
tions. Module type checking is also specifiedHigure 4.11 A type safety conjecture for

DnesT can then be stated as follows.

Conjecture 4.2.1 (DnesT Type Safety)f p : pr is valid andy is runnable, then: does

94

DeclsNoneT DeclsSomeT
G,THd= (z:7) (z:7)G,THd: G

GTro:o G,Trdd: (z:7)G

DeclBaseT DeclFunT
G, Tke:T G,Tke:T
G Tkt =e=ux:7T GTHf:.(n)=()=f:(1)
ModuleT

@V, THd: G GQQV, TH¢: e

<T,V>{1;d; ¢} : <T,V>{s;¢}

Figure 4.11: Selected Declaration and Module Typing Rules

not go wrong.

4.3 The DScalaness Language

DScalaness serves as the language for DnesT module coiapasithe same manner
as nesC configurations serve to compose nesC modules, bateD8ss is a more pow-
erful metalanguage since modules are treated as a new patfirst class values in
DScalaness. Instantiation, composition (“wiring”), antbiging of modules are defined as
operations on module values. Because instantiation of teedavith both types and values
is allowed, values and types may migrate from the DScalalees$to the DnesT level,
realizing a disciplined form of code specialization.

The goal of this section is to describe the DScalaness syarndxsemantics realized
in the implementation, and justify the prior claims of typdety. Since Scala as imple-

mented is too large to easily formalize, the formalizatierehs of distilled subset of Scala,

95

L == class C(X <:N) extends N{Tf; KM} class definitions

K == C(T f){super(f); this.f = £;} constructors
M = Tn(Tx){returne;} methods
e = x|ef|em(d) |newC(T)(g)| (N)e|ef=e|1] expressions

defx:T=eine|pu|exe|e(ge)|image e |

abbrvt X(X) =T ine

T = X|N|Tour scala level types
N == C(T) class types
1 == (p,N) references

Figure 4.12: The Syntax of DScalaness

DScalanesghat has also been extended to include syntax and semtmtafinining and
composing DnesT modules. A formalized core calculus and &malysis for Scala exists
(Cremet, Garillot, Lenglet, and Odersky 20Q06ut the formalization presented here is ad-
equate and simpler. Many features of Scala have been elide&calaness, but all Scala
features are adopted unchanged in the Scalaness impldéimenkere the focus is primar-
ily on the module metaprogramming operations that have beeed. This presentation
“cleans up” some implementation details, but is otherwis@ecurate description of the

module operation semantics and especially the module tipetsping rules.

4.3.1 Syntax of DScalaness

The DScalaness language syntax is presentedjure 4.12 To represent an adequate core

calculus of Scala, it subsumes two Featherweight Javantaridceatherweight Generic

96

Java (FGJ)lgarashi, Pierce, and Wadler 2QQGind Assignment Featherweight Java (AFJ)
(Molhave and Petersen 2009 he generic class types of FGJ are needed to model type con-
struction, and the mutation in AFJ is essential to consioeesone main concern is DnesT
code specialization; DnesT programs are run in a separate$s space, so specialization
with stateful values, a likely common idiom in a Scala sefttipresents a challenge.

Refer to (garashi, Pierce, and Wadler 2Q0%¥olhave and Petersen 200®r details
on the FGJ and AFJ object oriented calculi, which are repitesein the languages of
class definitions, constructors, methods, and the firstdinexpression forms defined in
Figure 4.12 DScalaness extends these features with a typed variablaragon form
def x: T = e; in e, Where the scope aof is e,, and a dynamic type construction form
typedef x <: T = e; in e, (defined as syntactic sugar in Definitidn3.1) with similar
scoping rules. For programming convenience a simple pdeined type abbreviation
binderabbrvt is also provided.

DnesT moduleg are included in the DScalaness expression and value spastm-
tiation is obtained via the form;, (g,; &,), whereg; are type parameters argd are value
parameters. Wiring of modules is denotgdx e,. Imaging of modules, denoteithage €,

ensures thaé computes to a runnable module, in the sensé 2L

4.3.2 Semantics of DScalaness

The semantics of DScalaness is an extension of the semah#¢s) and FGJ to incorpo-
rate DnesT modules and operations. Computations assunexlafass tabl€'T" allowing
access to class definitions via class names, which alwaysatean object’s type. Atore

ST is a function from memory locations to object representations. Objects are repre-
sented in memory by lists of object referendesvhich refer to the locations of the objects

stored in mutable field values. A refererices a pair(p, N) wherep is the memory location

97

of an object representation aNds the nominal type of the object, including its class name.
Hence, given an object referenge C(T)), one can access and mutate its fidlds S7'(p),
and access and use its methods via the defindi@iC).

Following AFJ, the semantics of DScalaness is definedlabeled transition system
where transitions are of the forem— {s = ST, s’ = ST"} — €e’. Intuitively, this denotes
that given an initial stor&7" and expressioa, one step of evaluation results in a modified
storeST” and contractune’. As an abbreviatione — €’ is written when the store is not
altered.

The primary novelty of DScalaness over FGJ/AFJ is the forseatantics of type and
module construction. Type construction is provided towalpyogrammers to dynamically
construct module type instances. The appropriate behevodatained by treating dynami-
cally constructed types as extensions of a basic class ettshjand declarations of DnesT
level types via @ypedef construct as syntactic sugar for ordinary object constoct
A LiftableType class is defined as the supertype of all types of objects wtaahbe
used to instantiate a module, and dynamically construgieestare defined as instances of

a generidMletaType class.

Definition 4.3.1 Any DScalaness class talll&’ comprises the following definitions:

CT(Liftabl eType) = class Li ft abl eType() extends Object {...}
CT(Met aType) = class Met aType(X <: Liftabl eType) extends Object {...}

Then assumed as given the following syntactic sugar:
typedef x <: T =e; ine, £ def x: MetaType(T) = e; in e,

Class typelet aType is generalized on a single type variable. For brevity of rniota,
define:

Met aType(T) = MetaType(T)

98

A crucial fact of DScalaness type construction is that angadtyically constructed type
cannot be treated as a type at the DScalaness level. This @eargstrictive mechanism
than envisioned in the foundational modeil, Skalka, and Smith 2012.iu, Skalka, and
Smith 2009, however it allows DScalaness to be defined as a straigtdforextension to
Scala, especially in terms of type checking.

Module instantiation, shown iRigure 4.13 is the only point where specialization of
DnesT modules is allowed. Since DScalaness and DnesT adiffeir@nt language spaces,
some sort of transformation must occur when values migrate DScalaness to DnesT
via module instantiation. Thikfting transformation involves both data mapping and seri-
alization since the process spaces also differ. The aimbe titexible and allow the user
to specify how values are lifted and how types are transfdrniée only requirement is
that lifting and type transformation are coherent, in thesgethat the lifting of an object
should be typeable at the object’s type transformations Thiormalized in the following

definition.

_ . lift . .
Definition 4.3.2 Assume a relation— which transforms a DScalaness referericénto
DnesT declarationd and expression is provided. Also assume a DScalaness-to-DnesT
transformation of type$:] is provided. To preserve type safety, it is required thatlin a

caseqp,N) i d, e implies both of the following for some type environmgnt
o,oFd: G and G,@Fe: [N

The full definition of serialization, along with an exampdee given and discussed below in
subsection 4.3.3n brief, when a modulg is instantiated, serialization will bind the value
parameters of: to the lifted values of their instances in a series of detiama that are
added to its own. This is specified in the ModInst ruld=igure 4.13 Another important
detail of the Modinst rule is that only type information inpy parameters is used, and

migrates into the module via type transformation and onmgisabstititution.

99

ModInst
p=<t<77:>{udig} serialize(7,5,1) = '

11{(B, MetaType(T)); T) — <>{u; 7ad; ¢}{[T]/7]

ModWire
L= (Ll/DOm(gg))@LQ d= 82@52 ‘ Dom(e1)

<T1,V1>{01;31§ §1} x <Ty, V2>{L2;E2; &}

Modlmage

image (<>{;d;¢}) — <>{;d; ¢}

%

< YT, V1 Y V2>{L;E Y 31; 51}

Figure 4.13: DScalaness Module Semantics

Module wiring is given a standard component compositionaggis. Only the wiring
of instantiated modules is allowed, which is consistenhwi#sC and simpler to implement.
In a wiringe; x e,, the imports ofe; are wired to the exports @&,. This is specified in
the ModWire rule inFigure 4.13 which relies on the following auxiliary definition of

operations for combining mappings.

Definition 4.3.3 (Special Mapping Operations)Let m range over vectors with mapping
interpretations, in particular T, V4, and¢{. Binary operatorm, Y my represents (non-
exclusive) map merge, i.e; Y mo = m;@Qms with the requirement thatl € Dom(m;)N

Dom(ms) impliesm; (id) = my(id). The mappingn/S is the same as: except undefined
on domain elements in s&t and the mapping: | s is the same as: except undefined on

elements not iry.

Finally, the Modimage rule ifrigure 4.13shows that imaging it is an assertion requiring

its arguments to be a runnable module.

100

4.3.3 Serialization and Lifting

Serialization generates a flattened DnesT source codeomen$ia DScalaness object in
memory. At the top level, serialization binds the value pagters of a module to the results

of flattening, aka lifting, via a sequence of declarationsreHs the precise definition.

Definition 4.3.4 (Serialization) Assume given a stofl" which is implicit in the following
definitions. The serialization of DScalaness referencegimed as follows, along with an

extension of the user defined lifting relation to sequentesferences:

lift — _ it —
—d,e i | — d,e — d,e
D, -

serialize(Z, 7,1) =dQ7T =¢ I T — dad', ee

Although lifting is user defined, a standard strategy is toishuce a new declared variable
for each memory reference in the lifted object, and bind @ngable to the lifted referent.
Hence, lifting will typically be defined recursively. In ghimplementation, a “default”
lifting has been adapted which follows this strategy, arsb @tansforms objects by just
transforming the fields into a representative structurd,ignoring methods. This is illus-
trated with an example isection 3.6

The essence of this transformation can be formally captwidthe following defini-

tions. Itis easy to see that these definitions will satisgréquirements of Definitiof.3.2

Example 4.3.11n this example lifting of any object references is allowadd transform
the objecb into a structure containing the transformed fielde oMethods are disregarded
by the transformation. Here is the specification of the typagformation:

ChapinT

CT(C) = class C(X <: S) extends N {R f; K M}

[e(T)] = {f : [R[T/X]}

101

ModT
w: pr in nesT type checking

'Fp:@our

ModInstT
F'Fe: o<t x7T1;T <xT2>{1;6}

'k §: MetaType(Ty) '8 : Ty FIT] g7

F[T2] < 7o

TF e(s;85) : 5 < [T1] o <>{u[5/8); [5/8)}

ModWireT

ke :Tio<>{u;e} I'Fey:Too<>{1;e0} t = (t1/Dom(egy)) Qe

I'Fe; X es ZT1¥T20<>{L;€1}

ModlmageT

F'Fe:To<>{s¢e} main) : 7 € ¢

't imagee: To<>{se}

Figure 4.14: DScalaness Module Typing Rules

and here is the specification of lifting.

z fresh

4.3.4 DScalaness Type Checking

The DScalaness type checking rules adapt the typing rule&dfin their entirety. Refer
to (Igarashi, Pierce, and Wadler 2Q0fr relevant details. Since type construction via

typedef is syntactic sugar for normal object construction, thaoigeced by those rules

as well. It remains to define typing rules for DnesT modules@module operations.

102

The DnesT module type form at the DScalaness levéldgr, whereyr is a DnesT
module type. Thd in this form represents the type bounds of dynamically coiestd
types that have been used to instantiate the module; thisfitdie type is referred to as the
instance coercion Because these types are dynamically constructed, theititg is not
known statically, hence the need to treat them as upperdsalitype names in the static
type analysis. It is important to note that the type nameBwill be fully resolved at run
time, so that any module generated by a DScalaness progracaten will have a fully
reified DnesT type.

This is reflected in the ModT rule iRigure 4.14 which connects the DnesT typing
system with the DScalaness type system. Since in this cageiastantiated module def-
inition is being typed, its instance coercion is empty. Astamce coercion in a module
type is directly populated when a module is instantiatednake ModInstT rule. Here,
the type instances are all dynamically constructed, so they define the uppentswf
the instantiated module’s instance coercion. All type aalde parameters are expected to
respect the typing bounds specified in the module definition.

A subtle but significant detail in this rule is the consequesiodynamically constructed
types having no meaning “as types” at the DScalaness lelied.nleans that no DScalaness
value of that type can be constructed, so dynamically coattd type names do not occur
in the typings of value parameters.

However, dynamically constructed type names do need to bstituted for module
type parameters in the import and export signatures. Trssires that wirings will be
consistent regardless of the actual types eventually ctedpuy the DScalaness program.
A consequence of this is that modules can’t be instantiatéd anonymous expressions;
only named type definitions can be used. Those names becotrd tfee module’s type.

The ModWireT typing rule for module wiring is a straightfaavd reflection of the op-

erational rule for module wiring, as is the ModIimageT rulerfiodule runnability imaging.

103

4.3.5 Foundational Insights and Type Safety

Type checking of modules and operations is inspired by tpe theory and metatheory
developed for the languadg®IL) (Liu, Skalka, and Smith 2032 DScalaness module in-
stantiation in particular can be decomposed into a sévibf) operations, and typeablity of
module instantiation follows from the typeablity of theoraposition. The languagd/L)
is obtained by extending systefix with state, dynamic type construction, and staging fea-
tures. The expressiofe) is a code value, and tH#&t operation takes a value at one stage
and “lifts” it to the next, by turning it into code and perfoimy any necessary serialization.
Given this, a DScalaness module with a value and type paearoah be modeled in
(ML) as a term:

Az 6 At X 6o (e)

wherex andt are value and type parameters for the block of cGde Then, module
instantiation can be modeled as the application of this terentype and value parameter,

where the latter must be lifted into the next stage:
(A : q.At < 6.(e)) (lifte) 7

This interpretation of modules and module operations ferhrposes of typing is evi-
denced by the DScalaness type formur, whereT defines the type bounds for dynamically
constructed types used to instantiate a module. This isttiranalogous tal type bind-
ings in (ML) types, which statically define the upper bounds of dynanyicainstructed
types.

Observing that AFJ, FGJ, andiL) are all proven type safe, and that DScalaness is
in essence an orthogonal composition of these three laegu#oe following conjecture

states that type safety is maintained in this composition.

104

Conjecture 4.3.1 (DScalaness Type Safetyj o - e : Tande —* image yu, thenu is

runnable and does not go wrong.

105

Chapter 5

Scalaness/nesT

This chapter covers the specific details of Scalaness and tespractical realization of
DScalaness and DnesT. First described is nesT along witdetagls of how nesT pro-
grams are transformed into nesC programs. Additionalbjuched is a description of how
the Scala compiler was modified to provide Scalaness typekatfgwith a minimum of
disruption to the the compiler’s existing functionalityhd full source code of a simple
example Scalaness/nesT program is discusségpendix A The use of Scalaness on a

larger example is discussedsection 6.3

5.1 NesT

NesT is the name give to the second stage language used byglamentation. Roughly

speaking, nesT is the practical realization of DnesT. Inipaar, nesT uses the syntax
of nesC to the greatest extent possible in order to simgtiéydompiler and to minimize

the learning burden placed on existing nesC programmensexXample, a nesT module
is specified exactly as a nesC module except that it canus®y(import) andprovide

(export) nesC commands. In particular, neither nesC evemteesC interfaces can appear

106

in a nesT component specification.

