The Use of SPARK in a Complex Spacecraft

Carl Brandon

Peter Chapin

Vermont Technical College

{cbrandon,pchapin}@vtc.vsc.edu

Abstract

Building on our previous experience of constructing and operating
a successful Earth orbiting satellite, in which the software was
primarily written in SPARK, we now describe our new project:
writing the flight software for a complex, lunar orbiting spacecraft
called Lunar IceCube (LIC). We continue with our use of SPARK
for this new mission, extending and enhancing the techniques used
in our previous mission. Although this work is ongoing, we have
found SPARK to be a manageable technology for us, even in our
student-centered development environment.

Categories and Subject Descriptors 1.2 [Physical Sciences and
Engineering]: -—Aerospace; C.3 [Special-Purpose and Application-
Based Systems]: -—Real-time and embedded systems; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Programming
by contract

Keywords SPARK, Flight Software, CubeSat

1. Introduction

The Vermont Technical College CubeSat Laboratory’s first Cube-
Sat, Vermont Lunar CubeSat, was a 1U (10cm x 10cm x 10cm,
1kg) spacecraft. It was launched on a Minotaur 1 rocket as part
of the NASA ELaNa IV, Air Force ORS-3 launch from Wallops Is-
land on November 19, 2013. It was launched into a 500 km altitude,
40.5° inclination Earth orbit (Brandon and Chapin 2013).

Vermont Lunar CubeSat was one of 12 university CubeSats on
this launch. Eight of them were never heard from, two had partial
contact for less than one week and one worked for four months.
Vermont Lunar CubeSat remained functional until reentry, after
two years and two days, on November 21, 2015. Its flight software
was written, primarily by undergraduate students, in SPARK 2005
while the other CubeSats on the launch were programmed in C.
We believe that the use of SPARK allowed our very small software
development team to complete the software on time and without
fatal flaws. It is believed in the CubeSat community (as related by
one of the CubeSat founders, Jordi Puig-Suari of Cal Poly) that
most CubeSat failures are software related. The flight software is
the hardest part of building a small spacecraft. Every part of the
software is mission critical, and the failure of any part will result
in a dead spacecraft. While SPARK has been used in commercial
and military aircraft, air traffic control and high speed trains, we
are the first to use it in space. We believe this resulted in the

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

HILT ’16 October 6-7, 2016, Pittsburgh, Pennsylvania, USA

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM [to be supplied].... $15.00

software successfully accomplishing its purpose during our two
year mission. We received much inertial measurement data, several
dozen nice photos of the earth, as well as other data.

Because of the success of our mission, attributed to our supe-
rior software technology, we were chosen to write the flight soft-
ware for Lunar IceCube, a 6U CubeSat (10cm x 20cm x 30cm,
14 kg) with an iodine propellant ion drive propulsion system. This
spacecraft is manifested on NASA’s Space Launch System (SLS)
EM-1 flight to the Moon in 2018. This mission is much more com-
plicated. Our first CubeSat was a $50,000 project with a launch
valued at $125,000. The development team consisted of two fac-
ulty and around three students at any one time. Lunar IceCube is
a collaboration of Vermont Technical College with Morehead State
University (KY); NASAs Jet Propulsion Laboratory; NASAs Deep
Space Network (DSN); NASAs Goddard Space Flight Center, and
Busek, Inc. The spacecraft budget is around $15,000,000 and the
launch is valued at $10,000,000.

The primary mission of the SLS is to test the Orion capsule
on a circum-lunar flight with a high speed reentry at the earth.
It is the most powerful rocket ever built, with about 2,000,000
pounds more thrust than the Saturn V. In addition to the Orion
capsule, it will carry 13 6U CubeSats. Lunar IceCube will be
deployed shortly after trans-lunar injection, on a sun centric orbit.
The software will have to control the de-tumbling of the spacecraft
so the photovoltaic panels can be oriented toward the sun before the
limited battery power runs out (about 30 minutes). Following de-
tumbling, the flight software will periodically make radio contact
with the DSN for purposes of navigation, and it will receive and
process commands transmitted from Earth to guide the spacecraft
into lunar orbit. Once in orbit, the science mission, mapping the
moon’s water vapor, ice and other volatiles over a six month period,
will be under the control of the flight software. Commands for the
science orbits will be uploaded, and the software must be able to
autonomously control the spacecraft for up to 24 hours (3-4 lunar
orbits) if necessary, due to timing issues of DSN availability.

