A SPARK/Ada CubeSat Control Program

Carl Brandon' and Peter Chapin?

! Vermont Technical College, Randolph Center VT 05061, USA
2 Vermont Technical College, Williston VT 05495, USA
{CBrandon,PChapin}@vtc.edu

Abstract. With software’s increasing role in safety-critical and secu-
rity sensitive infrastructure it is of paramount importance to educate
the next generation of software engineers in the use of high integrity
development methods. In this paper we discuss our experience training
undergraduate students in the use of SPARK toward the construction of
a mission-critical embedded system. In particular the students designed
and implemented the control program for a CubeSat nano-satellite that
will orbit the Earth as the first step toward the ultimate goal of building
a prototype CubeSat that will go to the Moon. Our work shows that
inexperienced undergraduates can learn to use SPARK to produce more
robust software than might otherwise be the case, even in the environ-
ment of a volatile student project.

Keywords: SPARK, student project, CubeSat.

1 Introduction

We received a 2009 NASA Consortium Development Grant for work on pro-
totyping and analyzing technologies for a self propelled CubeSat to the Moon
that will orbit or land on it. No CubeSat has yet left low earth orbit. The Con-
sortium Development Grant is to have several institutions work together on a
project with cooperation with one or more NASA centers. Carl Brandon, as the
Scientific Principal Investigator, is leading the project from Vermont Technical
College (VTC), with groups at the University of Vermont, Norwich University,
and students from St. Michaels College. The construction of the CubeSat and the
production of the control software and translation of the navigation software are
begin done at Vermont Technical College at both our Randolph Center (main)
and Williston campuses. This software work is being done mostly by students
under the direction of Peter Chapin. The star tracker camera analysis of near
body images is being done at Norwich University by students under the direction
of Danner Friend and Jacques Beneat. The analysis of low energy transfer paths
to the Moon and radiation exposure analysis is being done at the University of
Vermont with students under the direction of Jun Yu.

The eventual goal of the project is to build and get launched a triple CubeSat
which will be self propelled to the Moon. Two paths are being investigated. Both
will start with a piggy-back ride on a geosynchronous communications satellite

H.B. Keller et al. (Eds.): Ada-Europe 2013, LNCS 7896, pp. 51{64] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

52 C. Brandon and P. Chapin

launch. One option will be for a double CubeSat “booster” with four mono-
propellant (hydroxyl ammonium nitrate — methanol (HAN)) thrusters carrying
a single CubeSat lander (also with four mono-propellant thrusters) from the
apogee of the geosynchronous transfer ellipse on a direct Hohmann transfer orbit
to the Moon, a la the Apollo missions. The booster would then insert into a Lunar
orbit with the lander after a trip of about a week. The lander would then separate
from the booster and use its own thrusters for a descent and soft landing on the
Moon.

The second option, and more likely due to the hazard of lammable chemical
propellants on an expensive communication satellite launch, would be for a xenon
ion drive. It would contain 0.5-0.75 kg of xenon in a carbon fiber tank at 200—
300 atmospheres. This triple CubeSat would also get a ride to a geosynchronous
transfer ellipse, but would stay in the ellipse with a burn of the xenon ion engine
near perigee during each orbit of the Earth. This would gradually increase the
size of the ellipse over a period of about 10 months when the apogee would reach
the Lagrange point, L1, about three quarters of the way to the Moon. The ellipse
would then be “flipped” to an orbit about the Moon, and the xenon ion drive
would burn at perilune during each orbit over a period of about 6 months until
the final, relatively low orbit is obtained.

We were selected by NASA for a test flight as part of the ELaNa IV (Edu-
cational Launch of Nano-satellites) mission. We will be testing the navigation
and other systems that would be used on a Lunar mission. The test spacecraft,
a single CubeSat (10cm x 10cm x 10cm, 1.33kg) will be launched in October,
2013, into a 500 km orbit, as a secondary payload on the U. S. Air Force ORS-3
(Office of Responsive Space) mission on a Minotaur 1 [10] launch vehicle from
Wallops Island, Virginia. The navigation portion will use the NASA Goddard
Space Flight Center developed GEONS (Goddard Enhanced Onboard Naviga-
tion System) software package. We have started to rewrite that C program in
SPARK, which would be completed for the Lunar mission. If we are successful
in obtaining additional funding, the Lunar flight would follow the test flight by
about six years.

