151

CubedOS: A Verified CubeSat Operating System

Carl Brandon, Peter Chapin, Chris Farnsworth, Sean Klink
Vermont Technical College, 201 Lawrence Place, Williston VT 05495, PO Box 500, Randolph Center, VT

05061; email: {cbrandon, pchapin}@vtc.edu

Abstract

In this paper we present CubedOS, a lightweight appli-
cation framework for CubeSat flight software. CubedOS
is written in SPARKand proved free of certain classes
of runtime errors. It consists of a collection of interact-
ing, concurrent modules that communicate via message
passing over a microkernel based on Ada’s Ravenscar
tasking model. It provides core services such as, for
example, communication protocol processing and pub-
lish/subscribe message handling. Application-specific
modules can be added to provide both high level func-
tions such as navigation and power management, as
well as low level device drivers for mission-specific
hardware.

Keywords: SPARK, student project, CubeSat

1 Introduction

CubedOS is being developed at Vermont Technical College’s
CubeSat Laboratory with the purpose of providing a robust
software platform for CubeSat missions and of easing the
development of CubeSat flight software. In many respects
the goals of CubedOS are similar to those of the Core Flight
Executive (cFE) written by NASA Goddard Space Flight Cen-
ter [[1]]. However, unlike cFE, CubedOS is written in SPARK
and verified to be free of the possibility of runtime error.
SPARK has also been used to provide some other correctness
properties in certain cases. We compare CubedOS and cFE in
more detail in Section

The intent is for CubedOS to be general enough and modular
enough for many groups to profitably employ the system.
Since every mission uses different hardware and has different
software requirements, CubedOS is designed as a framework
into which modules can be plugged to implement whatever
mission functionality is required. CubedOS provides inter-
module communication and other common services needed
by many missions. CubedOS thus serves both as a kind of
operating environment and as a library of useful tools and
functions.

Some of the module functionality useful for complex Cube-
Sat missions would include interfaces to attitude determina-
tion and control systems (ADACS), electrical power systems
(EPS), photovoltaic panel orientation gimbals, navigation and
data radio, data collection instruments, thermal control radia-
tors, ion engine with gimbals, and cameras. We also plan on
including a specific module for spiral thrusting which allows

for three axis angular momentum control with a two axis
thruster.

It is our intention that all CubedOS modules also be written
in SPARK and at least proved free of runtime error. However,
CubedOS allows modules, or parts of modules, to be written
in full Ada or C. This allows CubedOS to take advantage of
third party C libraries or to integrate with an existing C code
base.

CubedOS runs on top of the Ada runtime system and thus
works with any underlying platform supported by the avail-
able Ada compiler. For example, CubedOS makes use of Ada
tasking without directly invoking the underlying system’s
support for threads. This simplifies the implementation of
CubedOS while improving its portability. However, Cube-
dOS does require that a rich Ada runtime system be available
for all envisioned targets. Specifically, CubedOS requires a
runtime system that supports the Ravenscar profile.

For resources that are not accessible through the Ada runtime
system, CubedOS driver modules can be written that interact
with the underlying operating system or hardware more di-
rectly. Although these modules would not be widely portable,
they could, in some cases, be written to provide a kind of
low level abstraction layer (LLAL) with a portable interface.
We have not yet attempted to standardize the LLAL interface.
However, we see that as an area for future work.

CubedOS applications are organized as a collection of active
and passive modules, where each active module contains
one or more Ada tasks. Passive modules do not contain any
tasks but are used as containers for shared, reusable code.
Although CubedOS is written in SPARK there need not be a
one-to-one correspondence between CubedOS modules and
SPARK packages. In fact, modules are routinely written as a
collection of Ada packages in a package hierarchy.

Critical to the plug-and-play nature of CubedOS, each active
module is self-contained and does not make direct use of any
code in any other active module, although passive modules
serving as library components can be used. All inter-module
communication is done through the CubedOS infrastructure
with no direct sharing of data or executable content. In this
respect CubedOS active modules are similar to operating sys-
tem processes. One consequence of this policy is that a library
used by several modules must be either duplicated in each
module, for example as private child packages, or provided
as an independent, passive module. In this respect passive
modules are similar to operating system shared libraries and
have similar concerns regarding task safety and global data
management.