NesT also supports DnesT’s notion of subtyping and featdoesafe memory access
and safe casting. Thus, while nesT programs are syntdgtidantical (aside from the
new array increment operator), and semantically simil@régrams written in nesC, nesT
programs are more robust than equivalent nesC programs.

NesT type checking implements the rules describeslimsection 4.2.and is largely
straight forward. The intention is to follow nesC'’s typetgys to the greatest extent possi-
ble, with changes to account for stricter rules disallowimglicit conversions. However,
nesT does support the subtyping rules of DnesT. The detiiew nesT type checking
was implemented is described by Watstvatson 20138

NesT is implemented as a rewriting to nesC. Because of ngp&&al relationship with
nesC, this rewriting is largely trivial. However, the impientation of the special features
of nesT are described in more detail in this section.

The description that follows assumes the reader is fanvilitir nesC.

5.1.1 Component Specifications

In nesT components (after specialization) present integfdhat are sequences of imports
and exports. The imports are implemented as nesC commaatds éh‘used” by the com-
ponent and the exports are implemented as nesC commandsréhgirovided” by the
component. NesC-style events are not part of nesT but caimgesed using commands;
an event used in nesC becomes a command provided in nesTcawkvsa.

NesT does not provide separate interfaces as nesC doesadrat interaction with
other components is done by way of separately declared confsndhese bare commands
can be wired together in the usual way by the nesC compBew/ Levis, von Behren,

Welsh, Brewer, and Culler 20D3Figure 5.1shows a simple example of a nesT module

107

that interacts with a timer. Instead of using an interfacéh\an evenfired , the module

provides a callback command of the same name.

nmodul e ExampleC {
uses comrand voi d setPeriodic(uint32_t period);
provi des command voi d fired();

}

i mpl enent ati on {
/I Written in the nesT subset of nesC.

void f(T param)
{

}

uintlé t value = x;

}

Figure 5.1: Example nesT Module

The example ifrigure 5.1also shows the use of an undeclared ty@and valuex. Such
types and values are instead declared as parameters of thibenmothe Scalaness program.
The Scalaness compiler first adds these parameters to thepaippe environments before
it type checks the nesT moduM/atson 2013

A nesT code base consists of a collection of unspecialized nedules. These mod-
ules do not by themselves constitute a complete prograns thd job of the first stage
Scalaness program to specialize and compose the nesT mpdidag with supporting
components written in full nesC, into full applications.

NesT currently does not support nesC-style configurationpmments. Such support
could reasonably be added since the implementation of acoem is not important to the
first stage code that manipulates it. The runnable modulelyuihe Scalaness program as
it specializes and composes the constituent nesT modulessformed by the Scalaness
runtime system into a nesC configuration reflecting the tefutomposition. However,

this transformation is transparent to the Scalaness pmoge. Libraries written in full

108

nesC must be wrapped in components with nesT interfacessasilaked below in order to
become part of a nesT application.

Each nesT module has a nesT module type implied by its spaadfiicelement list.
This module type is extracted from the specification eleriisinivhen the nesT component
is type checked. In most cases, except as described belswpitnpared against a module
type annotation used in the Scalaness program for the mésk#subsection 5.2)5 Any

discrepancy is flagged by the Scalaness compiler as a tyge err

5.1.2 External Libraries

Experiments with nesT show that it is expressive enough tewseful program compo-
nents. However, any realistic application will need to iat¢ with various libraries written
in full nesC, namedexternal libraries It is not intended here to require the whole pro-
gram be written in nesT, for such a requirement would not laetpral. Instead external
libraries could represent low level code such as the Tiny@&ating system or high level
application code that wishes to use Scalaness generatéanuehiles.

At the time of this writing, neither nesT nor Scalaness pate\any direct support for in-
terfacing to external libraries, although such supportiog useful future work. However,
a programming technique can be used whereby shim compamentsanually created that
wrap library interfaces. The following is an illustratiof that technique using a small
example.

Consider first the TinyOBoot interface. This interface is used to indicate when a
node is started; all useful nesC programs must interactiwitfet nesT does not support
interfaces at all, much less some of the entities, such aggwbat are commonly declared
in interfaces. Instead the programmer creates a shim coempench a8ootShimC as

shown below

109

nodul e BootShimC {
uses comrand voi d booted();
uses interface Boot;

}

i mpl enent ation {
event voi d Boot.booted()

{
cal | booted();

}

}

The shim component is legal nesC but not legal nesT. Its sarpoto expose all the
commands and events in an external library interface asdoamenands. To this end wrap-
per command and event implementations must be manualltectea

Although creating shim components is a burden their formghllg stylized. A future
version of the Scalaness compiler might generate them aiitcetly. However, some shim
components are complex and must do additional transfoomathn command arguments
to interface with the non-nesT external library commandsies. In any case, shim compo-
nents can be reused across nesT applications. Thus it anedale to expect programmers
to accumulate a library of shims.

The shim components must be wired to the external librarypmrants they wrap.
This is done by producing two nes@rapping configurations The first, conventionally
called LibrarylC encapsulates all nesC components that have imports. Tloadec
conventionally called.ibraryEC , encapsulates all nesC components that have exports.
Normally these are the only two configurations an applicatieeds. If the programmer
has full control over the entire application he or she canthddhecessary external library
components (via their shims) to eithgbrarylC and/orLibraryEC as appropriate.

For exampleFigure 5.2shows an exampleibraryIC ~ component and an example
LibraryEC component for a hypothetical application that uses thaeat&ainC com-

ponent and a specific instance of the generic timer moduté, foam the TinyOS library.

110

Notice that theSpecficTimerC component appears in both wrappers since it both pro-

vides and uses at least one command.

configuration LibrarylC {
uses command voi d booted();
uses conmmand voi d fired();

}

i mpl enent ati on {
conmponent s MainC, BootShimC, SpecificTimerC;

BootShimC.booted = booted;
BootShimC.Boot -> MainC;

SpecificTimerC.fired = fired;

configuration LibraryEC {
provi des conmand voi d startPeriodic(uint32_t period);

}

i npl enmentation {
conponent s SpecificTimerC;

startPeriodic = SpecificTimerC.startPeriodic;

}
Figure 5.2: Example LibrarylC/EC configurations

NesC generic components must be instantiated in nesC caatiigus and each instance
wrapped in its own shim. Ikigure 5.2the SpecificTimerC component is a shim that
wraps a specific instance of the TinyOS generic timer. Tm#étion may seem restrictive,
but nesT has its own support for genericity although the tveamanisms are independent.

NesT does not support nesC configurations but Scalanessatioesthe components
such as shown ifrigure 5.2to be declared and manipulated in Scalaness code. Such
components are represented as Scala objects that exteNeési€omponent trait and

that specify the source file of the nesC configuration usinggdernal method as shown

111

in Figure 5.3

@oduleType(
<>
{ booted() : Void,
fired() . Void; }™)

obj ect LibrarylC ext ends NesTComponent {
external("LibrarylC.nc")

}
@1oduleType(
<>
{ ; startPeriodic(period : UInt32) : Void }"™)

obj ect LibraryEC ext ends NesTComponent {
external("LibraryEC.nc")

}

Figure 5.3: Representation of External Components

The module type of external components cannot be deternbgegkamining their
definitions since they are not in nesT. However, as with aflTnmodules they must be
annotated with their module type in the Scalaness prograshewn inFigure 5.3and
discussed further isubsection 5.2.5 For external modules this annotation is accepted
without question by the compiler.

ThelLibrarylC andLibraryEC objects are then manipulated in the usual way by
the Scalaness program. BecauggarylC has only imports antibraryEC has only
exports it is normal for these components to appear at the@radwiring chainFigure 5.4
shows an example where the result module is runnablEigure 5.4the +> symbol is the
Scalaness wiring operator.

Although it is not possible to use Scalaness to composerettébrary components
directly, the programmer is free to create several diffevaapping configurations, if de-

sired, and represent each of them separately in the Scalgnegram. The Scalaness

112

@ 1oduleType("™™"{ checksumType < . UInt32 }
<;>
{3
val resultModule =
LibrarylC +>
formattingModule +> checkingModule +>
LibraryEC

Figure 5.4: Wiring nesT Components

program could then dynamically select which wrapping camigjon is to be used in the
final generated code. In any case the type system will ensatdlegal wirings can never

be made.

5.1.3 Structure Subtyping

DnesT supports width subtyping of structures as showkigare 4.9 To implement this,
nesT supports covariant subtyping of pointers to strudiypes. If; andr, are structure
types andr; < 7 according to DnesT subtype rules, thes < m*. To implement the
important case of passing a pointer to a structure into atimmcthe Scalaness compiler
need only add an appropriate cast as it rewrites the nesTs@. k®r example, consider the

nesT code below

struct X {
int a;

|5

struct Y {
int a;
int b;
3
void f(struct X *);

struct Y object;
f(&object);

113

The call tof is rewritten tof((struct Xx)&object) . The structure layout
rules of nesC guarantee this is safe &ndill only manipulate theX subobject of its pa-
rameter.

Like DnesT, nesT has no notation to indicate a subtype oglatetween structures.

Instead, the judgment is entirely based on structural denations.

5.1.4 Safe Casts

Since one of the goals of nesT is to promote type safety, nbditifype conversions, aside
from subtype conversions, are provided. Explicit conversiare permitted only when
configured by the programmer. This allows the programmeefmd certain casts that are
logical even if they require non-trivial user defined codexecute.

The Scalaness compiler accepts a configuration file thatesefinrelation on types
isCompatible If isCompatible(;, T5) is true then it is permitted to cast an expression
of type 77 into an expression of typ#,. There are no restrictions on the tygEsand
T,. However, all such conversions require explicit cast esgions; they are never applied
implicitly. TheisCompatibleelation is the implementation abmpatiblan the CastT rule
of Figure 4.10

To illustrate the way these casts are implemented in nesgramus, consider as an

example the following two structure definitions.

struct Userinfo {
char name[25];

int age;
int id;
3
struct UserToken {
i nt id;
i nt hash;

|5

114

The programmer may wish to allow an object of typeerinfo to be explicitly cast
into an object of typdJserToken . Assuming the Scalaness configuration file has been
edited to allow this, the Scalaness compiler rewrites eash expression into a call of a
conventionally named conversion command. These convecsimmands exist in a nesC

interfaceDoCast . For example

token = (struct UserToken)user;

/Il ... rewritten to ...

token = (cal |l DoCast.Userinfo_UserToken(user));

The programmer is required to provide theCast interface and a component called
DoCastC that provides that interface and contains an implememtatighe various con-

version commands needed. The Scalaness compiler wibesGastC automatically with-

out any further programmer intervention.

5.1.5 Array Operations

Each nesT expressian of array typeArray(T) for some element typ& has a corre-
sponding hidden dynamic value representing the size ofrtiag.@Array increment expres-
sions of the forma |> e can nominally be rewritten to nesC using pointer arithmasic
(@ + (e)) . Letn bethe dynamic size of expressianthenn., the dynamic size
ofa |> e ,isn. =n — e. This size might be negative but any use of an array expmessio
with a negative size results in a run time erabthe point of use

A statement containing one or more array increment expgyesgr array indexing ex-
pressions is rewritten as a block enclosed sequence ofrgate containing Scalaness
compiler generated local variables for the dynamic sizetheftemporary arrays along
with appropriate run time checks.

For each array increment operation> ¢; in a statement a variable to hold the value

of ¢; is declared and initialized. This is done so thatvill only be evaluated once; an

115

important consideration in a language, such as nesT, wdth esfifects. Also the dynamic
size of the result of each array operati@éns declared and initialized appropriately. For
example

.. (@al]> e ..

Is rewritten without regard to any possible optimizatioss a

{
int el =e;
int _dil1=_do0-_el;

.. (@ + el ..

}

Here__d O is the dynamic size associated with the array expressiolm the com-
mon case whera is a declared array the size will be known statically and gir@priate
constant can be used instead of a reference to a dynamicasiable.

For each array indexing operatiofje;] in a statement a variable to hold the value:of
is declared and initialized, as before. A run time check s&rted to ensure that the value

of ¢; is inside the dynamic size af. For example

.. a[nj ...

Is rewritten without regard to any possible optimizatioss a

{
int _el1=n;
if (_el1>= __dO0) call boundsCheckFailed();
.al_e 1] ..
}

As before__d 0 is the dynamic size associated with the array expression
In a statement involving multiple array operations, eacérapon is rewritten as de-

scribed above one at a time. After the first operation is itésvrj the enclosed modified

116

statement is further expanded with the second rewriting. dftecks are issued in the order
they are encountered during a depth first left to right treakeof the nesT abstract syntax

tree. For example a statement such as

X = ((@a |> el) |> e2)[bli]l;

Is first rewritten as

{

int el 1,
int _dil1=_do0-_el;
X = (((@) + _e_ 1) [> e2)[b[i];

[©)

}

The resulting statement still contains three array opanati The second stage of rewrit-

ing yields
{
i nt e 1 = el;
i nt dil1=_do-_el;
{
i nt e 2 = ez
int _d2=_d1l1-_e2;
X =((@ + _e1) + __e 2)b[];
}
}

The inner indexing operation is then rewritten

{
int e 1 = el;
int _dil1=_do0- _el;
{
int e 2 = ez
int _d2=_d1l1-_e2;
{
int e 3 =1
if (e3> _db) call boundsCheckFailed();
x=((@ + _e1) + _e 2)bl e 3
}

117

Finally, the outer indexing operation is rewritten in a danmanner, including an ad-
ditional call toboundsCheckFailed

Functions declared to take an array as a parameter areteswgd that the dynamic size
of the array is passed as an additional parameter. This péeaimecomes theé of array
expressions involving only the parameter. Calls to sucletions are rewritten to pass the
additional dynamic size information as appropriate.

The commandoundsCheckFailed must be provided by the programmer in a
component name&8oundsCheckC . The behavior of this command is unspecified but
it should not return. The expectation is that in most casedllitrestart the node after,
perhaps, attempting to log the problem. As witbCastC the Scalaness compiler auto-
matically wires toBoundsCheckC as appropriate.

The user defined handling of bounds check failure and of exgasts as described

previously is where the runtime failure semantics of Dafni#d.2.3are implemented.

5.2 Scalaness

Scalaness is implemented as a modified Scala com@leaygin 2013pbased on the open
source development Scala compiler. The Scala compiler Ipasgain architecture and it
had originally been anticipated that Scalaness could béemmgnted as a compiler plug-
in. That would have made Scalaness easier to use and maamajrthus, enhanced the
systems practicability.

Unfortunately, implementing Scalaness as a plug-in meh difficulties. The main
problem was with extending the type checker of Scala to actodate the Scalaness type

system. The plug-in approach required a complete reimpiéation of Scala typing inside

118

the plug-in. This is because plug-ins can only gain contitblee before Scala typing has
occurred or after it has completed. Consequently, the impigation of the Scalaness
typing rules couldn’t easily benefit from the logic in the gtkig type checker.

In contrast, building Scalaness as a modified compiler @tb®calaness type infor-
mation to “piggyback” on the existing type checker infrasture. In particular, Scalaness
type information was added to the singleton types alreadsted and maintained by the
Scala compiler for each declared value. This informatiamaéhen be queried at critical
points during the type checking process where Scalaness, ras shown ifrigure 4.14
were applied(atson 2013

Nevertheless, in order to facilitate keeping Scalanesshswpmized with future develop-
ments of the main Scala compiler, every attempt was madeptement Scalaness in the
least invasive way possible. Much of the logic, including trew typing rules themselves,
are implemented in separate packages away from the maindioldy compiler code base.
The instances where it was necessary to insert Scalanesficspede into, for example,
the existing type checker, have been kept to a minimum.