The control program for the ELaNa IV CubeSat is being written in SPARK
for greatly increased reliability over the C language software used in almost all
CubeSats to date. Most CubeSat failures are believed to be software related.
The success of the fairly complicated software on the ELaNa CubeSat will give
us confidence for the much more complicated and expensive Lunar mission.

2 System Overview

The CubeSat system has several components that are controlled by software,
either running on their own hardware or by the overall control software running
on the main MSP430 processor. There are components of the control program
described in Section B3] that interact with each of the hardware components of
the CubeSat. The CubeSat requires a power system consisting of photovoltaic
cells on all six sides of the CubeSat and the Electrical Power System (EPS)

A SPARK/Ada CubeSat Control Program 53

which controls the charging of the batteries from the photovoltaic cells, gen-
erates the required system voltages, and protects the batteries from over and
under voltage. The motherboard mounts the Pluggable Processor Module with
the CPU. The radio board contains a receiver and transmitter for satellite com-
munications. There are deployable antennas for transmitter and receiver. The
Position and Time Board (PTB) mounts the GPS board, whose CPU we use
to run the GEONS navigation software and there is a patch antenna for the
GPS. Finally, there is the Inertial Measurement Unit (IMU) and camera board
which mounts them and the hysteresis rods for magnetic damping. The CubeSat
Kit structure, which mounts everything also has magnets for passive magnetic
stabilization along the Earth’s magnetic field lines. Figure[Ilshows a photograph
of our completed CubeSat.

Fig. 1. Photograph of our CubeSat

2.1 Structure, Motherboard and CPU

The CubeSat structure is an aluminum frame made by CubeSat Kit [6]. It
contains their Motherboard (MB) and Pluggable Processor Module (PPM).
Our PPM contains a Texas Instruments MSP430F2618 16-bit micro-controller
(MCU) with 116 KB program memory, 8 KB on-chip SRAM, 2 USCI, 8-channel
12-bit ADC, 2-channel 12-bit DAC, 16-bit Timer, 3-channel DMA and on-chip
comparator. The motherboard also contains a 2 GB SD card for storage of GPS,
IMU, GEONS and camera data prior to transmission to our ground station.
In each corner of the structure, we are epoxying Alnico V magnets for passive
magnetic stabilization of the CubeSat which will align itself with the earth’s
magnetic field.

2.2 GPS and Position and Time Board

The primary purpose of testing the navigation system will make use of a Novatel
OEMV-1 GPS board, previously used on the University of Michigan RAX triple

54 C. Brandon and P. Chapin

CubeSats[12], which has had the CoCom speed and altitude limits removed so it
can be used in orbit. We also have the Novatel API activated, which allows us to
run software on the GPS board’s ARM processor. It is mounted on a University
of Michigan designed RAX Position and Time Board (PTB) [13] which allows
GPS board access through an SPI bus and the real time clock through an I2C
bus. The board also supplies a variety of telemetry items about the GPS power,
temperature, etc., over the I2C bus. The PTB access of the GPS will allow
communication with the GEONS software running on the GPS ARM CPU. The
GPS receiver gets the GPS satellite signals via an Antcom 1.5G15A3F-XT-1
GPS patch antenna [I] with a built in 33 dB gain low noise amplifier (LNA).