Ada User Journal

Volume 38, Number 3, September 2017

152

In the language of operating systems, CubedOS can be said
to have a microkernel architecture where task and memory
management is provided by the Ada runtime system. Both
low level facilities, such as device drivers, and high level
facilities, such as communication protocol handlers, are all
implemented as CubedOS modules. All modules are treated
equally by CubedOS; any layered structuring of the modules
is imposed by programmer convention.

CubedOS is currently a work in progress It is our intention
to release CubedOS as open source once it is more mature
and refined. We also need to review the code base to verify
that it is free from International Traffic in Arms Regulations
(ITAR) restrictions and possibly release both ITAR compliant
and U.S non ITAR compliant versions. We anticipate this to
happen in mid-2018.

2 CubedOS Architecture

To understand the context of the CubedOS architecture, it is
useful to compare the architecture of a CubedOS application
with that of a more traditional application. Since CubedOS
is written in SPARK and must abide by the restrictions of
Ravenscar, we compare CubedOS with other Ravenscar-based
approaches.

Figure|l|shows an example application using Ravenscar task-
ing. Tasks, which must all be library level infinite loops, are
shown as open circles and labeled as 73 through 7). Tasks
communicate with each other via protected objects, shown as
solid circles and labeled as PO through POj,.

PO1

A

PO
@

Figure 1: Traditional Ravenscar-based Architecture

Arrows from a sending task to a protected object indicate calls
to a protected procedure to install information in the protected
object. Arrows from a protected object to a receiving task
indicate calls to an entry in the protected object used to pick
up information previously stored in the object. Entry calls
will block if no information is yet available but protected
procedure calls do not block.

Ravenscar requires that protected objects have at most one
entry and that at most one task can be queued on that entry.
In CubedOS applications each protected object is serviced
by exactly one task. This ensures that two tasks will never
accidentally be queued on the protected object’s entry. In
the figure this means only one arrow can emanate from a

CubedOS: A Verified CubeSat Operating System

protected object. However, multiple arrows can lead to a
protected object, since it is permitted for many tasks to call the
same protected procedure or for there to be multiple protected
procedures in a given protected object.

In the example application of Figure[I] tasks 7} and 75 call
protected procedures in two different protected objects. This
presents no problems since protected procedures never block,
allowing a task to call both procedures in a timely manner.
However, task T3 calls two entries, one in P01 and another in
PO,. Since entry calls can block, this means the task might
get suspended on one of the calls leaving the other protected
object without service for an extended time. The application
needs to either be written so that will never happen or be such
that it doesn’t matter if it does.

There are several advantages over the traditional organization:

e The protected objects can be tuned to transmit only the
information needed so the overhead can be kept minimal.

e The parameters of the protected procedures and en-
tries specify the precise types of the data transfered so
compile-time type safety is provided.

e The communication patterns of the application are
known statically, facilitating analysis.

However the traditional architecture also includes some dis-
advantages:

e The protected objects must all be custom designed and
individually implemented, creating a burden for the ap-
plication developer.

e The communication patterns are relatively inflexible.
Changing them requires overhauling the application.

A CubedOS application has an architecture as shown in Fig-
ure 2] In this case CubedOS provides the communication
infrastructure as an array of general purpose, protected mail-
box objects. CubedOS modules communicate by sending
messages to the receiver module’s mailbox. The messages are
unstructured octet streams, and thus completely generic. Each
active module has exactly one mailbox associated with it and
contains a task dedicated to servicing that mailbox. That task
extracts messages from the mailbox, and then decodes and
acts on each message. Active CubedOS modules can also con-
tain internal tasks as part of their implementation, but those
tasks do not participate in message processing (although they
can send messages) and are not important here.