Making radical changes to Scala syntax was not seriouslgidered. For reasons
of simplicity, it was deemed undesirable to modifgth the parser and the type checker.
Fortunately Scala has a general mechanism for addingampitformation to declarations,
namelyannotations Scala annotations were used to express nesT module tygaaas
using an arbitrarily chosen syntax designed to be palatat$eala programmers.

This work’s foundation utilizes Scala 2.10, which also pdes an extensive reflec-
tion APl and experimental support for expression macrogséHacilities allow one to do
abstract syntax tree (AST) transformations on Scala prognasing ordinary Scala code.
Macros are described by the Scala community as a kind oftiliglght” plug-in mecha-
nism. Unfortunately, at the time of this writing, type magi@re not available so it is not

yet possible to write a macro that outputs a class definitidowever, in the future when

119

type macros become available it might be possible to imph®@me, or all, of Scalaness

as a macro library.

5.2.1 Scala Compiler Organization

The Scala compiler is organized as a numbegstaseghat rewrite the input in successive
steps lowering it to JVM bytecode. The precise phases usetedisted with the com-
mandscalac -Xshow-phases . Of primary significance to Scalaness are the first four

phases used by the stock Scala compiler as shown below.

parser
namer
packageobjects

typer

The bulk of the modifications made by Scalaness are in the pipgse. Hooks were
added at critical points in the Scala type checker that ol Scalaness-specific code
in packageedu.uvm.scalaness . Furthermore, a new phase was added between the
parser and namer phases. This new phase is responsiblegfoeating certain Scalaness
constructs with their necessary runtime support. This rseday inserting material in the
AST produced by the parser. In principle, that material ddwdve been manually writ-
ten by the programmer but instead is automatically gengrasea convenience. It is this
“post-parser” phase that could potentially be eliminatgtyipe macros when they become

available.

5.2.2 Liftable Types

Certain types and their corresponding values that appe@e$oalaness program are liftable

to types and values in the nesT modules manipulated by tlgfrgom as described in

120

subsection 4.3.3Values of these types need to be transformed as they credsotind-
ary between the two programming languages due to diffeeeimcthe way a liftable type
and its nesT counterpart are represented. This sectioniloesevhich Scalaness types are

liftable and how their values are handled when used to slmzi@nesT module.

Primitive Types

All liftable types except arrays are subtypes of a speciakeratrait Liftable . The
primitive types in nesT have liftable counterparts in Soaks that are classes extending
Liftable . For example, the typeintl6 _t in nesT corresponds with clakBnt16

in Scalaness. In this implementation there are six primjtliftable integer types: three
unsigned type8lInt8 , UIntl6 , UInt32 , and three corresponding signed integer types.
All of these types have specific sizes; the implementati@sdwmt provide a simple integer
type. This avoids issues associated with the machine depésize ofint in nesC. Fi-
nally, two other liftable primitive types are also providé€thar andUninit (which lifts
tovoid).

The nesT subtype relations for primtive integers are puveskan Scalaness. In Scalaness
the primtive types types are defined in the ob|aftableTypes so that they don’t con-
flict with any normal (non-liftable) types defined by the pragmer or the language, such
asChar. Furthermore, the integer liftable types are endowed wWithusual arithmetic
operations so they can be manipulated in the Scalanessapnagra natural way.

No conversions are provided between the liftable typeslagiddrdinary Scala analogs.
This means existing libraries that, for example, manigu&dalaChar objects won’t work

with LiftableTypes.Char . This is not regarded as a problem for two reasons.

1. Since values of liftable type will eventually be writtenanmesT components, they

will likely be put to very different uses than values of oraip Scala types. In fact,

121

letting the Scala type system catch inadvertent mixing dirary primitives and

liftable primitives could be seen as a desirable feature.

2. Implicit conversions can be easily added by the Scalanexggmmer, if desired,

using the normal facilities of Scala.

To facilitate the second poirgxplicit conversion methods from each liftable type to its
corresponding non-liftable counterpart are provided asr@enience.

The Scala type system is used to ensure compile-time tymaysaf the primitive
liftable types in a Scalaness program. For example, the ty{d® can only be con-
structed using a value of Scala’s typaort . Consequently, normal Scala type checking
prevents a potentially out of range value from being used.

Unfortunately, Scala does not support unsigned typeseigtiin the current implemen-
tation a sufficiently wide signed type is used to initializgexts of unsigned liftable type.
This makes it possible to use an out-of-range value duriegegecution of the Scalaness
program resulting in a runtime exception. However, Scatgams are subject to runtime
exceptions for a variety of reasons. It is well outside thapscof this work to address the

problem of how to ensure a Scalaness program never exits yppian exception.

Arrays

An ordinary Scala array type is liftable if, and only if, itéeenent type is liftable.This
is an exception to the rule statedsection 5.2.2hat says all liftable types must extend
Liftable and, thus, arrays are handled in a special way. Yet it is afgignt conve-
nience to the programmer to be able to use ordinary Scalgsaraad not some special
“liftable array” class, to hold liftable arrays. This needed not arise for the other con-

tainers in the Scala collections library since those coetai have no counterpart in nesT

anyway.

122

For example, the programmer may wish to create and mangalaist[UInt8]
during the execution of a Scalaness program, but the ledf iteon’t be liftable. In contrast

the programmer may wish to lift afsrray[UInt8] into nesT.

Classes

A Scala clasg” that extends theiftable trait is liftable to a nesT structure type pro-

vided it additionally obeys the following inductive rules.

1. Cis not generic.
2. All of C’s fields have liftable type.

3. All of C’s supertypes (excepinyRef andScalaObject) are liftable types.

In this case” is said to be diftable class Except for the rules mentioned here there are
no restrictions on the definition or use of liftable classagarticular, they are able to have
methods, although the methods of a liftable class have nofessation in the generated
nesT code and would exist only as a convenience to the Ssal@negrammer.

For example, consider the following Scalaness code:
cl ass Header

(val nodelD . nodelDType,
val componentlD : UInt8) extends Liftable

cl ass TimeStampedHeader
(val timeStamp . UIntl6) extends Header

HerenodelDType is a previously defined liftable class type. Consequentih lof

these classes are liftable and have representations astnesilire types.

123

5.2.3 Lifting

When nesT modules are specialized by values, the Scalasvatgsl to make those spe-
cializations are lifted into the nesT code. For primitiv@eg, occurrences of the value
parameter in the nesT code is simply replaced by a constarégsenting the actual value
used to specialize the module.

Values with array or structure (class) types are handle@réifitly. In that case the
Scalaness compiler writes a global declaration into th@ mesdule that defines the value
along with an initializer constructed from the Scala valsedito specialize the module.
This follows the semantics describedsuabsection 4.3.2

As an example, consider the following Scalaness classseptieg a nesT module that

does encryption. The module is parameterized by a key value.

@loduleType(
{3
< ; key : Array[UInt8] >
{ ; encrypt(data : Array[UInt8]) : Void }")

cl ass EncryptorC ext ends NesTComponent {
"EncryptorC.nt"

}

When this module is instantiated as describeddation 5.2.74a Scala array of)Int8
values is provided. The Scalaness compiler will outputeabrd stage generation time,
nesT code such as

nodul e EncryptorC {
provi des voi d encrypt(uint8_t data[]);

}

i npl enmentation {
/[Added by the Scalaness compiler.
uint8 t key[] = { 1, 2, 3, 4 };
I/l Uses of 'key’ as before.

}
Here{ 1, 2, 3, 4} is a sample value of the key parameter used to instantiate the

124

module. The nesT programmer does not declare the globablekey inthe nesT module
but nevertheless uses the nakeg freely in the module. In effect, the nesT programmer is
using the parameter declaration (in the Scalaness code)de bis/her work. This follows
the behavior of the nesT type checker.

The example above shows the result before the final traoslati nesC. During that
translation the Scalaness compiler will also augment thrarpeter list ofencrypt to

include an additional size parameter for the array as desgtinsubsection 5.1.5

5.2.4 MetaType

Scalaness allows types to be dynamically constructed. Memvéhe Scala type system
does not directly support using types as values. To workratahis limitation, a wrapper
generic clasMetaType[T] was explicitly introduced to represent any liftable typatth

is a subtype of.

cl ass MetaType[+Tau < : Liftable]

(val wrappedType : TypeRepresentation) ext ends Liftable

Values in the Scalaness program that are intended to holdtypss that are a subtype
of 7 have a Scala type dfletaType[Tau] . A variance annotation is used to ensure that
MetaType is covariant in its type parameter. This allows flexibiliipse, for example,
a MetaType[UInt16] value should be usable wherdvietaType[UInt32] IS ex-
pected. This is sound since the subtype relation is traesaid, for example, any type that
is a subtype oUInt16 is also a subtype dfiint32 .

Objects of typeMetaType contain aepresentatiomf a nesC type. WhildetaType ’s
type parameter is a Scala type that is liftable to nesT, theeviawraps is a representation
of the already lifted type. ThusletaType objects form a bridge between the Scalaness

and nesT type systems.

125

5.2.5 Module Type Annotations

Values definitions, method parameters, and method refaitate intended to manipulate
nesT component values must be explicitly decorated with duteotype annotation. In
this way nesT type information can be made known to the Seakwompiler without
modifying the Scala parser to understand an extended tyge¢ée directly. Module type

annotations are string literals that obey the abbreviatathg inFigure 5.5

module-type ::=
{" existential-binders? '}’
'<’ type-parameters? ’;’ value-parameters? >’
{ imports? ’; exports? >’

existential-binder ::= IDENTIFIER <!’ type
type-parameter = IDENTIFIER < type
value-parameter IDENTIFIER ' type

Figure 5.5: Module Type Syntax

The imports and exports iRigure 5.5are nesT declarations written in a Scala-like
syntax usingArray andPointerTo type constructors to define array and pointer types.
Structure types are specified usifig..} syntax to enclose the declarations of structure
members and are prefixed by the structure name.

The following shows a sample of &endC component parameterized by an integer
type suitable for use as a network address. The componewitrtsng commandadio
that takes a parametaressage of structure type. The component exports a command
send that returns the TinyOS standard error tygyeor _t which has built in support in

module type annotations.

@oduleType(

"}
< addrT <: UlInt32; >

{ radio(message
MessageType{src : addrT,

126

dest : addrT,

data : Array[UInt8,64]}) . ErrorT,
send(s : addrT,
d: addrT,
data : Array[UInt8]) . ErrorT }™)

cl ass SendC ext ends NesTComponent { ...

Annotations, such as above, that are placed on class ortagénitions are checked
against the nesT code that implements that component—efaregxternal library com-
ponents as describedsubsection 5.1.2Method parameters, method results, aad and
var definitions also need to be explicitly annotated; Scaladess not support type infer-
ence of nesT types. This does place a considerable burdére gndgrammer. However, a
type abbreviation scheme has been developed to alleviatbulden Watson 2013

In places where module types are required to be annotatedntiotated type is checked
against the actual type derived by the Scalaness type rkagure 4.14 Type errors are

reported as necessary.

5.2.6 Component Declarations

Components in nesT can be parameterized by types and valdasstantiated multiple
times. These properties are closely modeled by Scala sla¥kas, the representation of a
nesT component in Scalaness is by way of a class that extapgs@NesTComponent
marker trait.

One might be tempted to allow a syntax such as

cl ass SendC
[Adt < : UlInt32, MessageT < : AbstractMessage[Adt]]
(self : Adt) extends NesTComponent {
i mport error _t radio(MessageT *);

export error _t send(Adt addr, uint8 _t *data) {
MessageT packet = { self, addr, data };

127

radio(&packet);
return SUCCESS;

}
}

This intends to define a Scalaness component using Scakxdypntrepresenting type
and value parameters with the body of the component writtaresT. Unfortunately this
cannot be supported without modifying the Scala parserde@aesT as well as Scala.

One way to work around the problem of mixed language syntprasented by Garcia
(Garcia, Izmaylova, and Schupp 2Q2@here the “alien” language is included as a string
literal. The Scala type checker would treat the nesT progaarnaving type String but
the additional Scalaness type checking could parse thgditeral’s contents and impose
additional typing rules on those contents. However, thisa@gch leads to a rather ungainly
programming style:

cl ass SendC
[Adt < : UInt32, MessageT < : AbstractMessage[Adt]]
(self : Adt) extends NesTComponent {

""import error _t radio(MessageT *)
export error _t send(Adt addr, uint8 _t +data) {
MessageT packet = { self, addr, data };

radio(&packet);
return SUCCESS;
}llllll

Since the nesT code implementing a component is often lodgcamplex it makes
sense to allow the programmer to edit and manage that codelsthat are nesC-aware
such as nesC syntax highlighting editors. It is anticipaited in many cases different pro-
grammers with very different kinds of expertise will be @ajtthe Scalaness and nesT code

bases. Thus, this implementation uses a string literal toenan external file containing

128

the nesT contents of a component as shown below.

cl ass SendC
[Adt < : UInt32, MessageT < : AbstractMessage[Adt]]
(self : Adt) extends NesTComponent {

"SendC.nt"

Conceptually the contents of the named file replace thalitgame in the Scalaness
program much as #include directives work in C programs. @pgoach allows the normal
Scala parser and type checker to process the program sfudlyegxuring compilation the
Scalaness extension locates the specified nesTS#adC.nt above), parses it as nesT
and does nesT type checking on that file using type and vahaengders as provided to the
Scalaness class.

Using Scala’s syntax for specifying type and value pararseds shown above is at-

tractive but unfortunately it does not work for Scalanedser€ are two problems:

1. Itis the intent to allow nesT components to be passed arquad®calaness program

in an uninstantiated state. In contrast Scala classes afiestelass values in Scala.

2. NesT components can have parameters involving dynamicaiigtructed types. In
contrast Scala class parameters must involve only typésitadully specified stati-

cally.

Modifying the Scala compiler to allow dynamically constieat types to appear in dec-
larations and as type parameters was considered, but thised extensive modifications
to the existing Scala type checker and so was rejected ast@momstead the Scalaness
representation of a nesT component includes a special ohagtb@antiate , automati-
cally generated by the compiler, that is used to createntiatad nesT components. That

method accepts the value parameters as ordinary Scalagtararasing liftable types, and

129

it accepts the type parameters as ordinary Scala paranoétgpe MetaType[T] where

T is liftable. The example above becomes:

cl ass SendC ext ends NesTComponent {

def instantiate(

Adt : MetaType[UInt32],
MessageT: MetaType[AbstractMessage],
self : UlInt32);

"SendC.nt"

5.2.7 Runtime Support

In addition to compile-time analysis and type checking |&uass programs require support
for nesT module composition (aka “wiring”) at runtime. Inglsection, an overview of how
this runtime support works is provided. Full details candngnfd in the documented source
code of Scalanes€hapin 2013a Note that the current implementation of Scalaness com-
poses nesT modules and rewrites those modules to nesC igle, simegrated processing
step. The runtime system currently emits nesC directly auitlthe need for any explicit
nesT-to-nesC rewriting.

There are two operations to consider: component compostid component instanti-

ation.

Composition

Each Scalaness class that represents a nesT module is dadrbgrthe Scalaness com-
piler to contain a hidden field that represents a nesC coafiigur wrapping that single
componentFigure 5.6shows an example of a Scalaness class representing a nesilemod

that provides a command for computing checksums on a givay af bytes. This module

130

is parameterized by the type used for the checksum and byizeeokthe arrays that it
processes.