2.3 Radio

Communication with the CubeSat will be done from our ground station to the
Astrodev Helium-100 transceiver [7] on the CubeSat. This radio has a 2m band
receiver and 70 cm band transmitter with a power of 2.8 W. We have frequen-
cies assigned by the International Amateur Radio Union (IARU) which does
frequency coordination for non governmental satellites. These frequencies are
145.960 MHz for our uplink, and 437.305 MHz for our downlink. We will send
commands to the satellite via the uplink, and receive data (images, GPS output,
inertial measurement unit (IMU) output, system state telemetry and GEONS
output) via the downlink. We will have a ground station with 2m circularly
polarized crossed Yagi and 70cm circularly polarized crossed Yagi antennas
mounted on altitude and azimuth rotors on top of a 50 foot tower. Our ground
station radio is an Icom IC-910H satellite radio with 2m, 70cm and 25cm
transceivers controlled by SatPC32 software [14]. The radio will use a proto-
col described below that will ensure non corrupted data. The data will have first
been stored on the on-board SD card.

2.4 Antennas

Our CubeSat will have deployable antennas for both the 2m and 70 cm bands.
The ISIS AntS antenna system [§] has dual microprocessors and can supply
telemetry data as to its state, and receive commands to first arm the antenna,
and then to deploy the antennas. The four spring elements are coiled up behind
spring hinged doors, held closed by nylon thread which passes over surface mount
resistors internally. When the deploy command is received over the I?C interface,
the resistors are heated up to melt the thread and release all four antenna ele-
ments. The elements on opposite sides of the CubeSat make up a dipole antenna,
and the two antennas are perpendicular to each other. The antenna module is
mounted on the bottom of the satellite, just outside the internal motherboard.

2.5 Electrical Power System

Electrical Power for the CubeSat is supplied by high efficiency photo-voltaic
cells (28.3% efficient) made by Spectrolab [I6]. These 1W cells are arranged

A SPARK/Ada CubeSat Control Program 55

with two cells on three sides and the bottom of the CubeSat, and one cell on the
top, leaving room for the GPS patch antenna and an aperture for our camera,
and one cell on one of the sides leaving room for a charging port, USB port
and remove before flight pin. Power from the cells goes to the Clyde Space
1U Electrical Power system board [4]. This board controls the charging of the
attached 10 Wh 8.2V lithium polymer battery. The board also has regulated
voltage outputs of 3.3V and 5.0V as well as the unregulated battery voltage
(used in the power amplifier of the radio transmitter). It has protection circuitry
for the battery and provides telemetry data as to battery voltage, current and
temperature over I2C. It also controls a battery heater to maintain the battery
temperature above 0° C.

2.6 Camera and Inertial Measurement Unit Board

This board has various capabilities not contained on the other commercial boards
above. The second part of the magnetic stabilization consists of two HyMu 80
hysteresis rods, perpendicular to each other on this board and the corner Alnico
magnets on the main structure. There is a Microstrain 3DM-GX3-25 miniature
Attitude Heading Reference System (IMU) [9], utilizing MEMS sensor technol-
ogy. It combines a triaxial accelerometer, triaxial gyro, triaxial magnetometer,
temperature sensors, and an on-board processor running a sophisticated sensor
fusion algorithm to provide static and dynamic orientation, and inertial mea-
surements. The C329 color VGA camera module [3] with an 6.0mm F1.6 lens
which performs JPEG compression and communicates via an SPI interface. The
images of stars and near bodies (sun, earth and moon) will be downloaded for
navigation analysis by the GEONS software.

3 Project Description

In this section we describe the organization of the project including the tool
chain we used, the system architecture, and our approach to testing.

3.1 SPARK

SPARK is an annotated sub-language of Ada designed for the development of
high integrity software [17]. It has been used successfully in industry to construct
mission-critical systems [18].

SPARK is a sub-language of Ada in the sense that it omits numerous Ada
features that are not amenable to static analysis. The major omitted features
include exception handling, access types, dynamic memory allocation, dynamic
dispatch, and recursion. SPARK also restricts Ada in numerous additional ways
to ensure that programs have fully specified, unambiguous semantics.

