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The Problem Setting: Embedded Sensor Networks

e Distributed data-gathering systems for earth and agricultural sciences.

e At UVM, focus on alpine snow hydrology.

— Deployments in California, New Hampshire, Arctic Norway.



Challenges of Programming Sensor Networks

e Heavily resource constrained—RAM, ROM, clock cycles, power.
e e.g., Crossbow TelosB: 4 MHz, 10 KiB RAM, 48 KiB ROM

e ...yet complex, distributed algorithms used.

State of the art:

e nesC and TinyOS: Optimized for efficiency, widely used.



nesC Modules

#include "Message.h" #include "Message.h"
nodul e SendC { nodul e RadioC {
uses error_t radio x(Msg *); provi des error_t radio_x(Msg *);
} uses error_t handle radio r(Msg *);
| npl enent ati on { }
| npl ement ati on {
}

}

e Modules consist of a specification and implementation.
e Specification lists used and provided commands.

e Implementation is a C-like translation unit.



nesC Configurations

configuration AppC {}

| npl ement ati on {
conponent s SendC, RadioC;
SendC.radio_ x -> RadioC.radio_x;

}

e Application formed by wiring components together.
e Component wiring is entirely static.

e Example above incomplete: unresolved import.



Our Approach

Staging with two stages. Scala at metalevel, nesC residuum. Modules
are the smallest unit of code manipulation.

Technical features: Type specialization with dynamic type construc-
tion, process separation.

Cross-stage type safety: Type checking at Scala level ensures type
safety of nesC residuum.

Well-founded language design.
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e In the lab: First stage program specializes and composes modules of
second stage code.

e In the field: Generated second stage program accounts for field con-
ditions. Deployed to nodes (over the air).



Example: Introducing Some Type Abbreviations

abbrvt mesgT(t) =
{ src : t; dest : t; data : uint8[] };

abbrvt radioT =
< at < uint32 >
{ export error_t radio_Xx( mesgT(at) *);
| nport error_t handle radio r( mesgT(at) =); };

e A record type parameterized by a type t.

e nesT modules parameterized by types and values.
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Example: nesT Modules

val authSend =
< at < uint32; sendk : uint8[] >
{ inport error t radio x( mesgT(at) *);
export error t send(m mesgT(at) x)
{ radio_Xx(AES_sign(m, sendk)); }

e First stage manipulates entire nesT modules.



Example: Scalaness Method

def authSpecialize

(nmax . Int,
radioM : radioT,
keys . Array[Array[uint8]]) . commT {

typedef adt < uint32 =
if (nmax <= 256) uint8 else uintl6;

val sendM = authSend(adt;keys(0));
val recvM = authRecv(adt;keys(1));
sendM x radioM(adt) X recvM;

e Types constructed during first stage execution.
e Values lifted from one stage to the next only at module instantiation.

e Wiring operator composes fully instantiated modules.

10



Example: Scalaness Method

def authSpecialize

(nmax . Int,
radioM : radioT,
keys . Array[Array[uint8]]) . commT {

typedef adt < uint32 =
| f (nmax <= 256) uint8 el se uintl6;

val sendM = authSend(adt;keys(0));
val recyM = authRecv(adt;keys(1));
sendM x radioM(adt) X recvM;

e Types constructed during first stage execution.
e Values lifted from one stage to the next only at module instantiation.

e Wiring operator composes fully instantiated modules.

11



Example: Scalaness Method

def authSpecialize

(nmax . Int,
radioM : radioT
keys . Array[Array[uint8]]) . commT {

typedef adt < uint32 =
| f (nmax <= 256) uint8 el se uintl6;

val sendM = authSend(adt;keys(0));
val recvM = authRecv(adt;keys(1));
sendM x radioM(adt) x recvM;

e Types constructed during first stage execution.
e Values lifted from one stage to the next only at module instantiation.

e Wiring operator composes fully instantiated modules.

12



Example: Generating Residual Program

Image(appM  x
authSpecialize(hmax, radioM, keys) X
appMR);

Type system ensures imaged module is “runnable.”
image writes nesC residuum at run time.
Values serialized across process spaces at first stage run time.

Arbitrary nesC wrapped in special external modules.
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Implementation

Scalaness/nesT has been implemented.

e nesT defined as restricted subset of nesC, compiled as nesC with
some rewriting (e.g. array bounds checks).

e Scalaness defined by extension to the Scala compiler.

e Type checking extends Scala type checker with module types, module
operation typings, nesT type checking.

Web site with samples: http://tinyurl.com/a85z8cu
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Application: WSN Session Key Negotiation

Currently studying authorization schemes for WSNSs.

e WSN may comprise interacting security domains wishing to (partially)
share resources.

e Symmetric keys provide efficient foundation for securing access.

e Public keys allow symmetric key negotiation in an “open world” model.

Public key signature verification expensive in WSNs; around 90 seconds
on Crossbow TelosB.

Refactor authorization decision and session key negotiation into different
stages.
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Application: WSN Session Key Negotiation

Internet

Stage 1

Exchange/verify certs
A [ Authorizeaccess ——>| B
Negotiate session keys

Exchange messages

Decreases WSN computational overhead, RAM and ROM consumption.
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Results

Unsecured | Unstaged* | Staged | Savings
Sensor ROM 36254 48616 36596 25%
Sensor RAM 2868 5417 3038 44%
Harvester ROM 24316 35834 24436 32%
Harvester RAM 2274 4771 2402 50%

e Security model: Two different Harvester “nodes”

1. Data download only.

2. Data download and control.

* Chapin, Skalka; SpartanRPC; Technical Report; http://www.cs.uvm.edu/

skalka-pubs/chapin-skalka-spartanrpctr.pdf

~ skalka/
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Future Work

Clarifying “middle ground” between language borders.

Syntactic transformations: Allowing more natural syntax in Scalaness
programs.

Incorporating network communication.

Other applications: Backcasting and evolving control.
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Questions?
Peter Chapin <pchapin@cs.uvm.edu>

http://tinyurl.com/a85z8cu
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(ML) Foundations

The (ML) language* was developed to study these elements at a founda-
tional level.

e MetaML-like syntax and semantics, but novel features to moderate Iin-
teractions between separate process spaces.

e Comprises F<.
e Resricted form of type construction (not full A).

e Formal metatheory includes cross-stage type safety—residue of par-
tial evaluation of well-typed code is guaranteed to be well-typed.

*Yu David Liu, Christian Skalka, and Scott Smith. Type-Specialized Staged Program-
ming with Process Separation. Journal of Higher Order and Symbolic Computation,
24(4):341-385, 2012.
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Sample Scalaness Typing

A1 o <Ay, F>{|; 8}

Module type form, where:

e Ao, [ type parameter bounds and term parameter types.
e |, €import and export type signatures.

e /A1 bounds of types constructed externally to the module.

— Early substitution of these types unsound due to possible con-
travariant use in (; €.

MODINSTT
[Fe:Po<txTyX:To>{1;¢}
[+ §:MetaType(Tq) [F&y:To [T <71 = [To] X T>

M e(8;8) 1 8 < [T1] o <>{1[5/t]; €[s/1]}
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