The communication connections shown in Figure 2] are the
same as those shown in Figure[]except that the two commu-
nication paths from 77 to T3 are combined into a single path
going through one mailbox.

CubedOS relieves the application developer of the problem of
creating the communications infrastructure manually. Adding
new message types is simplified with the help of a tool,
XDR20S3, that we describe in Section [3] In addition to
providing basic, bounded mailboxes, CubedOS also provides
other services such as message priorities and multiple send-
ing modalities (for example, best effort versus guaranteed
delivery). Many of these additional services would be tedious

Volume 38, Number 3, September 2017

Ada User Journal

C. Brandon, P. Chapin, C. Farnsworth, S. Klink

Figure 2: CubedOS-based Architecture

to provide on a case-by-case basis following the traditional
architecture. CubedOS also allows any module to potentially
send a message to any other module. Thus the communica-
tion paths in the running application are very flexible and
dynamic.

Although the CubedOS architecture supports only point-to-
point message passing, the CubedOS system provides an
active module supporting a publish/subscribe discipline. The
module allows multiple channels to be created to which other
modules can subscribe. Publisher modules can then send
messages to one or more channels, allowing for message
broadcast and multicast. Since the messages themselves are
unstructured octet streams, the publish/subscribe module can
handle them generically without being modified to account
for new message types.

Every CubedOS module has a statically assigned ID number.
Messages sent from a module include the ID number of the
sender. This allows a server module to return reply messages
without statically knowing its clients. Thus server modules
can be written as part of a general purpose “module library’
and used without modification in a variety of applications. We
have started compiling a registry of “well known” module IDs
for common services, such as file handling and timer services.
This allows CubedOS module libraries to make use of well
known services and remain reusable. Here active CubedOS
modules resemble network clients and servers where the mod-
ule IDs play the role of a network address. Extending the
architecture across different physical machines, or between
different operating system processes on the same machine, is
an interesting area for future work.

)

We are also defining standard message interfaces to certain
services, such as file handling, that third party modules could
implement. This allows modules to use a service without
knowing which specific implementation backs that service.

However, CubedOS’s architecture also carries some signifi-
cant disadvantages as well:

o All mailboxes must have the same size since they are
stored in an array. Some mailboxes will be larger than
necessary, wasting space.

153

o All messages must have the same type and thus the same
size. Some messages will be larger than necessary and
slower to copy than necessary.

The common message type also requires that typed in-
formation sent from one module to another be encoded
into a raw octet format when sent, and decoded back into
specifically typed data when received. This encoding
and decoding increases the runtime overhead of message
passing and reduces static type safety. Modules must
defend themselves, at runtime, from malformed or in-
appropriate messages, causing certain errors that were
compile-time errors in the traditional architecture to now
be runtime errors. This is exactly counter to the general
goals of high integrity system development.

e In order to return reply messages, the mailboxes must be
addressable at runtime using module ID numbers. Ac-
cessing a statically named mailbox isn’t general enough.
As a result, the precise communication paths used by the
system cannot easily be determined statically.

In particular, since SPARK does not attempt to track
information flow through individual array elements, it
is necessary for us to manually justify certain SPARK
flow messages. The architecture of CubedOS ensures
that there is a one-to-one correspondence between a
module and its mailbox. The tools don’t know this,
and the spurious flow messages they produce must be
suppressed.

The details of CubedOS mitigate, to some degree, the prob-
lems above. For example, the mailbox array is actually instan-
tiated from a generic unit by the application developer. This
allows the developer to tune the sizes of the mailboxes, and
the messages they contain, to the application’s needs. Cube-
dOS does not attempt to provide a one-size-fits-all mailbox
array that will be satisfactory to all applications.

Also every well behaved CubedOS module should contain
an |API| package with subprograms for encoding and decod-
ing messages. This package is generated by the XDR20S3
tool that we describe in Section[3] The parameters to these
subprograms correspond to the parameters of the protected
procedures and entries in the traditional architecture, and pro-
vide much of the same type safety. However, using the API
subprograms is not enforced by the compiler. It is also pos-
sible to accidentally send a message to the wrong mailbox.
Thus modules still need to include runtime error checking to
detect and handle these problems.