SPARK extends Ada with annotations embedded in comments that enrich in-
terfaces with declarations of information flow and with pre- and post-conditions.
The main SPARK tool, the Examiner, uses the annotations, together with the

56 C. Brandon and P. Chapin

code itself, to statically check that no uninitialized data is used and that all
results computed by the program are consumed in some way. Furthermore the
Examiner generates verification conditions stating conjectures about the runtime
checks and the pre- and post-conditions used in the program. These verification
conditions are discharged by an automatic theorem prover, the Simplifier, some-
times with human assistance. This provides static assurance that in all cases no
runtime checks will fail and that pre- and post-conditions will be honored.

In our project SPARK was used by undergraduate student workers. Although
undergraduate use of SPARK has been documented previously [20], this project
differs from that earlier work in that here the students are building a “real life”
system that will actually fly in space and not just a carefully managed class
project.

Our policy was to keep the code submitted to our version control repository
examinable at all times with full information flow analysis enabled. Exceptions
to this policy were made so that incomplete stubs could be committed in order
to facilitate testing. Proofs of freedom from runtime errors were deferred until a
particular package was deemed to be stable enough to justify the effort involved
in discharging all verification conditions associated with that package.

3.2 Tool Chain

The tool chain we used was largely the same as described in [I9]. For convenience
we briefly summarize the tool chain in Figure 2

Ada source files were first analyzed using SPARK and then compiled to stan-
dard C with an Ada to C translator [I5]. The C was then compiled, along with
hand written low level C modules, using a commercial C compiler for our target
platform [5]. This approach allowed us to develop SPARK programs for targets
on which Ada is not otherwise well supported.

One important disadvantage of our approach is that the underlying C com-
piler is now a source of potential errors in our system. Although compilers are
generally robust, silent mis-compilation of correct source code is certainly possi-
ble. In our system this concern is particularly acute since the Ada to C translator
relies on a human generated configuration file describing the characteristics of
the underlying C compiler.

For example, the underlying C compiler for our MSP430 target uses 16 bit
integers. We made this known to the Ada to C translator by way of its configu-
ration file so that the Ada type Integer was also taken to be 16 bits. In addition,
the SPARK configuration file was used to convey this information to the SPARK
tools. A mistake in either level of configuration could result in an undetected
error reaching the object code.

We dealt with this problem in part by being cautious; the configuration files
are small and amenable to careful review. We also wrote several small programs
that exercised some of the issues covered by the configuration files. By manu-
ally examining the assembly language produced by the underlying C compiler we

A SPARK/Ada CubeSat Control Program 57

Ada Main

Ada to C

C Main C Low Level

Object Code

Fig. 2. Tool Chain

were able to verify that our configuration was appropriate, at least in those cases.
We hoped that any remaining configuration errors would manifest themselves
during testing.

Because we used SPARK to prove freedom from runtime errors we compiled
our code base with runtime checks disabled. This resulted in higher execution
performance in terms of both space and time.

We also made no use of the Ada runtime system. This was feasible because
SPARK prohibits many Ada constructs requiring runtime support [I9] and be-
cause we eliminated unnecessary runtime checks. We also imposed several ad-
ditional, minor restrictions on our programming style to avoid unnecessary use
of the runtime system. For example, on the MSP430 target the mod operator
entailed a call to a runtime support function to properly handle negative ar-
guments. Since we only used mod on positive values, we avoided the runtime
system reference by simply using the rem operator instead. The rem operator
was directly translated into C’s % operator.

Removing the runtime system reduced the memory footprint of our software,
which was important in our constrained environment. It also reduced the size of
the trusted code base executing on the spacecraft, compensating somewhat for
the added risk incurred by injecting an additional compiler into the tool chain.

Since our system consists of two largely independent programs, one running
on an MSP430 micro-controller and the other on an ARM architecture processor,
we used two independent instances of our tool chain, one for each target.

58 C. Brandon and P. Chapin

3.3 Design

No formal specification method nor design methodology was used in the devel-
opment of our software. Instead the design was done by students, with guidance
from faculty, in an informal manner.

