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The Problem Setting: Embedded Sensor Networks

• Distributed data-gathering systems for earth and agricultural sciences.

• At UVM, focus on alpine snow hydrology.

– Deployments in California, New Hampshire, Arctic Norway.

1



Challenges of Programming Sensor Networks

• Heavily resource constrained—RAM, ROM, clock cycles, power.

• e.g., Crossbow TelosB: 4 MHz, 10 KiB RAM, 48 KiB ROM

• . . . yet complex, distributed algorithms used.

State of the art:

• nesC and TinyOS: Optimized for efficiency, widely used.

2



nesC Modules

#include "Message.h" #include "Message.h"

module SendC { module RadioC {
uses error_t radio_x(Msg * ); provides error_t radio_x(Msg * );

} uses error_t handle_radio_r(Msg * );
implementation { }

... implementation {
} ...

}

• Modules consist of a specification and implementation.

• Specification lists used and provided commands.

• Implementation is a C-like translation unit.
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nesC Configurations

configuration AppC { }
implementation {

components SendC, RadioC;
SendC.radio_x -> RadioC.radio_x;

}

• Application formed by wiring components together.

• Component wiring is entirely static.

• Example above incomplete: unresolved import.
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Our Approach

• Staging with two stages. Scala at metalevel, nesC residuum. Modules
are the smallest unit of code manipulation.

• Technical features: Type specialization with dynamic type construc-
tion, process separation.

• Cross-stage type safety : Type checking at Scala level ensures type
safety of nesC residuum.

• Well-founded language design.
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Workflow

• In the lab: First stage program specializes and composes modules of
second stage code.

• In the field : Generated second stage program accounts for field con-
ditions. Deployed to nodes (over the air).
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Example: Introducing Some Type Abbreviations

abbrvt mesgT(t) =

{ src : t; dest : t; data : uint8[] };

abbrvt radioT =

< at 4 uint32 >

{ export error_t radio_x( mesgT(at) * );

import error_t handle_radio_r( mesgT(at) * ); };

• A record type parameterized by a type t.

• nesT modules parameterized by types and values.
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Example: nesT Modules

val authSend =

< at 4 uint32; sendk : uint8[] >

{ import error_t radio_x( mesgT(at) * );

export error_t send(m : mesgT(at) * )

{ radio_x(AES_sign(m, sendk)); }

};

• First stage manipulates entire nesT modules.
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Example: Scalaness Method

def authSpecialize
(nmax : Int,

radioM : radioT,
keys : Array[Array[uint8]]) : commT {

typedef adt 4 uint32 =
if (nmax <= 256) uint8 else uint16;

val sendM = authSend〈adt;keys(0)〉;
val recvM = authRecv〈adt;keys(1)〉;
sendM ⋉ radioM〈adt〉 ⋉ recvM;

}

• Types constructed during first stage execution.

• Values lifted from one stage to the next only at module instantiation.

• Wiring operator composes fully instantiated modules.
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Example: Generating Residual Program

image(appM ⋉

authSpecialize(nmax, radioM, keys) ⋉

appMR);

• Type system ensures imaged module is “runnable.”

• image writes nesC residuum at run time.

• Values serialized across process spaces at first stage run time.

• Arbitrary nesC wrapped in special external modules.
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Implementation

Scalaness/nesT has been implemented.

• nesT defined as restricted subset of nesC, compiled as nesC with
some rewriting (e.g. array bounds checks).

• Scalaness defined by extension to the Scala compiler.

• Type checking extends Scala type checker with module types, module
operation typings, nesT type checking.

Web site with samples: http://tinyurl.com/a85z8cu
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Application: WSN Session Key Negotiation

Currently studying authorization schemes for WSNs.

• WSN may comprise interacting security domains wishing to (partially)
share resources.

• Symmetric keys provide efficient foundation for securing access.

• Public keys allow symmetric key negotiation in an “open world” model.

Public key signature verification expensive in WSNs; around 90 seconds
on Crossbow TelosB.

Refactor authorization decision and session key negotiation into different
stages.
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Application: WSN Session Key Negotiation

Decreases WSN computational overhead, RAM and ROM consumption.
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Results

Unsecured Unstaged* Staged Savings
Sensor ROM 36254 48616 36596 25%
Sensor RAM 2868 5417 3038 44%

Harvester ROM 24316 35834 24436 32%
Harvester RAM 2274 4771 2402 50%

• Security model: Two different Harvester “nodes”

1. Data download only.

2. Data download and control.

* Chapin, Skalka; SpartanRPC; Technical Report; http://www.cs.uvm.edu/ ˜ skalka/

skalka-pubs/chapin-skalka-spartanrpctr.pdf
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Future Work

• Clarifying “middle ground” between language borders.

• Syntactic transformations: Allowing more natural syntax in Scalaness
programs.

• Incorporating network communication.

• Other applications: Backcasting and evolving control.
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Questions?

Peter Chapin <pchapin@cs.uvm.edu>

http://tinyurl.com/a85z8cu
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〈ML〉 Foundations

The 〈ML〉 language∗ was developed to study these elements at a founda-
tional level.

• MetaML-like syntax and semantics, but novel features to moderate in-
teractions between separate process spaces.

• Comprises F≤.

• Resricted form of type construction (not full λω).

• Formal metatheory includes cross-stage type safety—residue of par-
tial evaluation of well-typed code is guaranteed to be well-typed.

∗Yu David Liu, Christian Skalka, and Scott Smith. Type-Specialized Staged Program-
ming with Process Separation. Journal of Higher Order and Symbolic Computation,
24(4):341-385, 2012.
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Sample Scalaness Typing

∆1 ◦<∆2,Γ>{ι; ε}

Module type form, where:

• ∆2, Γ type parameter bounds and term parameter types.

• ι, ε import and export type signatures.

• ∆1 bounds of types constructed externally to the module.

– Early substitution of these types unsound due to possible con-
travariant use in ι; ε.

MODINSTT
Γ ⊢ e : ∅ ◦<t 4 τ1; x : τ2>{ι; ε}

Γ ⊢ s̄ : MetaType〈T̄1〉 Γ ⊢ ē2 : T̄2 ⊢ JT̄1K 4 τ1 ⊢ JT̄2K 4 τ2

Γ ⊢ e〈s̄; ē2〉 : s̄ 4 JT̄1K ◦<>{ι[s̄/t]; ε[s̄/t]}
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