The code marked iRigure 5.6as being generated by the compiler is not legal Scala as
shown but is presented as an aid to understanding. The camagilually inserts, during
compilation, a type-correct AST of the necessary code meoXST of the enclosing class.
The Scalaness runtime library, specifically the methodsenritheritedNesTComponent
trait, makes use of this generated code during module catigros

In particular, the generated fietbnfiguration holds the reference to an object
representing a nesC configuration that wraps the nesT motlieimports and exports of
that module are extracted from the abstract syntax treeeai@¢isT code which is parsed by
the runtime system and is representedbgtractSyntax in Figure 5.6 Note that the
nesT code has already been syntax checked and type checkkd Bgalaness compiler
during the compilation of the Scalaness program. The regadone at runtime is thus
guaranteed to succeed.

The named component wrapped by the configuration is madeaftre names of the
type and value parameters. Furthermore, the Scalanesdlepaygments the class with
methodsgetTypeMap andgetValueMap that return maps associating those names
with additional hidden fields (the definitions of which are sbown inFigure 5.6 holding
the runtime representation of the type and value argumetisldy used. This information
is used during module instantiation as describeskiction 5.2.7

The method+> inherited fromNesTComponent combines the configurations in its
operands to return a new program component representirayérall nesC configuration.
It is in the +> method where the operational semantics of wiring is impleed (see
Figure 4.13. The program component returned fram is flattened in the sense that it
is a single configuration that wires all the named programpmments (nesT modules) it

contains; a hierarchy of configurations is not created.

131

@ oduleType(

"{}
< checksumType < : UlInt32; size : UIntl6 >

{ ; compute _checksum(
data : Array[UInt8]) . checksumType }"™)
cl ass ChecksumC ext ends NesTComponent {

i
/I Code generated by the Scalaness compiler.
i
val configuration =
new ProgramComponentWrapper(
new NamedProgramComponent(

name = "ChecksumC",
enclosingObject = this,

typeParameters = Set("checksumType"),
valueParameters = Set("size"),

imports = extractimports(abstractSyntax),
exports = extractExports(abstractSyntax),
abstractSyntax = abstractSyntax))

def getTypeMap =
Map("checksumType" -> sclnsChecksumType)

def getvalueMap =
Map('size" -> sclnsSize)
i
/I END of Scalaness generated code.
i

"ChecksumC.nt"
}

Figure 5.6: Generated Runtime Support for Composition

132

An image method in theProgramComponent class writes the nesC configuration
implied by the current program component and then iteratesall the named components
serializing their abstract syntax trees to nesC. During $lerialization the nesT to nesC
transformations, for example array bounds checks, etdessibed irsection 5.Jare also

done.

Instantiation

A class representing a nesT component can be instantiabeg 8sala’s operatonew
like any other class. However, such an instance still hasramstantiated module type.
Instantiation of a component at the nesT level is done ingdeals by invoking a compiler
generatednstantiate method, an example of which is shownHRigure 5.7

As for Figure 5.6the code shown as generated by the compiler is for illusinainly.
The compiler inserts during compilation the AST of the ajpiate code into the AST of
the enclosing class.

Theinstantiate method is provided module type parameters as SdalaType
values, and module value parameters, all of which must h#eéle types. The method
creates a fresh Scala instance of the class and stores thdergatameters into hidden
fields where they are subsequently used (during imaging)eoialize the module’s body.
A single instance of the Scala class could thus create mdieyatit specializations of the
nesT module by way of separate invocationgnstantiate with potentially different

parameters.

133

@ oduleType(

at
< checksumType < : UlInt32; size : UIntl6 >
{ ; compute _checksum(
data : Array[UInt8]) : checksumType }")
cl ass ChecksumC ext ends NesTComponent {
i
/I Code generated by the Scalaness compiler.
i
private var scinsChecksumType : MetaType[UInt32]
private var scinsSize : UIntlé = null

def instantiate(

checksumType : MetaType[UInt32], size : UInt16)
val result = new ChecksumC
result.scinsChecksumType = checksumType
result.scinsSize = size
result

}

i

/I END of Scalaness generated code.

i

"ChecksumC.nt"
}

nul |

Figure 5.7: Generated Instantiate Method

134

Chapter 6

Evaluation

This chapter presents the results of evaluating the pedonca of Sprocket and Scalaness/
nesT. The results are presented in terms of both simple ‘pograms that explore spe-
cific issues in isolation, and on a larger, realistic appiccaemploying trust management

authorization that demonstrates the applicability of §stesms in real world scenarios.

6.1 Field Example

To evaluate the performance of SpartanRPC and Scalaneseeal application setting,
both systems are used to implement secure versions of dé¢atmm and sampling con-
trol protocols in an environmental monitoring system. Thewcloud systemRrolik and
Skalka 2013Moeser, Walker, Skalka, and Frolik 201% a wireless sensor network devel-
oped at the University of Vermont for snow hydrology resbaapplications. It is based on
the MEMSIC TelosB mote platform running TinyOS, and has seeitiple field deploy-
ments. Typical deployed systems comprise 4-8 sensor nadiéisestechnology is scalable
to arbitrary numbers of nodes. For data collection and sagpéate control, the system

also includes a handheld “Harvester” device. This devicernporates a TelosB mote to

135

Figure 6.1: A Snowcloud Sensor Node (L,C) and Harvester Device (R).

establish a network connection when in radio communicatiibh the deployment. Users

transport the device to and from deployment sites, andantevith the sensor node net-
work by issuing commands from a simple push-button intexf@cHarvester device and a
deployed Snowcloud sensor tower are picturefigure 6.1 The scheme described here
has been implemented and tested in the UVM test network,hwses the same software
and hardware platforms as in the active deployments.

In the secured version of the Snowcloud system, the goaltre&b data collection and
sampling rate control as protected resources requirinigoaization. Furthermore, sam-
pling rate modifications should require a higher, “admpuaitsir” level of authorization than
data collection. That is, only system engineers should e tabperform control opera-
tions, whereas data end-users making field visits shoulthlegt@ collect data. Snowcloud
sensor node code in particular makes use of nearly everynasavailable on the mote—
including timing, sensor I/O, radio messaging, and flash orgnmot to mention CPU and
main memory. Thus, it is a robust example of a realisticaibled application.

The system described here is also informative since it caeasédy ported to other
similar application settings. That is, sensor network ijaibn settings wherein multiple

users of various authorization levels need to interact tighsame network in control or

136

collection capacities, as mediated by security policy.

A note on secure deployment. In the Sprocket version of the field example, the nodes
are deployed with private keys embedded in ROM. The systethuis as secure as the
tamper-resistence of the nodes permits. However, one soensualized with Scalaness
is for the specialized program to be deployed using an dwiatr reprogramming system
such as Deluge. In that case session keys negotiated byghetéige program could be
exposed to eavesdroppers. However, this problem can bgatetl using secure over-the-
air deploymentDutta, Hui, Chu, and Culler 2006In any case, Scalaness doesnegjuire
over-the-air deployment; programming nodes in the labrgadoeing physically deployed

would also be a common scenatrio.

6.2 Sprocket

This section discusses the performance of the programgaedeby Sprocket in terms
of both space and time. It begins by evaluating Sprocketgugoy” programs that focus

on specific aspects of the system’s performance. Next tHerpgaince of Sprocket on the
field example is discussed. The combined use of public andterkey cryptography in the
underlying security protocol is shown to impose a low anzedi cost over time, despite
high costs for initial authorizations.

Since many communication chips now support hardware AE8yption, this evalu-
ation demonstrates performance using that feature. Incpkat, the popular Tmote Sky
wireless sensor motenpteiv 2006 uses a Chipcon CC2420 transceiver with hardware
encryption. Unfortunately, the standard TOSSIM simulagmvironment does not model
hardware encryption for TinyOS 2.1 so all tests were peréatran real hardware, lim-

iting the tests to small scale configurations. Tmote Sky soslere used, with 10KiB

137

of RAM, 48 KiB of ROM and an 8 MHz MSP430 microcontroller rungi TinyOS 2.1.2
(Community).

The system was exercised using several small test progfidmse programs consisted
of a client/server pair where the client repeatedly sent ssange containing a 16 bit value
to the server. The purpose of these tests was to explore érkenad induced by the system
with minimal obscuring effects from application logic. Tpercentage overhead observed
with the small programs is thus a worst case overhead.

A demonstration program was also created that implememedlirected diffusion
algorithm (ntanagonwiwat, Govindan, Estrin, Heidemann, and Silv@3P@ver several
nodes. This program allowed testing of the behavior of tteesy in a long-running set-
ting, and exercised the system in a multi-mote, multi-homoek environment. Although
the demonstration program did not perform any significantfon, it did show that useful

higher level services can be built on top of SpartanRPC.

6.2.1 Memory Overhead

The Sprocket run time system uses several memory cachesdddyomaterial, creden-
tial information, and the minimum model implied by the sekabwn credentials. These
caches are statically allocated but must be stored in RAEdineir contents are dynamic.
Table6.1 summarizes the RAM consumption of the various storage arsed by the cur-
rent implementation.

The number of items in each cache are tunable parameters.oftireum settings
depend on the intended application. The values in Tédettempt to strike a balance
between usability and flexibility on one hand and excessieenory consumption on the
other. In applications where these needs are more cleaowka priori, the sizes of the

caches can be adjusted to potentially result in lower meroonmgumption.

138

Table 6.1: RAM consumed by various storage areas

Storage Area # Items| Bytes/ltem Total Bytes
Session Keysi{;,) 10 22 220
Public Keys) 12 40 480
Credentials«..) 12 16 192
Model (1,,,) 16 6 96
Total 988

The justification for the choice of the number of items in esicinage area is as follows.
Assume a nodeV; offersn,; services and has); neighbors. In the worst case a session
key is needed for each service on all/éfs neighbors and for every neighbor connecting

to IV;'s services. The number of session keyds given by

m;
ng = E Ns; | +myng
i=1

wheren,; represents the number of services on neighboFor example ifN; had five
neighbors each offering one service andVif offered one service, the total number of
session keys required would be 10. Sprocket presumes arsummattier of neighbors with a
small number of services on each node. Notice, howeverihisatioes not preclude using
the system in a large network; SpartanRPC is a link-layetopd and is only concerned
with the immediate neighbors of a node.

The number of public keys is related to the complexity of theeas policies used by
the services. The intersection credential mentions thueégkeys so in the worst case the
number of public keys,, = 3n. wheren, is the number of credentials in the credential
storage. However, the intersection credential is rare dradheer credentials only mention
two public keys. This suggests an upper bound closey, te 2n..

In real policies, however, it is necessary for the same puddy to be mentioned in

139

more than one credential. For example consider a simplentiad chain such ag;.r; +
Esrg, ..., Eir;y + Ei1.1i41,..., B, < E,.1. In this case the number of credentials
is n and the number of unique public keysrist 1. It appears reasonable to suppose that
in realistic policies the number of credentials and the neindf public keys are about the
same. For this reason Sprocket sefs= n..

More difficult to judge is the number of credentials involvedeal-world authorization
scenarios. Clearly this will be application specific andl wary widely. However, two
or three credentials needed to establish authorizationresasonable assumption, since
most likely application designers will avoid complicatedlipies in a resource constrained
setting. Thusw. ~ 3ng wheren, is the number of interacting domains, assuming each
domain provides a single protected service. Assummingahigttwo other domains will
be in the immediate vicinity of a nod¥;, thenn, = 3. Sprocket sets,. = 12 to provide
some space for the case when a neighboring domain offersthmmennce service.

If every entity defines the same roles and if the policies adh ghat every entity is
in every role, then the number of model tuples required,is= nTnf, wheren, is the
total number of roles involved. This value is unrealisficddrge, however. In a system
where access is widely granted (cooperating domains) & vg|u= n,n, would be more
appropriate. Sprocket assumes thats about three and that. is about four or five, thus
n,, = 16 is used.

Table6.2 shows the overall memory consumption of two small cliemi/sepairs. The
baseline pair handle all communication through normal\vectMessage packets that are
explicitly programmed by the user. The SpartanRPC pair Ggeecket which includes
support for certificate distribution and verification, Seakey management, authorization
logic, and MAC computations. The Directed Diffusion enthpw/s the memory consump-
tion of the demonstration program that implements thatrélyo.

Although the overhead incurred by the Sprocket runtimeesgss significant on this

140

Table 6.2: Memory consumption of test programs

Test Program RAM Bytes ROM Bytes
Baseline Client 349 10982
Baseline Server 283 10490
SpartanRPC Client 2222 23108
SpartanRPC Servey 2126 23394
Directed Diffusion 3105 27826

test platform, nearly 80% of RAM and 50% of ROM resources &ileasailable. Further-
more, these memory usage numbers scale well to denser pegitals and extended RPC
services because many aspects of the runtime system, ioytarthe RAM reserved for

SpartanRPC, are independent of the number of RPC servicesgin

6.2.2 Transient and Steady State Processor Overhead

The execution performance of Sprocket generated prograsptags two distinct behav-

iors. The first is a transient behavior that occurs after aerfmabts when certificates are
exchanged and session keys are negotiated, on demand ebetiwees new node and its
neighbors. The second is a steady-state behavior thatoodadng normal operation. The
transient overhead of Sprocket is large but the steady stetghead is not. In a quasi-
static environment, where new nodes enter the networkgoénmtly, the transient costs are
amortized and it is the small, steady state overhead thainddoes.

To explore the steady state overhead three tests were dexdduc

1. A baseline test where the message handling was done elyplising traditional

Active Message interfaces.

2. A duties test where Sprocket was used but no authorizatienreguested. This

141

Table 6.3: Maximum message transfer rate

Test messages/s % Reduction
Baseline 128 -
Duties 119 7.0
MAC 87 32.0

is equivalent to using the authorization componeh@NullC and ASNullC in

Figure 3.9

3. A MAC test where authorization was requested but where tesi@e key storage

areas were preloaded with appropriate session keys.

Table 6.3 shows the maximum rate at which messages could be sent agide@dbdy
the test programs mentioned above. Note that the MAC tesemse of the hardware as-
sisted AES support provided by the CC2420 radio chip. Thesets show that maximum
message send rates decrease by a factor of 7% due to theoaddithe duties program
logic, and further decreases by a factor of 25% due to MACutalions. It is noted that
the latter overhead would be incurred in any system usingA2G21AC calculations.

The transient runtime overhead of this system can be swud®tivinto three primitive
operations: the time required to transmit and verify a fiedie, the time required to build
the minimum model, and the time required to negotiate a sessy. Two of these oper-
ations require lengthy public key computations and donaitla¢ transient behavior. Thus
the performance in this regard is closely tied to the peréoroe provided by TinyECC.

TinyECC provides a number of tunable parameters that casée to optimize perfor-
mance by trading off space and timay and Ning 2008. Since the tests on this system
had no particular application constraints in mind, the H@Y “out of the box.” was used.
However, TinyECC'’s optimizations can be used to tune thépaance of the system to

better match a particular application. For example, attigathe Shamir Trick cut cer-

142

tificate verification time in half at the expense of incregs®RAM usage by nearly 700
bytes.

Table 6.4 shows the times required for each of the primitive transogrgrations. The
time required to build the minimum model is directly relatiedthe number and nature
of the credentials involved. In this test a collection of frepresentative credentials that
included at least one of each type was used. In any case itiésisi entirely negligible
compared to the other transient operations.