The development of the software followed a roughly agile approach with an
emphasis on pair-programming and frequent testing. Although we did not use
a high integrity development process, the approach used was familiar to the
students from their classwork. SPARK augmented the development process in a
useful way as describe further in Section [3.41

Our focus since the summer of 2011 has been on preparing the software for
a low Earth orbiting test flight where we intend to exercise several critical sub-
systems. The software was divided into a main control program responsible for
coordinating the general activity of the spacecraft and a navigation program re-
sponsible for interacting with the NASA provided GEONS navigation software.
The control program executes on a Texas Instruments MSP430F2618 micro-
controller [II] mounted on the main processor board of the CubeSat Kit [6].
The navigation program executes on an ARM architecture Intel XScale auxil-
iary processor on-board the Novatel OEMV-1 GPS receiver.

The control program uses several interfacing technologies to communicate
with the various subsystems. Table [lists the subsystems used in the test flight
and the interfacing method used to interact with that subsystem.

Table 1. Subsystems Used in Test Flight

Subsystem | Interfacing |
Antenna I’C

Radio RS-232
Camera SPI

Power Supply I’C
Inertial Measurement Unit [RS-232
GPS & GEONS SPI

Each interfacing technology has an associated package that allows SPARK
programs to access that interface. Because the Ada compiler we used was un-
aware of certain low level details of our platform, such as how interrupts are
handled, the lowest levels of the interface access code were written in platform
specific C compiled directly by our underlying C compiler. However, every at-
tempt was made to to keep the C components of the system trivial so as much
application logic as possible could be exposed to SPARK’s analysis.

Each subsystem includes a driver package that exposes the basic functionality
of that subsystem. These packages interact with the subsystem’s hardware via
the appropriate interfacing package and were entirely written in SPARK. The

A SPARK/Ada CubeSat Control Program 59

driver packages are intended to be general and not tied to any specific applica-
tion. We hope to reuse the driver packages in later flights.

On top of each driver package is a “handler” package that encodes the flight-
specific logic of how that subsystem is to be used. For example the antenna
handler concerns itself with deploying the antenna at a suitable time after the
satellite itself is deployed. To do this it calls subprograms in the antenna driver
package to query the deployment status and to start the deployment process.
Those subprograms in turn use subprograms in the I?C interfacing package to
communicate with the antenna hardware.

The main program consists of a polling executive loop that periodically exe-
cutes a “work unit” procedure in each handler package. This gives each subsys-
tem an unpreemptable slice of processor time in which it can do its work. After
each subsystem is polled in this way the main loop sleeps until the next cycle,
putting the processor into a low power mode to conserve energy.

This design makes no use of tasks and thus does not require RavenSPARK.
This reduced the runtime support needed, simplified the programming, and made
the software more approachable for first time undergraduate SPARK program-
mers. However, our design does create potentially long delays between when a
subsystem relinquishes control and then later regains control. We felt this was
acceptable because our system does not have any critical timing requirements. If
a subsystem wishes to perform a time sensitive operation, such as reading bulk
data from the inertial measurement unit, it can simply retain control until the
operation is complete.

Although it is important that the work unit procedures do not execute in an
unbounded way, there is no concern of scheduling overruns since there is no par-
ticular schedule that must be kept. All the computations done by the work unit
procedures are short, and potentially blocking operations are all programmed to
time out after a reasonable delay.

In addition to the hardware drivers and their handlers, our system includes
several supporting packages. The components of the system communicate using
a message passing discipline enabled by a message queue package. Subsystems
can thus send commands to each other as necessary.

Figure Bl summarizes the information flow in the system. Commands arrive
from the ground station via the radio or are generated in the scheduler. These
commands are processed by their respective subsystems when each subsystem
is energized by the main loop. In some cases, data produced by a subsystem is
saved to storage as a file on the SD card where it is later transferred to Earth.

Commands from the ground station are filtered and potentially handled by a
Command Handler package. This package is also responsible for handling data
file transfers from the satellite to the ground station. Commands intended for
hardware subsystems are forwarded to the message queue for distribution.

