Use of SPARK in a Resource Constrained Embedded System

Chad Loseby
Peter C. Chapin
Carl Brandon

Vermont Technical College

Outline

- Overall Problem
- Ice Buoy Requirements
- Our Solution Using SPARK/Ada
- Lessons Learned
- Future Work

Sea Ice Dynamics

- Desire to understand the dynamics of Arctic sea ice
 - Jun Yu (University of Vermont) has been developing mathematical models.
 - Used satellite obtained data of ice movement, deformation, and thickness.
 - Needs ground truth information.
 - Wind
 - Temperature
- VTC's role?

General Requirements

- Must tolerate spring conditions in arctic
 - Temperatures down to -20 C
 - Wind, rain, ice (not much snow)
 - Animals
- Must operate for ~3 months
- Will not be retrieved
 - Must transmit data to base via satellite link

Data Requirements

- Each sample contains...
 - GPS location
 - Wind speed
 - Relative wind direction
 - Temperature
 - 3-axis magnetometer reading
 - Together with location allows absolute orientation to be computed.
- Each data item separately time stamped

Software Requirements

- Sampling Frequency
 - Very slow... once every 30 minutes
 - Software performance not an issue
 - No significant real-time requirements
- Accuracy
 - Spacial resolution: 100s of feet
 - Temporal resolution: minutes
 - Data accuracy: 10-20%

Reliability

- Significant requirements
 - No access once deployed
 - No ability to upload fixes
 - Device entirely autonomous
 - Must recover from intermitient hardware failure
- Keep it simple
 - No on board processing of data

CubeSat Platform

- MSP430 based
 - Very low power
 - Adequate performance
 - Highly constrained
 - 60 KiB ROM
 - 2 KiB RAM
- Used for future projects

Block Diagram

Software Structure

Software

- SPARK/Ada
 - Problem...
 - No Ada compiler for CubeSat platform
 - Solution...
 - Compile Ada to C, then use C compiler

Tool Chain

SPARK Provides

- More reliable software
- A way to simplify the run time system
 - Exception support not needed
 - Program_Error can't occur
 - Constraint_Error can be avoided
 - Dynamic memory allocation not needed
 - Lack of dynamic memory also makes evaluating memory consumption easier
- We didn't use any run time system!

C as Assembly Language

- Need C for low level access
 - Ada Magic compiler does not know the platform.
- Minimize the amount of C
 - C is error prone
 - C is not visible to SPARK
- We kept our C functions one or two lines.

Timer Interface

```
• package Timer
  -- # own Hardware;
 is
   procedure Initialize;
    --# global out Hardware;
    --# derives Hardware from ;
   pragma Import(C, Initialize);
   procedure Sleep;
    --# global in out Hardware;
    --# derives Hardware from Hardware
   pragma Import(C, Sleep);
 end Timer;
```

Hand Written C

- Platform specific code written in C
 - ... Interacts with target C compiler
 - Uses names compatible with Ada Magic generated code

```
#include <msp430x14x.h>
#include <standard.h>

void Timer_Sleep(void)
{
   _BIS_SR(LPM3_bits);
}
```

Other Hardware

- A similar technique was used for
 - Interfacing to A/D converters
 - Interfacing to USARTs
 - Interfacing to debugging LEDs
- Interrupt service routines in C
 - But we only used one (for the timer)
 - Used to wake up the system.
 - USART I/O was done with polling!

Results

- It is possible to compile Ada onto a very small device using C as an intermediate language.
- SPARK helps by enabling massive run time simplifications.
- It is possible to build such a system in an educational setting.

Future Work

- Finish prototype
 - Still need to complete enclosure
 - Still need to complete software
 - Data formatting
 - Verify freedom from run time errors
 - Evaluate memory consumption
 - Prove buffers can be drained
 - Plan to do live tests this winter in Vermont
- Deploy in March 2011?

QUESTIONS?

(Thanks to AdaCore, Praxis, Rowley Associates, SofCheck)