Table 6.4: Processing time for transient operations

Operation Time

Certificate Verification 82s

Minimum Model Construction| 370us

Session Key Negotiation 80s

The time quoted for session key negotiation representdrtiteerequired for both ne-
gotiating partners to compute the session key. In the cumgplementation the two ne-
gotiating nodes do this sequentially with the server nodemding the session key before
responding to the client node. This was done in case theoselssy computation failed on
the server to ensure that the client does not falsely bebesession key was successfully

negotiated.

6.2.3 Transient Times for Directed Diffusion

As argued above, the overhead imposed by Sprocket is phyntha time the network
spends in an initial transient state when credentials arfieatgand session keys are ne-
gotiated. Subsequently, the network enters a steady stategdvhich the main cost is a
32% reduction ifmaximalmessage send rates due to hardware AES encryption. In order

to evaluate the performance of Sprocket in a realistic appbn, therefore, the transient

143

times of the demonstration directed diffusion applicatiare quantified. The experiments
elected a single node to repeatedly express an interestesedve how long was required

for that interest to flood the network. This time depends oedimajor factors:
1. The number of certificates transferred.
2. The number of neighbors for each node.
3. The number of hops to the “far” edge of the network.

Two experiments were conducted, one on a single hop (stamonke and another on a
multi-hop (mesh) network.

In the single hop case, transient tifiecan be described by the following equation:
T=nB+V+n,K

where B is the certificate broadcast interval, is the certificate verification time is
the session key negotiation time, is the number of certificates ang is the number of
neighbors. Sincé was set to 90 seconds, which is greater thamertificate verification
for n. certificates takes time.B + V given a 90 second system initialization period. And
since session keys need to be negotiated wjtmeighbors in turn;” also comprises a
n, K delay. Table.5shows the transient time required to flood a network whereaaks
are one-hop neighbors of the root node. Values are giverhfeetdifferent policies with
different numbers of certificates transferred from the todhe neighbors.

The behavior of the system was explored in a multi-hop envirent by creating a
linear mesh network. Each node (except the root) had a stwylestream neighbor. All
nodes were booted simultaneously and the time requiredferast information to reach
each node was observed. The policy used required only aesiedificate to be transferred

between nodes. Tab&6 shows the results of several runs.

144

Table 6.5: Transient time in single hop directed diffusion

neighbors | 1 Cert | 2 Certs| 3 Certs
1 4m03s| 5Sm27s| 6m52s
2 5ml6s| 6m50s| 8m24s
3 6m32s| 7m57s| 9m30s
4 7m50s| 9m22s| 10m51s

Table 6.6: Transient time in multi-hop directed diffusion

Run 1 hop | 2 hops| 3 hops
1 4mO05s| 7m24s| 9m10s
2 3ml2s| 5m12s| 6m30s
3 3m57s| 7m37s| 9m15s
4 4m09s| 7m15s| 8m49s
Average | 3m51s| 6m52s| 8m23s

145

The reason for variations in transient times over each rus avee to a randomized
element in the protocol, specifically a randomizet% interval in certificate broadcast
times to avoid collisions. In these results it is essentahate that for hops- 2, extra
transient time is comprised solely of session key negotidtmes (80s per session key, see
Table6.4) that are forced by duty postings as interests propagataghrthe network. Cer-
tificates are broadcast and verified in parallel throughoeitietwork upon system bootup,
during the same time period required for the root’s intetegiropagate through the first

and second hops.

6.2.4 Snowcloud with Sprocket

To explore the real-world feasibility of using SpartanRP@l &procket, the unsecured
versions of the Harvester and sensor node programs desanibection 6. were enhanced
to use SpartanRPC for access control.

To specify and implement the security policies informallgsdribed previously, the
sensor network and the Harvester single node “network” wensidered as separate secu-
rity domains, each with its own set of credentials. The senstwork is always endowed
with administrator-level credentials. If a Harvester iso®mused by a system engineer, it
is also endowed with administrator-level credentials, \ehe a Harvester to be used by a
data end-user is only endowed with user-level credentéllsen a Harvester is introduced
to the sensor network, its resource accesses are mediatedanhorization level. Since
credentials are unforgeable, a user-level Harvester caer e used for sensor network
control even if it is reprogrammed.

Sensor nodes within the network possess four credentisl&llaws. In these cre-
dentials the Snowcloud domain is abbreviatgd. Authority to collect data and control

sensors in the network are governed by the rél€sCol and SC. Con, respectively. Cre-

146

dential (1), below, says that any node with control autlyalso has collection authority.
(2) says that nodes in the Snowcloud domain have controbatih(3) says that any en-
tity in a Snowcloud collaborator'#’sr role has collection authority. (4) says that the node
identified by Nid is in the Snowcloud domain.

(1) SC.Col +— SC.Con (2) SC.Con <— SC.Node

(3) SC.Col <— SC.Collab.Usr (4) SC.Node <— NId

When invoking remote services, the node will do so on beHaleentity N/d. It will also
be imaged with theVid private key for session key negotiation.

Any Harvester within the Snowcloud domain is given the creidé SC'. Node <— HId
and theHId private key issued by Snowcloud domain administration.sMail provide
that Harvester with collection and control authority in th@main. For Harvesters to be
provided to collaborators, the Snowcloud administratsssié a credential establishing the
institution as a collaborator, while the institution ifselay define and manage policy for
their Usr role membership. For example, the University of New Hamgshepresented by
RT entity UNH, can be established as a collaborator with credential &owg issued by
Snowcloud domain administration, and may specify role menstiip with the credential

(6) issued by UNH domain administration:
(5) SC.Collab <— UNH (6) UNH.Usr <— UsrID

These two credentials, along with thi&r/D private key, are imaged on Harvesters used
by UNH collaborators for data collection, but which remairauthorized for control. Sig-
nificantly UNH could program their own Harvester nodes withthe Snowcloud domain
being involved aside from providing credential (5) abovieepolicy set by UNH to decide
who, exactly, is in thed/NH . Usr role is of no concern to the Snowcloud domain adminis-

trators.

147

Implementation

Resources themselves are accessed through a secure codigs@mdiination protocol, that
is modeled upon the TinyOS Dissemination protocol (as desdrin TEP 118). In short,
protected RPC services establish network level broadbastnels requiring authorization
for use. Commands are communicated to the network over ttes®els, and different
channels are used for different sorts of commands.

In more detail, command broadcast services can be specdiadiaty in a remotable
interface:

i nterface SpDissemUpdate {
duty voi d change(command_t new value);

}
To implement, e.g., the control command channel, the fatigwnodule can be defined
and included on sensor nodes in the Snowcloud domain:

nodul e ControlDissemC {
provi des renote
i nterface SpDissemUpdate requires "SC.Con";

uses interface SpDissemUpdate as NeighborUpdate;
provi des interface ComponentManager;

}

i npl enentation { ... }

In the implementation, the providé&gpDissemUpdate interface accepts command
invocations from neighbors, but requires them to be autledrfor theSC'. Con role. Com-
mands are relayed to all other neighbors (i.e., dissendhaia the usedeighborUpdate
interface; those neighbors are identified by the providethponentManager .

To use this component, both sensor and Harvester nodesciguse it through the fol-
lowing component instantiation and wiring, where the comgra’sNeighborUpdate

interface is wired remotely to neighbors:

148

conponent s ControlDissemC as ControlChan;
activate "+" for
ControlChan.NeighborUpdate ->
[ControlChan].SpDissemUpdate;

Note that a node must be endowed with the appropriate crietkefdr this wiring to be
useful.

This same code pattern can be used to implement a data amileetjuest channel,
protected by theéSC'.Col role instead ofSC.Con. In response to an authorized control
command invocation, sensor nodes will modify their behaajopropriately, whereas in

response to authorized data collection requests sensesmnaitl report their data using

collection tree protocol (TEP 123) to the Harvester.

Results

Results can be characterized according to both the userierpe and to quantitative as-
pects. As detailed isubsection 6.2,2a one-time transient overhead is imposed for initial
credential exchange and session key negotiation when abtands first introduced to the
network. However, since data collection for a network atreral months of deployment
can take up to an hour, this overhead is relatively insigaific And steady-state over-
head is small, and does not significantly affect data codlaatates. Thus, authorized user
experience is not negatively impacted by the addition ofisgc

From a quantitative perspective, the most important measents to consider for this
application are RAM and ROM consumption of the unsecure aedred versions of the
Harvester collection protocol. It must be considered whetayering SpartanRPC secu-
rity over a realistic application will overrun the resouscavailable to a node. Relevant
measurements are shownTiable 6.7

Both RAM and ROM consumption are significantly increasedhsydddition of Spar-

149

Table 6.7: RAM and ROM comparison for SpartanRPC Snowcloud

Program RAM Bytes ROM Bytes|
Unsecure Harvester 2274 24316
Secure Harvester 4771 35834
Unsecure Sensor Node 2868 36254
Secure Sensor Node 5417 48616

tanRPC security to this application. However, these nusaer within operating parame-
ters. Also Sprocket has not yet been optimized so additiomalovements could likely be

made.

6.3 Scalaness/nesT

The generality of Scalaness makes a full evaluation of ttsesy difficult to interpret.
However, in keeping with the aim to demonstrate trust mamage in embedded systems,
Scalaness was applied to the problem of supporting trusagenent in the Snowcloud
application in a manner similar to that describedsubsection 6.2.41t should be noted,
however, that as a general staged programming system,ngsalaan be used for many
purposes; building authorization systems is only one appbn. Furthermore Scalaness
could be used to support authorization in various ways ddipgron the trade offs needed

between node efficiency, deployment frequent, and systectifinality.

6.3.1 Snowcloud with Scalaness

To demonstrate a staged solution to providing trust managéim Snowcloud, a Scalaness
program calledSnowstornwas developed. Snowstorm is intended to be run by each secu-

rity domain participating in a deployment. It targets a camivonal machine with Internet

150

Cert/Key authorization Cert/Key
Storage key negotiation Storage

Y Y

Harveste SensorBo

X

Figure 6.2: Running Snowstorm

connectivity and arbitrary resources.

Figure 6.2shows two instances of Snowstorm runniisty; and Sy, one by each of
two administrative domainsSy is run by the sensor network administrators and is only
interested in generating the sensor node applicatigris run by the collaborating domain
and is only interested in generating the Harvester appdicatNormally, the two domains
would probably run completely independent Scalaness progyperhaps using a common
library, but as a convenience during development a singigram was created to serve the
needs of both domains.

Sy reads the access policy from suitable configuration filesigagntered by the user)
consisting of R7T credentials in a convenient synta%,y and .Sy run continuously and
communicate via the Internet. Both programs provide arractere user interface with
features for generating and managing keys, issuing criedenand storing policy state-
ments and credentials from its peers. As directed by its figerequests access to node
collection or control resources, causing authorizatiahsgession key negotiation to all take
place automatically. Once session keys are available siecan direct Snowstorm to gen-
erate the appropriate node level program, withgenerating the sensor node program and
Sy generating the Harvester program. The nesT modules thhtoviimunicate during
stage two execution are specialized with the previouslymded session key values.

The development of Snowstorm was a straight forward ex@inisoftware engineer-

ing; most of the program is ordinary Scala. Snowstorm malsesai widely used third

151

party Java libraries for Internet communication and EC@tographic operations. Thanks
to the expressive power of the Scala language, it was pessibinplement the cor&7;
authorization decision in just 90 lines. Furthermore,@lifjh Snowstorm has only a text-
mode interface it would have been a simple matter to endowhtavfully fledged graphical
interface if desired. A majority of Snowstorm developmeaswdone without any special-
ized knowledge of embedded systems development, a poiigrofisance since embedded
systems programming often requires different training exyerience from that used by
general application developers.

When asked to generate their node level programs, Snowsipecializes a few key
nesT modules with key information and then composes thoskilas to form fully func-
tioning node programs. When deployed to the nodes, thegggms behaved as did the
original implementation. Anecdotally the Scalaness tyystesn proved its worth several
times during the development of Snowstorm. The compileeatet! improper wirings as
type errors, thus preventing nonsense compositions of mexiules.

Snowstorm’s implementation also made extensive use ofredt@esC libraries. In
fact, the bulk of the original, tested sensor node and H&vg@sograms were wrapped as
external libraries in the manner describegubsection 5.1.2NesT modules were created
primarily to hold key material and to interact with the AEScermption hardware on the

CC2420. No significant changes were needed to the existiig lcase.

6.3.2 Memory Usage

To explore the efficiency of Scalaness generated programsyémory consumption of the
generated code was measur&dble 6.8shows the results with the memory values of the
Sprocket version shown ifable 6.7duplicated in the “Unstaged” column as a convenience.

The “Savings” are the percent reduction from unstaged tgestaecure implemen-

152

Table 6.8: RAM and ROM comparison for Scalaness Snowcloud

Unsecured Unstaged Staged| Savings

Sensor ROM| 36254 48616 | 36596 | 25%
Sensor RAM 2868 5417 3038 | 44%

Harvester ROM 24316 35834 | 24436 | 32%
Harvester RAM 2274 4771 2402 50%

tation, and these numbers demonstrate that the potentiahfang both RAM and ROM
space is significant. Unsurprisingly the memory consumetibyscalaness generated code
is virtually identical to that used by the unsecured prograithe only overhead injected
into the staged node programs is that required to interdhtthve AES encryption hardware
and, of course, to hold the negotiated session key material.

From the perspective of user experience, the staged vessihis application is more
convenient, since no initial authorization period is nekdden the harvester is first in-
troduced to the network. The staged version also exposesytem to fewer bugs and
failures that would be obstacles to the primary goal of datkection. On the other hand
the staged version requires the presence, somewhere iapgl®/thent cycle, of a powerful

machine on which the first stage program can be executed.

153

Chapter 7

Conclusion

This dissertation has described two language-level appesafor providing, for the first
time, trust management style authorization to resourcstcained embedded systems. One
approach, SpartanRPC, is based on a remote proceduresmfilioie with primitives for
specifying authorization requests and requirements. Tter @pproach, Scalaness, makes
use of staged programming to off-load complicated secudtyputations to a higher pow-
ered machine.

As a method for providing distributed trust management souece constrained sys-
tems, both approaches are feasible. SpartanRPC demarsidarable resources on the
devices, limiting the amount of memory and processor tinadlable for application logic.

In particular, SpartanRPC enabled applications exhibitdient start-up times measured
in minutes, although maximum steady-state message traradés exhibit a degradation
of only about 30%. In addition, the SpartanRPC runtime sgstensumes approximately
13 KiB of ROM and 2 KiB of RAM. Despite these significant ovesglas, realistic applica-
tions can nevertheless use the system as evidenced by thiar§RRC-enabled version of
the Snowcloud application.

SpartanRPC is fundamentally a link-level protocol. Sirteetumber of neighbors in

154

a typical sensor network remains small as the network grthvesapplicability of Spartan-
RPC is only weakly impacted by the total size of the networke Thain issue is in the
relatively long session key negotiation time; the first timenessage floods the network
an extremely long time may pass before the message reaaheetiork frontier since
session key negotiations must occur sequentially at egeh ho

Scalaness has the potential of greatly reducing the loati®@ermbedded devices. In
a trust management context, with a Scalaness program pmpttong session keys, the
long transient start-up time and large memory overheadpaft8nRPC are all but elim-
inated. The very slow network flooding time experienced bar&mRPC applications is
also removed. However, The 30% reduction in maximum messagsfer rate remains.

Scalaness does require a deployment scenario where a nveeefplomachine is avail-
able to specialize the device programs. In some scenaedshle required to generate and
deploy the specialized node programs might be significagating somewhat the advan-
tage in transient start-up time Scalaness has relativeaad@@|RRPC. However, Scalaness is
a far more flexible system, admitting other kinds of deplogtrszenarios and application
use-cases besides those available to the more limitedaBpRErC.