Finally a scheduler, implemented as part of the message queue package, gen-
erates commands periodically to allow routine operations to be performed even
in the common case when the satellite is out of communication with its ground

60 C. Brandon and P. Chapin

from/to .| | Command | Queue/
ground Radio = Handler "| Scheduler Antenna
A
I
I 7
: e Camera
I -
| » -
I - /: A -
SD [Zi-—-------- IMU
N S
N> T~
RN N Power
GPS/
GEONS

Fig. 3. Control Program Architecture

station. This design centralizes the control logic of the program to the scheduler
with potential overrides from the ground station when it is available.

3.4 Testing

In addition to SPARK information flow analysis and proofs of freedom from
runtime error, we also made use of traditional testing techniques. We considered
this essential not only to cover correctness properties not explored by SPARK
proofs, but also to help cover undischarged verification conditions and, most
importantly, to verify proper interfacing with the physical hardware.

Testing was done at three levels.

At the lowest level unit testing was done for components admitting reasonable
unit tests. We used the AUnit framework [2] for this purpose.

In addition a mock system was created that provided software simulations
of the hardware. The interface to the mock hardware was the same as for the
real hardware so that essentially all of the SPARK code was identical between
the mock system and the real system. This allowed us to compile the control
program as, for example, a Windows executable using the GNAT Ada compiler
from AdaCore, and then observe its logged output behavior when driven with
suitable test scripts.

The intent of the mock system was to allow meaning behavioral and integra-
tion testing without using any physical hardware. Since the student development
team was split across two campuses, not all developers had access to the hard-
ware for test purposes, making the mock system essential.

Finally integration and interfacing tests against the physical hardware were
done using a CubeSatKit development board [6]. These tests verified proper

A SPARK/Ada CubeSat Control Program 61

operation of the system against the components that would be used in space.
Once our spacecraft was assembled these tests were then executed again on the
actual spacecraft, with some adjustments to account for the lab environment.

If SPARK had not been used our test plan would likely have been the same.
SPARK was used in our project to supplement the testing and to find faults not
easily explored by testing. Although we did not follow a high integrity develop-
ment process, SPARK was useful in keeping our software in a reasonably self-
consistent state. For example, significant refactoring was needed several times as
our understanding of the hardware and system requirements changed. SPARK’s
analysis caught many errors during these refactorings that might have otherwise
gone unnoticed.

A continuing problem for us has been limited time and personnel resources
allocated to this project. Student workers turn over quickly, and by the time
a student has reached a level where he or she can contribute significantly that
student is often ready to graduate. We feel that the rigor imposed by SPARK on
our otherwise turbulent environment has significantly enhanced the reliability of
our final product.

4 Student Participation
Over the months since the project’s inception several students have been involved

in software development. Table 2] summarizes the number of students involved
with notes about their areas of focus.

Table 2. Student Participation

Time Students|Notes

Summer 2011 2|Design & impl. of radio and interfacing subsystems
AY 2011-2012 0|Small enhancements

Summer 2012 1{Completed impl. of most subsystems

Fall 2012 4|File transfer, integration, navigation program

A total of six students have been actively involved in software development.
Of these six three had previously taken VTC’s High Integrity Programming
course where SPARK was introduced in a manner similar to described in [20].
The other three either learned SPARK while working on the project or, in one
case, focused exclusively on the C aspects of the project.

The students involved during the summer months worked on the project full
time for nine weeks. The students involved during the academic semesters worked
on the project part time in addition to their other class obligations. Two of the
students in the Fall 2012 semester used the project to fulfill their Senior Projects
course requirements.

62 C. Brandon and P. Chapin

All students participated by invitation. Some students were self-selected in the
sense that they initiated contact with the project coordinators. Other students
knew nothing about the project until they were contacted.

As with many student projects, turnover was a significant problem. Most
students only worked on the project for one summer or one semester. Only the
student involved during the summer of 2012 continued his involvement into the
following semester.

4.1 Observations

The number of students involved with the project was not large enough to obtain
any meaningful statistical results. However, several informal observations can
nevertheless be made.