So far we have described two extremes: a traditional approach
that does not use CubedOS at all, and an approach that entirely
relies on CubedOS. However, hybrid approaches are also
possible. Figure [3|shows a combination of several CubedOS
mailboxes and a hand-made, optimized protected object to
mediate communication from 73 to T}.

This provides the best of both worlds. The simplicity and
flexibility of CubedOS can be used where it makes sense to
do so, and yet critical communications can still be optimized
if the results of profiling indicate a need. In Figure [3] task
Ty can’t be reached by CubedOS messages. The hand-made

Ada User Journal

Volume 38, Number 3, September 2017

154

Figure 3: Hybrid Architecture

protected object creates a degree of isolation that can also
simplify analysis as compared to a pure CubedOS system.

It is also possible to instantiate the CubedOS message man-
ager multiple times in the same application, effectively creat-
ing multiple communication domains using separate mailbox
arrays. Figure [d]shows an example of where T} is in a sepa-
rate domain from the other modules (because it receives from
a mailbox that is separate from the others).

Figure 4: Multiple Communication Domains

This approach allows the CubedOS infrastructure to be used
for easy development while still partitioning the system into
semi-independent sections. For example, the sizes of the
mailboxes and of the messages used in each communication
domain need not be the same. The parts of the application
that require large messages could be grouped into a domain
separate from the parts that only require small messages.

Notice in Figure E]tasks (modules) T3 and T} send messages
into multiple domains. This is, of course, sometimes neces-
sary if the domains are going to interact. Modules that do this
will need multiple module ID values scoped to different do-
mains. At the moment the handling of this is largely a matter
of manual configuration, which is reasonable for the relatively
small programs typical of CubeSat missions. Creating a more
comprehensive solution for module and domain addresses
would be necessary as part of extending the architecture to
multiple processes or machines as mentioned earlier. It is also
likely that a naming service of some kind would need to be

CubedOS: A Verified CubeSat Operating System

added to the module library provided by CubedOS. This is
also an area for future work.

3 Message Encoding

CubedOS mailboxes store messages as unstructured octet
arrays. This allows a general purpose mailbox package to
store and manipulate messages of any type. Unfortunately
this also requires that well structured, well typed message
information be encoded to raw octets before being placed
in a mailbox and then decoded after being retrieved from a
mailbox.

The CubedOS convention is to use External Data Representa-
tion (XDR) encoded messages. XDR is a well known stan-
dard [2] that is also simple and has low overhead. We have
defined an extension to XDR that allows SPARK’s constrained
scalar subtypes to be represented. We are currently working
on a tool, XDR20S3, that will compile a high level descrip-
tion of a message into message encoding and decoding sub-
programs. Our tool is written in Scala and is not verified, but
its output is subject to the same SPARK analysis as the rest of
the application. It is easier to prove the output of XDR20S3
than it is to prove the correctness of XDR20S3 itself.

The use of XDR20S3 mitigates some of CubedOS’s disad-
vantages. The developer need not manually write the tedious
and repetitive encoding and decoding subprograms. Further-
more, those subprograms have well-typed parameters thus
shielding the application programer from the inherent lack of
type safety in the mailboxes themselves.

The use of XDR encoding may seem like an odd choice
since XDR was originally defined for use in networking ap-
plications where data must be sent between potentially het-
erogenous systems. Since we envision current CubedOS
applications being written entirely in SPARK and executing
in a single process, XDR seems like a needless complication.
However, as described in Section 2] we anticipate extending
CubedOS to work in exactly the kind of potentially heteroge-
nous environment XDR was developed to support. Thus we
aim to provide a single standard for message encoding that
will work in both the near and long term.