2. Spacecraft Description

The physical spacecraft, including both the mechanical and elec-
tronic hardware, is being constructed by our collaborators at More-
head State University. The systems controlled by the flight software
include the following:

e A photovoltaic (PV) panel orientation drive for aiming the pan-
els (eight panels totaling 120 W) toward the sun, and a power
supply for battery charging control and for the generation of
multiple voltage levels.

e The science instrument, the Broadband Infrared Compact High
Resolution Exploration Spectrometer (BIRCHES), developed
by NASA’s Goddard Space Flight Center. The instrument must
be commanded when to take data and how to set the iris opening
so as the ground pixel size will remain constant as the distance

to the Moon changes. Data and telemetry from the instrument
will need to be received and buffered for later transmitting to
the DSN.

A Blue Canyon attitude determination and control system
(ADACS) which has a star tracker camera and three momentum
wheels for rotating the spacecraft. During data acquisition, the
ADACS will be commanded so that BIRCHES points directly
toward the lunar surface. After acquisition, the ADACS will
have to be commanded to point the patch antennas toward the
DSN dishes on the earth.

An Iris-2 X-band radio developed by the NASA Jet Propulsion
Laboratory which will be used for data transmission to earth
and for uploading commands and software updates to the space-
craft. It is also used as a navigation transponder with round trip
signal time from the earth and back for distance measurement
and Doppler shift of the signal for velocity measurement. Be-
sides controlling the various Iris-2 modes, the flight software
will be responsible for forming and decoding the DSN data for-
mat packets.

The Busek BIT-3 iodine propellant ion drive will be controlled
as to thrust level (up to about 1.2 mN) and modes. The ion drive
will operate for months at a time, requiring about six months
just to enter lunar orbit. It is mounted on a two axis gimbal
which will be controlled by the flight software so the thrust
is pointed in the desired direction. This is coordinated with
rotation of the spacecraft by the ADACS. This is the first use
of an iodine propellant ion drive.

The flight software will run on a Space Micro Proton-400 dual-
core PowerPC, radiation hardened CPU board (Space Micro 2014).
We are using VxWorks 6.8 as our embedded, real time operating
system (Wind River). VxWorks was used for the Mars Science
Laboratory surface operations as well as the very complex Mars
atmospheric entry and landing.

3. Tools

The flight software itself is written, to the greatest extent possible,
in a restricted dialect of Ada called SPARK. In addition to being a
language that is amenable to analysis, SPARK is also a set of tools
that can be used to statically prove programs free of certain classes
of runtime error. The SPARK language and tools, hereafter simply
called “SPARK,” can also be used to prove that programs adhere to
their specifications as described by embedded pre- and postcondi-
tions and other assertions added by the developer. Additional in-
formation about SPARK can be found in (McCormick and Chapin
2015) or online (SPARK Team 2014a,b).

We are using the newer SPARK 2014 rather than the older
SPARK 2005 that we used during our work on the Vermont Lunar
CubeSat project. In addition to supporting a much richer subset of
Ada than the earlier SPARK, the current generation of SPARK adds
support for Ravenscar-style Ada tasking, a very useful feature for
our system as we describe in Section 4.

We also avoid C whenever possible despite the ubiquitous appli-
cation of that language in spacecraft flight software (see, for exam-
ple, (Holzmann 2014)). Our verification goals, described in more
detail in Section 5, are to at least show the software free of run-
time error, and that task is much more difficult with C. We have
not investigated the use of any C verification tools such as, for ex-
ample, Frama-C (Cuoq et al. 2012), although doing so might be an
interesting avenue for future work should it become necessary to
include significant C components in the Lunar IceCube system.

The software is being written primarily by undergraduate and
masters degree students at Vermont Technical College, with some
assistance from faculty, and students at Morehead State University.

The students are inexperienced developers and most have never
used SPARK, or even Ada, until becoming a part of this project. Al-
though some training time is required, it is remarkable how quickly
the students can become productive with the SPARK language and
verification tools.

4. Software Architecture

In order to simplify the flight software and reduce the testing bur-
den, most flight decisions for the Lunar IceCube mission will be
made by controllers on the ground. The core of the flight soft-
ware thus consists of a command scheduler that plays a script
of uploaded commands at appropriate times. The results of these
commands, in the form of telemetry data, science data from the
BIRCHES instrument, or error responses are buffered for transmis-
sion to Earth when the Deep Space Network is available. The flight
software has minimal autonomy except for immediately after de-
ployment where it must stabilize and orient the spacecraft in order
to establish reliable solar power and communications.