In general the students involved in the project were able to use SPARK ef-
fectively to perform information flow analysis and to produce proofs of freedom
from runtime errors. No attempt was made to formally demonstrate higher level
correctness properties. Instead high level behavior was verified using traditional
testing as described in Section 3.4

As one might expect, the students who took VTC’s High Integrity Program-
ming course were much more comfortable with SPARK, and more immediately
productive than those who had not taken the course. There was one notable
exception: one remarkable student learned SPARK largely on his own, and yet
was nevertheless able to use make good use of the tools almost right away.

Contrary to expectation the students were accepting of the rigors of SPARK
programming and did not object to the restrictions imposed by the language
nor to the work involved in creating and managing annotations or discharging
verification conditions.

In fact several students, both in this project and in VTC’s High Integrity
Programming course, expressed appreciation for SPARK’s restrictions saying
that they were happy not to have to worry about confusing features such as access
types or dynamic dispatch. The SPARK kernel language is relatively simple and
allowed the students to focus on program organization and correctness rather
than on finding a way to use the latest fashionable features.

There was a tendency for students to postpone SPARK examination of a
package or subsystem until after that package or subsystem was “finished” and
ready for testing. Although not universal, some students treated SPARK as a
kind of testing tool to be used once the code was believed, via code review, to
be functional.

Unfortunately the application of SPARK after the fact was more difficult than
the students expected. Often the restrictions imposed by SPARK necessitated
significant refactoring of the pre-SPARK implementation. As the students gained
experience they came to realize the importance of using SPARK early and of at
least bringing the code into an examinable state as soon as possible.

The requirements and subsequent design of the system changed several times
during development. As mentioned in Section 3.4 SPARK was useful at keeping
the code base organized and self-consistent even in the face of these changes.

A SPARK/Ada CubeSat Control Program 63

Students were not always timely in updating design documents, but the simple
requirement of keeping the software examinable at all times helped to control
what might have otherwise been chaotic evolution. In this respect the discipline
of SPARK helped inexperienced students produce higher quality software than
they might have otherwise.

5 Conclusion

We have described the design of a CubeSat and its corresponding control pro-
gram that we intend to use in our upcoming low Earth orbiting test flight. The
software design and implementation in SPARK has been driven by a small col-
lection of undergraduate students with varying abilities and backgrounds.

Although the students have been remarkably successfully at using SPARK in
this project to find information flow errors and to prove freedom from runtime
errors, we have also faced some challenges. In addition to educating the students
about SPARK and about software engineering in general, we also experienced
a high turnover rate of student workers and difficulties associated with coordi-
nating students on two campuses. SPARK helped our development process by
imposing a level of discipline on it that was easy for students to understand
and accept. As a result we feel that it is feasible for motivated undergraduate
students to use SPARK effectively on a realistically scaled project.

At the time of this writing we are finalizing our integration tests and proofs
of freedom from runtime error. OQur current spacecraft has passed thermal and
vibration testing. In the longer term we intend to cultivate our team by recruiting
second year students to the project who will hopefully be able to stay involved
for several years. After the summer of 2013 we will start focusing on the more
challenging problem of designing a CubeSat that can reach the moon.