Indeed, Scalaness represents a more principled approgehéoating efficient embed-
ded systems software in general, as evidenced by the foresarigtion of the system in
chapter 4and in the foundationalML) work (Liu, Skalka, and Smith 2032 Scalaness
provides a unique combination of staging with process sejoar, dynamic type construc-
tion, and a cross-stage type safety conjecture that enabl®bust and efficient generation
of many embedded systems applications. In a Scalanesxtdhtembedded trust man-
agement problem is nothing more than a demonstration apialic

Both SpartanRPC and Scalaness are tied to the nesC progngrifanguage, either by
extending nesC in the case of SpartanRPC or by translatipg@adized language into

nesC in the case of Scalaness. However, the systems desbebe are not specific to

155

sensor networks and would be applicable in any environméwetrevnesC is used. Fur-
thermore, although nesC was developed for sensor netwibdayld be used as a general

purpose embedded systems language.

7.1 Future Work

Possible future directions of this work can be divided into broad categories: generaliz-
ing the systems and providing additional safety guarantees

The Sprocket implementation of SpartanRPC is already naoderiough to support
alternate (and even multiple, simultaneous) authoripati@chanisms. It would be inter-
esting to experiment with richer trust management langsiageh as?7; and its variations
to see how expressive a trust management language coulgperted on constrained de-
vices. Currently theRT, authorization logic uses minimal time and space so conbBiva
fairly complex trust management languages could be suggavithout significantly in-
creasing the overall overhead of the system. Notice thatinent version of Scalaness
already supports arbitrary trust management languagesibethe first stage program runs
in an environment with relatively infinite resources.

Sprocket currently supposes that neighboring nodes conaatenover a radio link.
However, this assumption is only reflected in the code geaétay Sprocket for the stubs
and skeletons. It would be a simple engineering matter tafymw8grocket to generate stubs
and skeletons for some other communication technology asdCP/IP or the Controller
Area Network (CAN) bus widely used in automotive embeddesiesys Pazul 199%.

SpartanRPC is, however, closely tied to nesC because of dlgatwdefines and uses
dynamic wires. In contrast, the current implementation cdl&ness formally translates
nesT to nesC as it generates the second stage program. THhigdimslation step could

be modified to produce a different language, such as C, witbhamge to the founda-

156

tional semantics. This would make the system applicablel&wger group of embedded
developers.

The type safety guarantee provided by Scalaness is valbablembedded systems
have other correctness needs as well. Many embedded syaterased in safety critical
applications where assurance of freedom from runtime grsarch as array bounds over-
flow, is essential. Systems exist that can analyze Ada or @ranes to prove freedom from
such errorsBarnes 2000Cuoq, Kirchner, Kosmatov, Prevosto, Signoles, and Yakakow
2012 and those systems could conceivably be applied to the pofp8calaness now.
However, it would be an interesting and challenging diattior future work to extend
Scalaness so the programmer could be assurealii@bssiblegenerated programs were

free of important classes of runtime errors.

157

Appendix A

Scalaness/nesT Sample

This appendix shows a simple Scalaness/nesT sample. Th@esaomposes two nesT
modules being used as part of a hypothetical communicatmiogol. One module formats
messages for transmission and the other module computelsstimes.

It is reasonable for the checksum module to be separate diffeeent applications
may wish to use different checksum algorithms. In fact, tkal&ess program could
dynamically select one of several candidate checksum reedid it composes the overall
application, although that feature is not demonstrated.her

Beginning with the Scalaness program itself: In this singxdample the entire program
is contained in a single Scala object holding the main methdoe program begins by
declaring objects representing the wrapped nesC librageded. It then declares classes
representing the nesT components to be used, defines sopee hedthods, and executes
the main body. Notice that the type abbreviation bind#/atéon 201Bare used to intro-
duce convenience objects holding module type information.

This program demonstrates dynamic type construction, mesdule type and value
parameters, module instantiation, and wiring. The progaésn demonstrates returning a

dynamically constructed type from a Scala method.

158

The full source code is below.

[mm e e e
/I FILE : Main.scala

/I SUBJECT : Scalaness checksum sample.
e ----

obj ect Main {

i mport edu.uvm.nest.
i nport edu.uvm.scalaness.
i nport LiftableTypes.

/I The Scalaness representation of the library imports.
@ oduleType(
"}
<>
{ booted() : Void,
fired) : Void; }'™)
obj ect LibrarylC ext ends NesTComponent {
external("LibrarylC.nc")

}
/I The Scalaness representation of the library exports.
@loduleType(
"}
<>
{ ; startPeriodic(period : UInt32) : Void }™)

obj ect LibraryeC ext ends NesTComponent {
external("LibraryEC.nc")

}

/I A component for computing checksums.

@1oduleType(
" {
< checksumType < : UlInt32; size : UIntl6 >
{ ; compute _checksum(
data : Array[UInt8]) . checksumType }"™)

cl ass ChecksumC ext ends NesTComponent {
"ChecksumC.nc"

159

/I A component for creating messages.

@ oduleType(
"}
< checksumType < : UlInt32; size : Uintl6 >
{ compute _checksum(
data : Array[UInt8]) : checksumType,
startPeriodic(period . UInt32) : Void,

booted() : Void,
fired() : Void }"™)
cl ass MessageFormatterC ext ends NesTComponent {
"MessageFormatterC.nc"

}

| **
* The following method returns a fully instantiated
* nesT module for computing checksums. The precise
* module created depends on runtime information.
*/
def getChecksummer(
size : UlIntl6, checksumType : MetaType[UInt32]) = {

@oduleType(

"}
< checksumType < : UlInt32; size : UIntl6 >

{ ; compute _checksum(
data : Array[UInt8]) . checksumType }"™)
val CheckSummer = new ChecksumC

@oduleType(
" checksumType < : UInt32 }
<>
{ ; compute _checksum(
data : Array[UInt8]) . checksumType }™)
val instCheckSummer =
CheckSummer.instantiate(size, checksumType)

instCheckSummer

160

| **

* The main method obtains configuration information
* from the command line and composes the final

* program.

*/

def main(args : Array[String]) {

/I Create type abbreviations for convenience.

/' An uninstantiated module type.
val MesgT = new TypeAbbreviation(

"}
< checksumType < : UlInt32; size : UIntl6 >
{ startPeriodic(period : UInt32) : Void,
compute _checksum(
data : Array[UInt8]) : checksumType;
fired) : Void,

booted() : Void }™", List())

/I An instantiated module type.
val FormT = new TypeAbbreviation(
""{ checksumType < : UInt32 }

<>
{ compute _checksum(

data : Array[UInt8]) : checksumType,

startPeriodic(period : UInt32) : Void,

booted() : Void,
fired) : Void }™, List())

/I An instantiated module type.
val CheckT = new TypeAbbreviation(
""{ checksumType < : UInt32 }
<>
{:
compute _checksum(
data : Array[UInt8]) . checksumType }™",
List())

/' A runnable module type.
val ResultT = new TypeAbbreviation(

161

" checksumType < : UInt32 }

<>
{5)™, List()
/I Return a MetaType based on command line argument.
def getChecksumType(args : Array[String]) = {
args(0).tolnt mat ch {

case 8 =>
printin("Selecting 8 bit checksums")
new MetaType[UInt32](NesTTypes.UInt8)

case 16 =>
printin("Selecting 16 bit checksums")
new MetaType[UInt32](NesTTypes.UInt16)

case 32 =>
printin("Selecting 32 bit checksums")
new MetaType[UInt32](NesTTypes.UInt32)

}
}

/I Method that returns a liftable value.

def getSize(args : Array[String]) = {
val size = args(1l).toint
printin(s"Selecting $size byte message blocks")
new Ulnt16(size)

}
i f (args.length ! = 2)

printin("Usage . Main bit _length block _size")
el se {

/I Get run time information about types/values.
val desiredChecksumType = getChecksumType(args)
val desiredSize = getSize(args)

/I Uninstantiated message formatter.
@ypeAbbr(MesgT)
val MessageFormatter =

new MessageFormatterC

162

/I Instantiated message formatter.
@ypeAbbr(FormT)
val formattingModule =
MessageFormatter.instantiate(
desiredSize, desiredChecksumType)

/[Compute appropriate checking module.

@rypeAbbr(CheckT)
val checkingModule =
getChecksummer(

desiredSize, desiredChecksumType)

/Il Wire things together.

@ypeAbbr(ResultT)
val resultModule =
LibrarylC +>
formattingModule +> checkingModule +>
LibraryEC

/I Generate the nesT/nesC.
resultModule.image()

Below is the nesT implementation of the checksum modules Véision uses a simple
arithmetic summation. It is parameterized by the type usdtbtd the checksum and by
a value representing the size of the array to be processeds Jjecializations of this
module can only operate on fixed sized arrays, presummasblgite of some standard

message format.

/I Type : checksumType: Type used to hold a checksum.
/I Value: size: Size of the data array to process.
nodul e ChecksumC {
provi des conmand
checksumType compute_checksum(uint8_t datal]);

}

i npl enentation {

163

/I Computes a simple checksum over the data array.
command checksumType compute_checksum(uint8_t data]])
{

checksumType sum = 0;

intl6 _t i

/I Casting from uintl6_t to intl6_t is explicitly
/I enabled in type compatibility relation. The
/I compiler uses a built-in implementation of this
/I conversion.
1
for(i = 0; i < (intl6_t)size; ++i) {

sum += data]i];

}

return sum;

The listing below illustrates how the Scalaness compilerites the checksum module
to pure nesC in the example program given. This listing alsmwvs the result of type
and value specialization, in this instance implemented &y of simple substitution. This
version of the module was created for 8 bit checksums on eightent data arrays.

Notice the addition of compiler generated variables to tyidamic size information
for the array expressions. These variables are checkedstoeememory safety as de-

scribed insubsection 5.1.5

nodul e ChecksumC {
provi des {
command uint8_t compute_checksum(
uint8_t data[], uintl6 t sc data SIZE);
}
uses {
command voi d boundsCheckFailed();

}
}

i npl enmentation {

164

command uint8_t compute_checksum(
uint8_t data[], uintl6_t _sc_data_ SIZE)

{
uint8_t sum = O;
intl6 t i;
for(i =0; i < (intl6_t)(8); ++i)
{
{
int sc 2 =i
i f(_sc_2 >= _sc_data_SIZE)
cal | boundsCheckFailed();
sum += data[_sc_2];
}
}
return sum;
}

The message formatting module constructs a “message”stogsdf ascending byte
values and then computes a checksum over that message. nfjotioire is done with
the message in this simple demonstration. A more realistigram would then send the

message to an underlying communication module for trarsans

I/l Type : checksumType: Type used to hold a checksum.
/I Value: size: Size of the data array to process.

/1

/[Main program of the node.

nodul e MessageFormatterC {

uses comrand

checksumType compute_checksum(uint8 t data[]);
uses comrand voi d startPeriodic(uint32_t period);
provi des conmand voi d booted();
provi des conmand voi d fired();

}

i npl enentation {

command voi d booted()

{

165

/I Casting from intl6_t to uint32_t is explicitly
/I enabled in type compatibility relation.

I

cal | startPeriodic((uint32_t)1000);

}

/I Called once per second.
comrand voi d fired()
{
uint8 _t raw[size];
uintlé t i
checksumType checksum;

/I Construct message.

for(i =0U; i< size; ++i) {
raw[i] = (i & OxOO0FF);

}

checksum = call compute_checksum(raw);

/I Other program components are used to send
/I the message with checksum.

The final sample fragment below shows the specialized andttewnesC with the

dynamic size of an array expression being passeongpute _checksum .

nmodul e MessageFormatterC {

provi des {
command voi d fired();
command voi d booted();

}

uses {
command voi d startPeriodic(uint32_t period);
command uint8_t compute_checksum(

uint8_t data[], uintl6 t sc_data SIZE);

command voi d boundsCheckFailed();

}
}

i npl enent ation {

166

command voi d booted()

{
}

cal | startPeriodic((uint32_t)(1000));

comrand voi d fired()

{

uint8_t raw[8 |;
uintle t i
uint8_t checksum;
for(i =0U; i< 8; ++)
{
{
int sc 1 =i
if(sc 1 >=8)
cal | boundsCheckFailed();
raw[_sc_1] = (i & OxO0FF);
}
}

checksum = call compute checksum(raw, 8);

167

Bibliography

Abadi, M. (1998). On SDSI’s linked local name spacésurnal of Computer Secu-
rity 6(1-2), 3—21.

Abadi, M. (2003, June). Logic in access controlAroceedings of the 18th IEEE Sym-

posium on Logic in Computer Sciennce

Abadi, M., M. Burrows, B. Lampson, and G. Plotkin (1993, Sspber). A calculus
for access control in distributed systemPA&M Transactions on Programming Lan-

guages and Systems(4, 706—734.

Ajmani, S., D. E. Clarke, C.-H. Moh, and S. Richman (2002,uday). ConChord:
Cooperative SDSI certificate storage and name resolutidntérnational Workshop

on Peer-to-Peer Systems

Ancona, D. and E. Zucca (2002). A calculus of module systamstnal of functional

programming 1191-132.

Barnes, J. (2000, December). The spark way to correctnegs iabstraction Ada

Lett. XX(4), 69—79.

Bauer, L., M. A. Schneider, and E. W. Felten (2002, Augustygekeral and flexible
access-control system for the webRroceedings of the 11th USENIX Security Sym-

posium pp. 93-108.

168

Becker, M. Y. and P. Sewell (2004, June). Cassandra: Fkexrokt management, ap-
plied to electronic health records. Rroceedings of the 17th IEEE Computer Secu-

rity Foundations Workshap

Bergstrom, E. and R. Pandey (2007). Anycast-RPC for wisedeasor networks. IRro-
ceedings of the IEEE international conference on mobil addrad sensor systems
pp. 1-8.

Bertino, E., B. Catania, E. Ferrari, and P. Perlasca (208Brurary). A logical frame-

work for reasoning about access control moda&SM Transactions on Information

and System Securitf®), 71-127.

Bertoni, G., L. Breveglieri, and M. Venturi (2006). ECC haware coprocessors for 8-bit

systems and power consumption consideratiing.00, 573-574.

Blaze, M., J. Feigenbaum, J. loannidis, and A. D. Keromyt#90, SeptemberRFC-
2704: The KeyNote Trust-Management System Versibnérnet Engineering Task

Force.

Blaze, M., J. Feigenbaum, and J. Lacy (1996, May). Decengécltrust management.
In Proceedings of the 1996 IEEE Symposium on Security and&fipa. 164-173.
IEEE Computer Society Press.

Blaze, M., J. Feigenbaum, and M. Strauss (1998). Compliaheeking in the policy-
maker trust management systemPhoceedings of the 2nd International Conference

on Financial Cryptographypp. 254-274. Springer-Verlag.

Blaze, M., J. loannidis, and A. D. Keromytis (2002, May). Srmanagement for IPsec.
ACM Transactions on Information and System SecuKi2y, ®5-118.

Blaze, M., J. loannidis, and A. D. Keromytis (2003, May). Expnce with the keynote

trust management system: Applications and future dirastiomnProceedings of the

169

1st International Conference on Trust Managemégaraklion, Crete, Greece, pp.

284-300. Springer-Verlag.

Brogi, A., R. Popescu, F. Gutiérrez, P. Lopez, and E. Piai¢B008, April). A service-
oriented model for embedded peer-to-peer systéiesiron. Notes Theor. Comput.