To date the project has suffered from relatively poorly defined
software requirements. Finding a remedy for this issue is ongo-
ing, but is complicated by the large number of geographically and
politically dispersed collaborators working on the various subsys-
tems. Most of our collaborators are hardware and spacecraft design
experts and not software engineers, making communication about
software requirements and other software related issues more chal-
lenging. In keeping with our previous experience with the Vermont
Lunar CubeSat, the use of SPARK has helped us maintain logical
coherence of our software even as it is massively refactored in re-
sponse to our deepening understanding of its requirements. The
rigors imposed by SPARK are thus of great value in an environ-
ment that is otherwise not very rigorous, at least from a software
development point of view.

Our design is relatively standard. We divide the system into a
collection of modules together with a support library. Each module
and the support library consists of one or more SPARK packages.
Modules are distinguished from ordinary library packages in that
each module has its own library level task running in an infinite
loop. Thus modules are active entities whereas the support library
is passive.

Modules communicate in a tightly constrained manner using
Ada protected objects. Each module has a single protected object
that it uses as a mailbox holding pending messages for the module.
Messages are sent by other modules, or even by a module to itself,
by calling a protected procedure in the mailbox. A module receives
messages by calling a single entry in the mailbox. Some modules
(but not all) can meaningfully receive several different types of
messages. Since SPARK requires that a protected object have only a
single entry, the messages are pulled from the mailbox in that case
as XDR encoded (Eisler 2006) octet arrays. Internally the module
decodes the message in the octet array at run time before acting on
it.

The need for some modules to decode messages adds runtime
overhead to message processing, but that overhead is generally
small. Also many modules do not require it. Of somewhat greater
concern, given our verification goals, is the reduction in type safety
introduced by this design. Modules which must decode messages
must detect and handle malformed messages at runtime. However,
we hope to prove in the final system that malformed messages are
never created. If we are successful, we can then justify removing
our manually programmed runtime checks on the format of mes-
sages. This parallels the normal work flow of SPARK development
where proof of freedom from runtime error justifies the removal of
compiler generated checks.

Library packages are shared by multiple modules and provide
services of general interest to the system. For example, one such

library package assists with XDR encoding and decoding of mes-
sages. In some cases there is a choice of making a service available
as a library package or as a module. The procedures providing the
API of the service could be visible procedures of a library package
in one case, or protected procedures of a supporting module’s mail-
box in the other. However, the semantics of a module vs. a library
package are quite different due to the highly asynchronous nature
of modules. Results from a module are generally returned via a re-
ply message that interleaves with the arrival of messages from other
sources.

The core module of our system contains a scheduler component
that consists of a task that periodically pools a database of pending
commands. When a command comes due it is executed by sending
a message to an appropriate supporting module. New commands
are added to the database as part of command processing, but most
notably by the module communicating with the DSN. Commands
transmitted from Earth are the primary driver of the spacecraft’s
activity.

The science data gathered by the spacecraft will be transferred
to the ground over the Deep Space Network using the Consultative
Committee for Space Data Systems (CCSDS) File Delivery Pro-
tocol (CFDP). This is a general purpose file transfer protocol de-
signed for use with very high latency, unreliable space links. A full
CFDP implementation has many features that are not relevant to
the Lunar IceCube mission. However, we are creating a partial im-
plementation of CFDP, entirely in SPARK, to support our mission
needs. We intend to make our implementation available to other
groups as open source software in the hope that it may promote the
use of SPARK in other space flight software systems.

As is traditional in most large scale space missions, but unusual
for CubeSat missions, we are designing a system where it will
be possible to upload software updates to the spacecraft in flight.
However, this has been deemed a high risk operation so it is hoped
that we never have to actually make such an update. The value of
SPARK in this environment is obvious: it is considered a priority
that the software work correctly at the time of launch so that
updates will be, ideally, unnecessary.

5. Verification and Testing

Our verification goals consist primarily of ensuring the software is
free from runtime errors in the sense usually meant by SPARK: no
Ada language defined exceptions will ever be raised due to out-of-
bounds array access, arithmetic overflow, division by zero, or any
other constraint violation. We will also use SPARK to prove as many
higher level correctness properties as time and resources allow. We
are particularly interested in showing that no invalid messages are
ever sent to a module.