References

1. Antcom 1.5G15A3F-XT-1 L1 GPS antenna,
http://www.antcom.com/documents/catalogs/L1GPSAntennas.pdf

2. AUnit ada unit testing framework, http://libre.adacore.com/tools/aunit/|(ac-
cessed December 9, 2012)

3. C329-SPI-board JPEG compression VGA camera module,
http://www.electronics123.net/amazon/datasheet/C329_SPI_data.pdf

4. Clyde space 1U electrical power system,
http://www.clyde-space.com/documents/1819

5. Crossworks for MSP430, http://www.rowley.co.uk/msp430/| (accessed November
27, 2012)

6. Cubesat kit home, http://www.cubesatkit.com/| (accessed December 10, 2012)

7. Helium-100 radio, http://www.astrodev.com/public_html2/node/20| (accessed
December 9, 2012)

8. ISIS AntS cubesat antenna system,
http://www.isispace.nl/brochures/ISIS_AntS_Brochure_v.7.11.pdf

http://www.antcom.com/documents/catalogs/L1GPSAntennas.pdf
http://libre.adacore.com/tools/aunit/
http://www.electronics123.net/amazon/datasheet/C329_SPI_data.pdf
http://www.clyde-space.com/documents/1819
http://www.rowley.co.uk/msp430/
http://www.cubesatkit.com/
http://www.astrodev.com/public_html2/node/20
http://www.isispace.nl/brochures/ISIS_AntS_Brochure_v.7.11.pdf

64

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C. Brandon and P. Chapin

Microstrain 3DM-GX3-25 miniature attitude heading reference system,
http://www.microstrain.com/inertial/3DM-GX3-25-0EM

Minotaur space launch vehicles,
http://wuw.orbital.com/SpaceLaunch/Minotaur/

MSP430F2618, http://www.ti.com/product/msp430£2618| (accessed November
25, 2012)

OEMYV installation and operation, http://www.novatel.com/assets/Documents/
Manuals/om-20000093.pdf| (accessed December 9, 2012)

Position and time system for the RAX small satellite mission, http://exploration.
engin.umich.edu/blog/wp-content/uploads/2011/09/Spangelo_etal_2010b.pdf
(accessed December 10, 2012)

SatPC32 satellite tracking, antenna and radio-control software,
http://www.dkltb.de/indexeng.html

Sofcheck compiler technology,
http://www.sofcheck.com/products/adamagic.html

Spectrolab UTJ photovoltaic cell CICs,
http://www.spectrolab.com/DataSheets/cells/PV

Barnes, J.: SPARK, The Proven Approach to High Integrity Software. Altran
Praxis (2012)

Chapman, R.: Industrial experience with SPARK. Ada Lett. XX (4), 64-68 (2000),
http://doi.acm.org/10.1145/369264.369270

Loseby, C., Chapin, P., Brandon, C.: Use of SPARK in a resource constrained em-
bedded system. In: Proceedings of the ACM SIGAda Annual International Confer-
ence on Ada and Related Technologies, SIGAda 2009, pp. 87-90. ACM, New York
(2009), http://doi.acm.org/10.1145/1647420. 1647441

Ruocco, A.S.: Experiences using SPARK in an undergraduate CS course. In: Pro-
ceedings of the 2005 Annual ACM SIGAda International Conference on Ada: The
Engineering of Correct and Reliable Software for Real-Time & Distributed Sys-
tems using Ada and Related Technologies, SigAda 2005, pp. 37-40. ACM, New
York (2005), http://doi.acm.org/10.1145/1103846.1103852

http://www.microstrain.com/inertial/3DM-GX3-25-OEM
http://www.orbital.com/SpaceLaunch/Minotaur/
http://www.ti.com/product/msp430f2618
http://www.novatel.com/assets/Documents/Manuals/om-20000093.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000093.pdf
http://exploration.engin.umich.edu/blog/wp-content/uploads/2011/09/Spangelo_etal_2010b.pdf
http://exploration.engin.umich.edu/blog/wp-content/uploads/2011/09/Spangelo_etal_2010b.pdf
http://www.dk1tb.de/indexeng.html
http://www.sofcheck.com/products/adamagic.html
http://www.spectrolab.com/DataSheets/cells/PV
http://doi.acm.org/10.1145/369264.369270
http://doi.acm.org/10.1145/1647420.1647441
http://doi.acm.org/10.1145/1103846.1103852

	A SPARK/Ada CubeSat Control Program
	Introduction
	System Overview
	Structure, Motherboard and CPU
	GPS and Position and Time Board
	Radio
	Antennas
	Electrical Power System
	Camera and Inertial Measurement Unit Board

	Project Description
	SPARK
	Tool Chain
	Design
	Testing

	Student Participation
	Observations

	Conclusion