To illustrate CubedOS message handling, consider the follow-
ing short example of a message definition file that is accept-
able to XDR20S3.

enum Series_Type { One_Shot, Periodic };

typedef unsigned int Module_ID

range 1 .. 16;
typedef unsigned int Series_ID_Type
range 1 10000;
message struct {
Module_ID Sender;

Time_Span Tick_Interval;
Series_Type Request_Type;
Series_ID_Type Series_1ID;

} Relative_Request_Message;

Volume 38, Number 3, September 2017

Ada User Journal

C. Brandon, P. Chapin, C. Farnsworth, S. Klink

This file introduces several types following the usual syntax
of XDR interface definitions. The syntax is extended, how-
ever, to allow the programmer to include constrained ranges
on the scalar type definitions in a style that is normal for
Ada. The message itself is described as a structure containing
various components in the usual way. The reserved word
message prefixed to the structure definition, another XDR
extension, alerts XDR20S3 that it needs to generate encoding
and decoding subprograms for that structure. Other structures
serving only as message components (parameters) can also
be defined.

XDR20S3 has built-in knowledge of certain Ada private types
such as Time_Span (from the Ada.Real_Time package). Pri-
vate types need special handling since their internal structure
can’t be accessed directly from the encoding and decoding
subprograms. There is currently no mechanism in XDR20S3
to solve this problem in the general case.

Each message type has an ID number that is scoped by the
module that defines the message. Upon receiving a message,
the first step in message handling is to verify that the module
ID of the receiver in the message header agrees with the ID
of the module that is processing that message. This ensures
that the message was actually sent to the intended module.
Once that is done, the module is free to interpret the message
ID value locally. Message ID values are never directly visible
to module clients since the client calls a named encoding
procedure to build each message. Thus the value and mean-
ing of the message IDs defined by a module is entirely an
implementation matter for the module. XDR2OS3 defines
an enumeration type that specifies a module’s messages as
easy to read enumerators. It then uses the position value of a
message enumerator as the message ID value.

XDR20S3 is a work in progress. We intend to ultimately
support as much of the XDR standard as we can including,
for example, variable length arrays and discriminated unions.
The development of XDR20S3 is guided by our immediate
needs with our currently envisioned missions, but we intend
to extend and generalize the functionality of XDR20OS3 as
the tool matures.

There are other possible encoding and decoding schemes that
could have been used. For example, ASN.1 [3]] is another
standard with approximately similar goals as XDR. However,
ASN.1 is much more complicated and entails more overhead
both in space and time. ASN.1 includes type information in
the encoded message itself, however, which may have advan-
tages for error detection and handling. Since the application
developer invokes tool-generated encoding and decoding pro-
cedures, and does not directly deal with message encoding,
it would be possible to switch the message encoding method
without significantly impacting applications. A future version
of XDR20S3 could potentially provide an ASN.1 mode (as
one possiblity), perhaps for reasons of error handling or in-
teroperability with legacy systems. This is also an area for
future work.

4 Related Work

The most closely related work to CubedOS is NASA’s Core
Flight Executive [1]]. Like CubedOS, cFE endeavors to be a

155

general purpose framework for building flight software. Also
like CubedOS, cFE is associated with a collection of modules,
called the Core Flight System (CFES), that support common
functionality needed by many missions. In addition, cFE
makes use of a message passing discipline using a publish/-
subscribe model of message handling. CubedOS can provide
support for publish/subscribe message handling by way of a
library module.

The main difference between the systems, aside from maturity
level (cFE is a long established project with a history of actual
use), is that CubedOS is written in SPARK and verified free
of runtime error. In contrast, cFE is written in C with no
particular static verification goals.

The cFE architecture is layered, whereas CubedOS modules
operate as peers of each other. The cFE architecture makes use
of a separate Operating System Abstraction Layer (OSAL)
that presents a common interface across all the platforms
supported by cFE. In contrast, CubedOS relies on the Ada
runtime system for this purpose, and is thus Ada specific.
CubedOS also uses a module library, the CubedOS LLAL,
to provide hardware and OS independence in areas not cov-
ered by the Ada runtime system and standard library, but the
interface to these modules is not yet standardized.