Sci. 194 5-22.

Brooks, R. R., P. Ramanathan, and A. M. Sayeed (2003, AudgDgtributed target
classification and tracking in sensor netwoiRsceedings of the IEEE 93), 1163—

1171.

Burrows, M., M. Abadi, and R. M. Needham (1990, February)ogit of authentica-
tion. ACM Transactions on Computer Syster{is) 318—36.

Canetti, R., J. Garay, G. ltkis, D. Micciancio, M. Naor, and Bnkas (1999, mar).
Multicast security: a taxonomy and some efficient consioanst ININFOCOM '99.
Eighteenth Annual Joint Conference of the IEEE Computer @achmunications

Societies. Proceedings. IEE¥olume 2, pp. 708 —716 vol.2.

Cardelli, L. (1997). Program fragments, linking, and madization. InProceedings
of the 24th ACM SIGPLAN-SIGACT symposium on principlesagnamming lan-
guagesPOPL '97, New York, NY, USA, pp. 266—-277. ACM.

Cardelli, L. and P. Wegner (1985, December). On understgrgtpes, data abstraction,
and polymorphismACM Comput. Surv. 1(4), 471-523.

Camtepe, S. A. and B. Yener (2005). Key distribution medran for wireless sensor

networks: a survey. Technical Report TR-05-07, Renss@algtechnic Institute.

Chapin, P. (2013a, October). Scalaness home page. Hgitmifl.com/pchapin/scala.
Accessed October 2013.

Chapin, P. (2013b, October). Sprocket home page. httjgbulycom/pchapin/sprocket.

170

Accessed October 2013.

Chapin, P. and C. Skalka (2010, November). SpartanRPCr&®¥¢8N middleware for
cooperating domains. IRroceedings of the Seventh IEEE International Conference

on Mobile Ad-hoc and Sensor Systems

Chapin, P. and C. Skalka (2013). Spartan RPC. Tech-
nical report, University of Vermont. Submitted.

http://www.cs.uvm.edu/ ~ skalka/skalka-pubs/chapin-skalka-spartanrpctr.

Chapin, P., C. Skalka, S. Smith, and M. Watson (2013, OcjoBealaness/nesT. type
specialized staged programming for sensor network$®roteedings of the 12th
International Conference on Generative Programming: Gxois and Experiences
(GPCE '13)

Chapin, P. C., C. Skalka, and X. S. Wang (2008, August). Aighton in trust man-

agement: Features and foundatioh€ M Computing Surveys 49:1-9:48.

Chen, M., S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leui®d {2 April). Body area
networks: A surveyMob. Netw. Appl. 1@), 171-193.

Cheong, E. (2007)Actor-Oriented Programming for Wireless Sensor NetwoR{s D.

thesis, University of California, Berkeley.

Chlipala, A. (2010). Ur: Statically-typed metaprogramgwmith type-level record com-
putation. InPLDI.

Clarke, D., J.-E. Elien, C. Ellison, M. Fredette, A. Morcaesid R. L. Rivest (2001).
Certificate chain discovery in SPKI/SDSburnal of Computer Security(9), 285—
322.

Claycomb, W. R. and D. Shin (2011, January). A novel nodd eurity policy frame-

work for wireless sensor networks.Netw. Comput. Appl. 32), 418-428.

171

http://www.cs.uvm.edu/~skalka/skalka-pubs/chapin-skalka-spartanrpctr.pdf

Community, T. TinyOS community forum. http://www.tinyogt/. Accessed November

2013.

Consel, C., L. Hornof, R. Marlet, G. Muller, S. Thibault, H.-Volanschi, J. Lawall, and
J. Noyé (1998, September). Tempo: specializing systempkcagions and beyond.
ACM Comput. Surv. 3Bes).

Costa, P., L. Mottola, A. L. Murphy, and G. P. Picco (2007)odgtamming wireless
sensor networks with the teenylime middleware.Rroceedings of the ACM/I-
FIP/USENIX 2007 International Conference on Middlewdviddleware ‘07, New
York, NY, USA, pp. 429-449. Springer-Verlag New York, Inc.

Cremet, V., F. Garillot, S. Lenglet, and M. Odersky (2006)cdte calculus for scala
type checking. InProceedings of the 31st international conference on Matitem
ical Foundations of Computer SciendglFCS’06, Berlin, Heidelberg, pp. 1-23.
Springer-Verlag.

Culler, D., D. Estrin, and M. Srivastava (2004, August). &ueditors’ introduction:

Overview of sensor network§&omputer 378), 41-49.

Cuoq, P., F. Kirchner, N. Kosmatov, V. Prevosto, J. Signaesd B. Yakobowski (2012).
Frama-c: a software analysis perspectivePinceedings of the 10th international
conference on Software Engineering and Formal Meth&E&-M'12, Berlin, Hei-

delberg, pp. 233-247. Springer-Verlag.

DeTreville, J. (2002). Binder, a logic-based security lzaxge. InProceedings of the
2002 IEEE Symposium on Security and PrivdBEE Computer Society.

Diffie, W. and M. Hellman (2006, September). New directionsiyptographylEEE
Trans. Inf. Theor. 2(6), 644—654.

Dutta, P. K., J. W. Hui, D. C. Chu, and D. E. Culler (2006). Sewyithe deluge network

172

programming system. IlPSN pp. 326-333.

Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas, &irndonen (1999, Septem-
ber).RFC-2693: SPKI Certificate Thearinternet Engineering Task Force.

Ferraiolo, D. and R. Kuhn (1992). Role-based access caentrol5th NIST-NCSC Na-

tional Computer Security Conferenge. 554-563.
Flatt, M. and M. Felleisen (1998). Units: Cool modules for H@nguages. I#PLDI.

Fletcher, J. G. (1982, jan). An arithmetic checksum foraddéransmissionsCommuni-

cations, IEEE Transactions on @0, 247 — 252.

Fok, C.-L., G.-C. Roman, and C. Lu (2009, July). Agilla: A nilebagent middleware
for self-adaptive wireless sensor network&M Trans. Auton. Adapt. Syst. 46:1—

16:26.

Fouladgar, S., B. Mainaud, K. Masmoudi, and H. Afifi (2006yT8-tls: a trust delega-
tion protocol for wireless sensor networks. Pnoceedings of the Third European
conference on Security and Privacy in Ad-Hoc and Sensor dt&svESAS’06,
Berlin, Heidelberg, pp. 32—42. Springer-Verlag.

Frolik, J. and C. Skalka (2013). Snowcloud. Tech-
nical report, University of Vermont. Submitted.
http://www.cs.uvm.edu/ ~ skalka/skalka-pubs/frolik-skalka-snowcloudtr.p

Ganeriwal, S., C. Popper, Sapkun, and M. B. Srivastava (2008, July). Secure time

synchronization in sensor networksCM Trans. Inf. Syst. Secur.), 23:1-23:35.

Gao, T., C. Pesto, L. Selavo, Y. Chen, J. G. Ko, J. H. Lim, AziggrA. Watt, J. Jeng,
B.-R. Chen, K. Lorincz, and M. Welsh (2008, may). Wirelesgdinal sensor net-
works in emergency response: Implementation and pilottsedn Technologies for

Homeland Security, 2008 IEEE Conference . 187-192.

173

http://www.cs.uvm.edu/~skalka/skalka-pubs/frolik-skalka-snowcloudtr.pdf

Garcia, M., A. Izmaylova, and S. Schupp (2010, July). Extegdcala with database
query capabilityThe Journal of Object Technology®), 45—-68.

Gay, D., P. Levis, R. von Behren, M. Welsh, E. Brewer, and Ole2{2003). The nesC
language: A holistic approach to networked embedded systenProceedings of
the ACM SIGPLAN 2003 conference on Programming languaggrnesd imple-
mentation PLDI '03, New York, NY, USA, pp. 1-11. ACM.

Ghelli, G. and B. Pierce (1998). Bounded existentials antimmal typing.Theoretical
Computer Science 19B-2), 75 — 96.

Gonzalez-Valenzuela, S., M. Chen, and V. C. Leung (201@ebBwer). Programmable
middleware for wireless sensor networks applications gisimobile agentsMob.

Netw. Appl. 15853—-865.

Gregor, D., J. Jarvi, J. G. Siek, G. D. Reis, B. Stroustruyg A. Lumsdaine (2006).

Concepts: Linguistic support for generic programming intfChth OOPSLA

Grossman, D. J. (2003%afe Programming at the C Level of Abstracti&h. D. thesis,

Cornell University.

Gummadi, R., O. Gnawali, and R. Govindan (2005). Macro-@ongning wireless sen-
sor networks using kairos. In V. Prasanna, S. lyengar, Ralpi and M. Welsh
(Eds.),Distributed Computing in Sensor Systenvslume 3560 ofLecture Notes in

Computer Sciencgp. 466—466. Springer Berlin / Heidelberg.

Gunter, C. A. and T. Jim (1997, September). Design of an egipdin-level security
infrastructure. IriProceedings of the DIMACS Workshop on Design and Formal Ver-

ification of Security Protocols

Gunter, C. A. and T. Jim (2000a, January). Generalizedfioatteé revocation. IfPro-
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Pl&swof Program-

174

ming Languagesp. 316-329.

Gunter, C. A. and T. Jim (2000b). Policy-directed certigcagtrieval Software: Practice
& Experience 3(15), 1609-1640.

Gupta, V., M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, aBdC. Shantz (2005).
Sizzle: A standards-based end-to-end security architetduthe embedded internet
(best paper). IPERCOM '05: Proceedings of the Third IEEE International €on
ference on Pervasive Computing and Communicafigveshington, DC, USA, pp.

247-256. IEEE Computer Society.

Halpern, J. and R. van der Meyden (1999). A logic for SDSk&édid local name spaces.
In Proceedings of the 12th IEEE Computer Security Foundatidoskshop pp.
111-122.

Hammond, K. and G. Michaelson (2003). Hume: A domain-spelafiguage for real-
time embedded systems. GPCE pp. 37-56. Springer-Verlag.

Herzberg, A., Y. Mass, J. Michaeli, D. Naor, and Y. Ravid (@0®lay). Access control
meets public key infrastructure, or: Assigning roles tastrers. InProceedings of

the IEEE Symposium on Security and Privacy

Hong, F., X. Zhu, and S. Wang (2005). Delegation depth coimraust-management
system. InProceedings of the 19th International Conference on Adedrnforma-

tion Networking and Applicationgp. 411-414. IEEE Computer Society Press.

Howell, J. and D. Kotz (2000). A formal semantics for SPKIchrical Report 2000-
363, Dartmouth College.

Hu, W., P. Corke, W. C. Shih, and L. Overs (2009). secFleckuhlig key technology
platform for wireless sensor networks. EWSN '09: Proceedings of the 6th Eu-

ropean Conference on Wireless Sensor Netwdskslin, Heidelberg, pp. 296-311.

175

Springer-Verlag.

Hu, W., H. Tan, P. Corke, W. C. Shih, and S. Jha (2010, Auglistyard trusted wireless

sensor networksACM Trans. Sen. Netw, B:1-5:25.

Hui, J., P. Levis, and D. Moss (2008, June). TinyOS 802.15tdmés.

http://www.tinyos.net/tinyos-2.x/doc/html/tep1251it Accessed December 2011.

Hui, J. W. and D. Culler (2004). The dynamic behavior of a diisaemination protocol
for network programming at scale. BenSys '04: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor sysiamsYork, NY, USA, pp.
81-94. ACM.

Igarashi, A., B. C. Pierce, and P. Wadler (2001). Feathegyfelava: a minimal core
calculus for Java and GACM Trans. Program. Lang. Syst. (33, 396—450.

Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemamd B. Silva (2003, feb).
Directed diffusion for wireless sensor networkidgetworking, IEEE/ACM Trans-

actions on 111), 2-16.

International Telecommunications Union (200Dformation Technology - Open Sys-
tems Interconnection - The Directory: Public Key and Atiitd Certificate Frame-

works International Telecommunications Union.

International Telecommunications Union (200jformation Technology - Open Sys-
tems Interconnection - The Directory: Overview of Concgdisdels, and Services

International Telecommunications Union.

ISO (2008). Iso/iec 1170-3:2008 information technologyeelsity techniques — key

management — part 3: Mechanisms using asymmetric techsique

Jaffar, J. and M. J. Maher (1994). Constraint logic programgmA survey.Journal of
Logic Programming 19/2(603-581.

176

Jim, T. (2001). SD3: A trust management system with certiéemluation. InProceed-

ings of the 2001 IEEE Symposium on Security and PriviltlyE Computer Soceity.

Jim, T. and D. Suciu (2001). Dynamically distributed quevglaation. InProceedings
of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Prexipl Database
SystemsNew York, NY, USA, pp. 28-39. ACM Press.

Jung, W., S. Hong, M. Ha, Y.-J. Kim, and D. Kim (2009). Ssldxdightweight se-
curity of ip-based wireless sensor networkslvanced Information Networking and

Applications Workshops, International Conference pf112-1117.

Karlof, C., N. Sastry, and D. Wagner (2004). TinySec: a liakdr security architecture
for wireless sensor networks. BenSys '04: Proceedings of the 2nd international
conference on Embedded networked sensor sysiéems York, NY, USA, pp. 162—
175. ACM.

Karlof, C. and D. Wagner (2003, September). Secure routingireless sensor net-
works: Attacks and countermeasurBssevier's AdHoc Networks Journal, Special

Issue on Sensor Network Applications and Protoc@s-3), 293—-315.

Kumar, S. S. and C. Paar (2006, July). Are standards comgligptic curve cryptosys-

tems feasible on rfid? IRroceedings of the 2006 Workshop on RFID security

Lee, Y. K., K. Sakiyama, L. Batina, and |. Verbauwhede (2088y.). Elliptic-curve-
based security processor for RFIDomputers, IEEE Transactions on(@1), 1514
-1527.

Leroy, X. (2006). Formal certification of a compiler backdeor: programming a com-
piler with a proof assistant. 183rd symposium Principles of Programming Lan-

guagespp. 42-54. ACM Press.

Levis, P. TEP-111: messagehttp://www.tinyos.net/tinyos-2.x/doc/html/teplhiml.

177

Accessed August 2011.

Li, N. (2000, July). Local names in SPKI/SDSI. Rroceedings of the 13th IEEE Com-
puter Security Foundations Workshapambridge, UK, pp. 2-15. IEEE Computer

Society Press.

Li, N. and J. Feigenbaum (2001). Nonmonotonicity, userrfates, and risk assess-
ment in certificate revocation. Froceedings of the 5th International Conference on

Financial Cryptography (FCOlpp. 166—177. Springer-Verlag.

Li, N. and J. Feigenbaum (2002). Nonmonotonicity, userrfates, and risk assess-
ment in certificate revocation. Froceedings of the 5th International Conference on

Financial CryptographyLondon, UK, pp. 166—177. Springer-Verlag.

Li, N., B. N. Grosof, and J. Feigenbaum (2003, February)ebDation logic: A logic-
based approach to distributed authorizati®@M Transactions on Information and

System Security(6), 128-171.

Li, N. and C. Mitchell (2006). Understanding spki/sdsi wgfirst-order logicInterna-

tional Journal of Information Security(®), 48—64.

Li, N. and J. C. Mitchell (2003a, January). Datalog with doaisits: A foundation for
trust management languages.Aroceedings of the Fifth International Symposium

on Practical Aspects of Declarative Languages

Li, N. and J. C. Mitchell (2003b, Apr). RT: A role-based trusinagement framework.
In Proceedings of the 3rd DARPA Information Survivability @ence and Exposi-

tion, pp. 201-212. IEEE Computer Society Press.