In addition to the SPARK verification tools, we execute unit tests
using the AUnit test framework. All of our source code is compiled,
tested, and proved daily in a Jenkins continuous integration (CI)
server. This allows us to easily monitor the state of the system
and detect failing tests or failing proofs quickly. Our policy is to
avoid committing changes that cause unit test failures. However,
we do accept failing proofs on a day-to-day basis; doing otherwise
presents too great an acceptance barrier for “simple” modifications.

However, the CI server often detects proofs that start failing
unexpectedly in an apparently unrelated part of the system from
where a small change was made. A good example is when the ad-
dition of a precondition on a subprogram causes proof problems at
some of that subprogram’s call sites. It is much easier to understand
the cause of those problems and to correct them when they are de-
tected early. We strongly recommend the use of continuous proof
in SPARK development environments.

We are using Microsoft Windows as our development platform.
‘We compile our source natively for the sake of executing unit tests.

We also compile our source with a cross compiler that generates
PowerPC code for VxWorks. The PowerPC version of our system
is then loaded onto a development board that is similar to the flight
computer (the main difference is the lack of radiation hardening and
more convenient physical interfaces). This allows us to run tests of
the system in a more realistic context.

We are making use of a NASA Jet Propulsion Laboratory pro-
vided hardware emulator for the Iris-2 radio. One side of the emu-
lated radio is connected to the development board. The other side is
connected to a Linux system running NASA provided software to
emulate the DSN network. This allows us to send simulated radio
traffic to the radio emulator and for our flight software to inter-
act with the radio emulator, and indirectly with the emulated DSN.
Finally, we are using simulation software provided by NASA that
will do the physics calculations necessary to create simulated flight
conditions.

At the time of this writing we have not completely configured
this test bed, but we do have various components of it working
now and anticipate having it fully operational in a few weeks. With
this combination of hardware and software we are able to run our
flight software through full scale mission simulations to explore
its behavior in a variety of scenarios. The use of SPARK will not
decrease the rigor of this testing, but it will, hopefully, save time by
eliminating the need to find and fix low level errors, such as out-of-
bounds array accesses. It will also help us direct the testing effort
to areas where it is most needed by exploring the sections of the
software where the SPARK proofs are still failing.

6. Conclusion

Hopefully, a successful Lunar IceCube mission will be further
proof after our successful Vermont Lunar CubeSat of the value
of SPARK to both the CubeSat community and also the general
space community. There have been many failures of both CubeSat
missions (83% failure rate on our ELaNa IV launch) and much
larger and expensive spacecraft. We hope that the methods we have
used, and are using, and will make available to the CubeSat and
general space community, will help bring this failure rate down.
Spacecraft software is much more difficult than many of the groups
attempting spacecraft assume. After all, it is rocket science.

References

C. Brandon and P. Chapin. A SPARK/Ada CubeSat Control Program,
pages 51-64. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
ISBN 978-3-642-38601-5. doi: 10.1007/978-3-642-38601-5_4. URL
http://dx.doi.org/10.1007/978-3-642-38601-5_4.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C: A software analysis perspective. In
Proceedings of the 10th International Conference on Software En-
gineering and Formal Methods, SEFM’12, pages 233-247, Berlin,
Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33825-0. doi:
10.1007/978-3-642-33826-7_16. URL http://dx.doi.org/10.
1007/978-3-642-33826-7_16.

M. Eisler. RFC-4506: XDR: External Data Representation Standard.
Internet Engineering Task Force, May 2006. http://tools.ietf.
org/html/rfc4506.html.

G. J. Holzmann. Mars code. Commun. ACM, 57(2):64-73, Feb.
2014. ISSN 0001-0782. doi: 10.1145/2560217.2560218. URL
http://doi.acm.org/10.1145/2560217.2560218.

J. W. McCormick and P. C. Chapin. Building High Integrity Applications
with SPARK. Cambridge University Press, 2015.

Space Micro. Proton 400k single board computer. http://
wWww.spacemicro.com/assets/datasheets/digital/slices/
proton400k.pdf, May 2014. Accessed: 2016-09-15.

SPARK Team. SPARK 2014 Reference Manual. AdaCore, New
York and Paris, 2014a. URL http://docs.adacore.com/

spark2014-docs/html/1rm/. Available at http://docs.
adacore.com/spark2014-docs/html/1lrm/.

SPARK Team. SPARK 2014 Toolset User’s Guide. AdaCore, New
York and Paris, 2014b. URL http://docs.adacore.com/
spark2014-docs/html/ug/. Available at http://docs.adacore.
com/spark2014-docs/html/ug/.

Wind River. Vxworks. https://windriver.com/products/
vxworks/. Accessed: 2016-09-15.