Kubos [4] is a project with roughly similar goals as cFE and
CubedOS. It is not as mature as cFE. Like cFE, Kubos is
written in C without static verification goals in the sense that
we mean here.

Some CubeSat flight software is written directly on top of
conventional embedded operating systems such as Linux, Vx-
Works [5]], or RTEMS [|6]. These systems allow application
software to potentially be written with a variety of tools and
methods, although C is most often used in practice. They
provide flexibility by imposing few restrictions, but they also
don’t, by themselves, provide support for common flight soft-
ware needs. Also they are themselves not statically verified
as CubedOS is, although the Wind River VxWorks Cert plat-
form [7]] does provide a means by which VxWorks can be
used in safety critical avionics applications conforming to the
DO-178B standard.

5 Conclusion

CubedOS is an application framework based on message pass-
ing that is intended to support the flight software of space
missions, particularly CubeSat missions. Our early experi-
ence with CubedOS is favorable. The architecture seems to
provide an effective way to organize flight software.

Unlike similar projects such as cFE and Kubos, CubedOS is
written entirely in SPARK and proved free of runtime errors
in the sense meant by SPARK. It is necessary to manully
suppress certain SPARK messages related to information flow
through the CubedOS mailbox array. However, we feel the
danger of doing this is minimal since the easy to understand
architecture of the system ensures no flow problems will
actually arise in practice.

CubedOS provides a great deal of concurrency and runtime
flexibility, but sacrifices some static type safety to achieve

Ada User Journal

Volume 38, Number 3, September 2017

156

this. We mitigate the danger using a tool, XDR20S3, that
generates message encoding and decoding subprograms based
on strongly typed message descriptions. The output of the
tool is verified by SPARK.

We intend to release CubedOS to the open source CubeSat
community once we have completed an ITAR review of our
code base and possibly release both ITAR compliant and U.S
non ITAR compliant versions. We anticipate that release to
be some time in mid-2018.

References

[1] “Core flight executive.”
gsfc.nasa.gov/projects/cfe/.
2017-01-22.

[2] M. Eisler, RFC-4506: XDR: External Data Repre-
sentation Standard. Internet Engineering Task Force,
May 2006. |http://tools.ietf.org/html/
rfc4506.html.

Accessed

http://opensource.

CubedOS: A Verified CubeSat Operating System

[3] ITU, Information technology — Abstract Syntax No-
tation One (ASN.1): Specification of basic nota-
tion. International Telecommunications Union, Novem-
ber 2008. http://www.itu.int/rec/T-REC-X|
680/en.

[4] “Kubos.” http://www.kubos.co/. Accessed 2017-
01-22.

[5] “Vxworks.” http://www.windriver.com/
products/vxworks/. Accessed 2017-01-22.

[6] “Real time executive for multiprocessor systems.”
https://www.rtems.org/. Accessed 2017-01-22.

[7] “Wind river vxworks cert
http://www.windriver.com/
products/product-overviews/
vxworks—-cert-product-overview/. Accessed
2017-01-22.

platform.”

Volume 38, Number 3, September 2017

Ada User Journal

http://opensource.gsfc.nasa.gov/projects/cfe/
http://opensource.gsfc.nasa.gov/projects/cfe/
http://tools.ietf.org/html/rfc4506.html
http://tools.ietf.org/html/rfc4506.html
http://www.itu.int/rec/T-REC-X.680/en
http://www.itu.int/rec/T-REC-X.680/en
http://www.kubos.co/
http://www.windriver.com/products/vxworks/
http://www.windriver.com/products/vxworks/
https://www.rtems.org/
http://www.windriver.com/products/product-overviews/vxworks-cert-product-overview/
http://www.windriver.com/products/product-overviews/vxworks-cert-product-overview/
http://www.windriver.com/products/product-overviews/vxworks-cert-product-overview/

	Introduction
	CubedOS Architecture
	Message Encoding
	Related Work
	Conclusion