Li, N., J. C. Mitchell, and W. H. Winsborough (2002, May). Dggsof a role-based trust-
management framework. Froceedings of the 2002 IEEE Symposium on Security

and Privacy pp. 114-130. IEEE Computer Society Press.

178

Li, N., J. C. Mitchell, and W. H. Winsborough (2005, May). Bad proof-of-
compliance: Security analysis in trust managemémirnal of the ACM 5@), 474—
514.

Li, N., W. H. Winsborough, and J. C. Mitchell (2003, Feb). ilsuted chain discovery

in trust managemendournal of Computer Security (1), 35-86.

Liu, A. and P. Ning (2008). Tinyecc: A configurable library fliptic curve cryptogra-
phy in wireless sensor networks. Rioceedings of the 7th international conference
on Information processing in sensor netwgrk8SN '08, Washington, DC, USA,

pp. 245-256. IEEE Computer Society.

Liu, Y., C. Skalka, and S. Smith (2012). Type-specializemjeti programming with

process separatiohligher-Order and Symbolic Computation (24, 341-385.

Liu, Y. D., C. Skalka, and S. Smith (2009). Type-specializ&ahed programming with
process separation. Rroceedings of the 2009 ACM SIGPLAN workshop on Generic
programming WGP '09, New York, NY, USA, pp. 49-60. ACM.

Liu, Y. D. and S. Smith (2002, July). A component securityastructure. IrProceed-
ings of the 2002 Foundations of Computer Security Workshop

Lorincz, K., D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, 8lavel, V. Shnayder,
G. Mainland, M. Welsh, and S. Moulton (2004). Sensor netwddt emergency

response: Challenges and opportunitie&E Pervasive Computing8), 16—-23.

Luk, M., G. Mezzour, A. Perrig, and V. Gligor (2007). MiniSea secure sensor net-
work communication architecture. IRSN '07: Proceedings of the 6th international
conference on Information processing in sensor netwadlksv York, NY, USA, pp.

479-488. ACM.

MacQueen, D. (1984). Modules for Standard ML.Rroceedings of ACM Conference

179

on Lisp and Functional Programming

Madden, S., M. J. Franklin, J. M. Hellerstein, and W. Hong020 TAG: a Tiny AGgre-

gation service for ad-hoc sensor netwo&E>5OPS Oper. Syst. Rev.(36), 131-146.

Mainland, G. (2012). Explicitly heterogeneous metaprograng with MetaHaskell. In
ICFP.

Mainland, G., G. Morrisett, and M. Welsh (2008). Flask: stdunctional program-
ming for sensor networks. IRroceeding of the 13th ACM SIGPLAN international
conference on functional programminiCFP '08, New York, NY, USA, pp. 335—-
346. ACM.

Malan, D. J., M. Welsh, and M. D. Smith (2008, September).lémenting public-key

infrastructure for sensor network&CM Trans. Sen. Netw, 22:1-22:23.

Manzo, M., T. Roosta, and S. Sastry (2005). Time synchrdinizaattacks in sensor
networks. InProceedings of the 3rd ACM workshop on Security of ad hoc ansls

networks SASN '05, New York, NY, USA, pp. 107-116. ACM.

May, T. D., S. H. Dunning, G. A. Dowding, and J. O. Hallstrord@Z, March). An RPC
design for wireless sensor networksternational Journal of Pervasive Computing

and Communications(2), 384—-397.

McDaniel, P. and A. D. Rubin (2001). A response to "can we ilate certificate re-
vocation lists?”. InProceedings of the 4th International Conference on Finahci

Cryptography London, UK, pp. 245—-258. Springer-Verlag.

Mitchell, J., S. Meldal, and N. Madhav (1991). An extensidrstandard ML modules

with subtyping and inheritance. POPL

Moeser, C. D., M. Walker, C. Skalka, and J. Frolik (2011). Agation of a wireless

sensor network for distributed snow water equivalenceregion. InWestern Snow

180

Conference

Molhave, T. and L. H. Petersen (2005). Assignment Feathght/dava: Bringing mu-

table state to Featherweight Java. Master’s thesis, Wsityesf Aarhus.
moteiv (2006, November). Tmote sky low power wireless sensadule. Datasheet.

Mottola, L. and G. P. Picco (2011, April). Programming wess sensor networks: Fun-
damental concepts and state of the A@GM Computing Surveys 489:1-19:51.

Newton, R., G. Morrisett, and M. Welsh (2007). The regimeatmprogramming sys-
tem. InProceedings of the 6th international conference on Infdramaprocessing

in sensor networkdPSN '07, New York, NY, USA, pp. 489-498. ACM.

Nikander, P. and L. Viljanen (1998). Storing and retrievingernet certificates. Ii®ro-

ceedings of the Third Nordic Workshop on Secure IT Systems

OASIS (20064a). OASIS eXtensible Access Con-
trol Markup Language Technical Committee at
http://www.oasis-open.org/committees/tc_home.php?wg _abbrev=xacml

OASIS (2006b). OASIS Security Services Technical Committeat

http://www.oasis-open.org/committees/tc_home.php?wg _abbrev=security

OASIS (2006c). OASIS Web Services Security Technical Coaotemi at

http://www.oasis-open.org/committees/tc_home.php?wg _abbrev=wss .

Odersky, M., L. Spoon, and B. Venners (201Rjogramming in Scala, second edition

Artima, Inc.

Pazul, K. (1999). Controller area network (can) baduterochip Technology Inc. Pre-
liminary DS00713A-page. 1

Perillo, M. and W. Heinzelman (2003jundamental Algorithms and Protocols for Wire-

less and Mobile NetworksChapter Wireless Sensor Network Protocols, pp. 813—

181

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

842. CRC Hall.

Perrig, A., J. Stankovic, and D. Wagner (2004). Security irele@ss sensor networks.

Communications of the ACM 4g), 53-57.

Polakow, J. and C. Skalka (2006, June). Specifying distetburust management in
LolliMon. In Proceedings of the ACM Workshop on Programming Languagds an

Analysis for Security

Raymond, D. and S. Midkiff (2008, jan.-march). Denial-efdce in wireless sensor

networks: Attacks and defens&®rvasive Computing, IEEHY), 74 —81.

Reinhardt, A., P. Mogre, and R. Steinmetz (2011, march)htweight remote proce-
dure calls for wireless sensor and actuator network&elvasive Computing and
Communications Workshops (PERCOM Workshops), 2011 |IEteEnktional Con-

ference onpp. 172 -177.

Rivest, R. L. (1998a). Can we eliminate certificate revaralists? InProceedings
of the 2nd International Conference on Financial Cryptagmg London, UK, pp.
178-183. Springer-Verlag.

Rivest, R. L. (1998b). Can we eliminate certificate revam&ilists? InProceedings of
the Second International Conference on Financial Crypapipy, London, UK, pp.

178-183. Springer-Verlag.

Rivestt R. L. and B. Lampson (1996, October). SDSI — A
Simple Distributed Security Infrastructure. Version 1.1, at
http://theory.lcs.mit.edu/ ~rivest/sdsill.html , October 2,
1996.

Rompf, T. and M. Odersky (2010). Lightweight modular stagia pragmatic approach

to runtime code generation and compiled dslsPtaceedings of the ninth interna-

182

http://theory.lcs.mit.edu/~rivest/sdsi11.html

tional conference on Generative programming and compoeergineering GPCE

'10, New York, NY, USA, pp. 127-136. ACM.

Sandhu, R. S., E. J. Coyne, H. L. Feinstein, and C. E. Youn2®96()1 Role-based access
control modelsComputer 2@2), 38—47.

Seamons, K., M. Winslett, and T. Yu (2001, February). Lingtthe disclosure of access
control policies during automated trust negotiatiorRtnceedings of the Symposium

on Network and Distributed System Security

Seamons, K., M. Winslett, T. Yu, B. Smith, E. Child, J. JaahHH. Mills, and L. Yu
(2002). Requirements for policy languages for trust negiotn. In Proceedings of
the 3rd International Workshop on Policies for Distribut8gistems and Networks

Washington, DC, USA, pp. 68. IEEE Computer Society.

Seepold, R., N. M. Madrid, J. S. Gbmez-Escalonilla, and ANRves (2009, January).
An embedded software platform for distributed automotimei®nment manage-

ment.EURASIP J. Embedded Syst. 2069-5:10.

Sheard, T. and S. P. Jones (2002, December). Template moggeamming for haskell.
SIGPLAN Not. 3760-75.

Shnayder, V., B.-r. Chen, K. Lorincz, T. R. F. F. Jones, and\élsh (2005). Sensor
networks for medical care. IRroceedings of the 3rd international conference on
Embedded networked sensor systeGenSys '05, New York, NY, USA, pp. 314—
314. ACM.

Simon, R. T. and M. E. Zurko (1997, June). Separation of datyole-based environ-
ments. InProceedings of the 10th IEEE Computer Security Foundattokshop
pp. 183-194. IEEE Computer Society Press.

Skalka, C., X. S. Wang, and P. Chapin (2007). Risk managefoedistributed autho-

183

rization.Journal of Computer Security %), 447-4809.

Society, I. C. (2003, October). IEEE std. 802.15.4 - 2003:elgss medium access con-
trol (MAC) and physical layer (PHY) specifications for loate wireless personal

area networks (LR-WPANS). Standard.

Srinivasan, R. (1995, AugustRFC-1833: Binding Protocols for ONC RPC Version 2

Internet Engineering Task Force.

Stubblebine, S. (1995). Recent-secure authenticationfor&ng revocation in dis-
tributed systems. IRroceedings of the 1995 IEEE Symposium on Security and Pri-
vacy, pp. 224-235. IEEE Computer Society.

Stubblebine, S. G. and R. N. Wright (1996). An authenticatmgic supporting syn-
chronization, revocation, and recencyRroceedings of the 3rd ACM Conference on
Computer and Communications Securi§ew York, NY, USA, pp. 95-105. ACM

Press.

Szczechowiak, P., L. B. Oliveira, M. Scott, M. Collier, and[Rahab (2008). Nanoecc:
testing the limits of elliptic curve cryptography in sens@tworks. InProceedings
of the 5th European conference on Wireless sensor netw&W&N’'08, Berlin,

Heidelberg, pp. 305-320. Springer-Verlag.
Taha, W. (2004). Resource-aware programmindgCIBSS pp. 38—-43.

Taha, W. and T. Sheard (1997). MetaML: Multi-stage prograngmvith explicit anno-
tations. InProceedings of the 1997 ACM SIGPLAN symposium on partidliatian
and semantics-based program manipulatiBEPM ‘97, New York, NY, USA, pp.
203-217. ACM.

Vairo, C., M. Albano, and S. Chessa (2008). A secure middie@ wireless sensor

networks. InProceedings of the 5th Annual International Conference abil\¢ and

184

Ubiquitous Systems: Computing, Networking, and SeryMebiquitous '08, ICST,
Brussels, Belgium, Belgium, pp. 59:1-59:6. ICST (Inséttdr Computer Sciences,

Social-Informatics and Telecommunications Engineering)

Watson, M. (2013). Type checking implementation in scadafreest. Master’s thesis,

University of Vermont.

Whitehouse, K., G. Tolle, J. Taneja, C. Sharp, S. Kim, J. dednHui, P. Dutta, and
D. Culler (2006). Marionette: using rpc for interactive dlpment and debugging
of wireless embedded networks. RSN '06: Proceedings of the 5th international
conference on Information processing in sensor netwadlksv York, NY, USA, pp.

416-423. ACM.

Winsborough, W. H. and N. Li (2002, June). Towards practaabmated trust negoti-
ation. InProceedings of the IEEE 3rd International Workshop on Residor Dis-

tributed Systems and NetworkEEE Press.

Winsborough, W. H. and N. Li (2004). Safety in automatedttnegyotiation. InPro-
ceedings of the 2004 IEEE Symposium on Security and PritasyAlamitos, CA,
USA, pp. 147. IEEE Computer Society.

Winsborough, W. H., K. E. Seamons, and V. E. Jones (2000)rAated trust negotia-
tion. In Procedings of the DARPA Information Survivability Confexe and Exposi-

tion. Volume 1pp. 88-102. IEEE Computer Society.

Winslett, M., N. Ching, V. Jones, and |. Slepchin (1997). g3y security and privacy
for digital library transactions on the web: Client and sgrsecurity policies. In
Proceedings of the IEEE International Forum on ResearchBeuthnology Advances

in Digital Libraries, Washington, DC, USA, pp. 140-151. IEEE Computer Society.

Woo, T. Y. C. and S. S. Lam (1993). Authorizations in disttézlisystems: A new

185

approachJournal of Computer Security(2-3), 107-136.
XSB Inc. (2006). XSB home paghttp://xsb.sourceforge.net

Yu, T., X. Ma, and M. Winslett (2000). PRUNES: An efficient aodmplete strategy
for automated trust negotiation over the internetPhoceedings of the 7th ACM
conference on Computer and communications secuxdiew York, NY, USA, pp.

210-219. ACM Press.

Yu, T., M. Winslett, and K. E. Seamons (2001). Interoperattategies in automated
trust negotiation. IfProceedings of the 8th ACM conference on Computer and Com-

munications SecurityNew York, NY, USA, pp. 146-155. ACM Press.

186

http://xsb.sourceforge.net

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Security Model
	Related Work and Contributions
	Summary of Contributions

	Dissertation Organization

	Trust Management
	Components of Trust Management Systems
	Structure of an Authorization Decision

	Features of Trust Management Systems
	Formal Foundation
	Authorization Procedure. Authorization Complexity
	Public Key Infrastructure (PKI)
	Threshold and Separation of Duty Policies
	Local Name Spaces
	Role-Based Access Control
	Delegation of Rights
	Certificate Validity
	Credential Negation
	Certificate Revocation
	Distributed Certificate Chain Discovery

	Foundations of Authorization
	The RT Trust Management System
	Features
	Example
	Semantics
	Implementation

	SpartanRPC and Sprocket
	Overview and Applications
	Technical Foundations
	Duties and Remotability
	Syntax and Semantics
	Remotable Interfaces

	Dynamic Wires
	Component IDs, Component Managers
	Syntax and Semantics
	Callbacks and First-Class IDs

	Security Policy Specification
	RPC Server Side Logic
	RPC Client Side Logic
	Example

	The SpartanRPC Implementation
	Authorization and Security Protocols
	Identifying Services Over the Air
	Rewriting SpartanRPC to nesC

	DScalaness/DnesT
	Overview of DScalaness/DnesT Design
	Modules as Staging Elements
	Typing
	Cross-Stage Migration of Types and Values.

	The DnesT language
	Syntax and Features of DnesT
	Semantics of DnesT
	DnesT Type Checking

	The DScalaness Language
	Syntax of DScalaness
	Semantics of DScalaness
	Serialization and Lifting
	DScalaness Type Checking
	Foundational Insights and Type Safety

	Scalaness/nesT
	NesT
	Component Specifications
	External Libraries
	Structure Subtyping
	Safe Casts
	Array Operations

	Scalaness
	Scala Compiler Organization
	Liftable Types
	Lifting
	MetaType
	Module Type Annotations
	Component Declarations
	Runtime Support

	Evaluation
	Field Example
	Sprocket
	Memory Overhead
	Transient and Steady State Processor Overhead
	Transient Times for Directed Diffusion
	Snowcloud with Sprocket

	Scalaness/nesT
	Snowcloud with Scalaness
	Memory Usage

	Conclusion
	Future Work

	Scalaness/nesT Sample
	References

