
contributed articles

64 communications of the acm | february 2014 | vol. 57 | no. 2

Illus

t

r
a

t
i

o
n

 b
y

 B
r

i
a

n
 G

r
e

e
n

b
e

r
g

/A
n

d
r

i
j

 B
o

r
y

s
 Ass

o
c

i
a

t
e

s

On August 5, 2012,10:18 P.M. PST, a large rover named
Curiosity made a soft landing on the surface of Mars.
Given the one-way light-time to Mars, the controllers
on Earth learned about the successful touchdown 14
minutes later, at 10:32 p.m. PST. As can be expected,
all functions on the rover, and on the spacecraft
that brought it to its destination 350 million miles
from Earth, are controlled by software. This article
discusses some of the precautions the JPL flight
software team took to improve its reliability.

To begin the journey to Mars you need a launch
vehicle with enough thrust to escape Earth’s gravity.
On Earth, Curiosity weighed 900 kg. It weighs no more
than 337.5 kg on Mars because Mars is smaller than
Earth. Curiosity began its trip atop a large Atlas V 541
rocket, which, together with fuel and all other parts
needed for the trip, brought the total launch weight
to a whopping 531,000 kg, or 590 times the weight
of the rover alone.

Within two hours following launch,
though, most parts of the launch ve-
hicle had been discarded. At that
point, the remaining main parts of the
spacecraft included the cruise-stage,
the backshell with a large parachute
inside, the descent-stage with its intri-
cate sky crane mechanism, the rover,
and a large heat shield (see Figure 1).

The cruise-stage was equipped with
solar panels to help power the space-
craft during its nine-month trip to
Mars, as well as a star tracker to help
with navigation, and thrusters to per-
form small course corrections. All
were cast off approximately 10 min-
utes before the spacecraft entered the
Martian atmosphere.

The remaining parts were now all
contained within the backshell and
protected by the heat shield. The
backshell, large enough to hold a
small car, had its own set of thrust-
ers to make small course adjustments
during the hypersonic entry into the
Martian atmosphere. During entry,
the backshell cast off several large
chunks of ballast mass (weighing
some 320 kg) to adjust the center of
gravity for the landing at the com-
mand of the rover computer that con-
trols the entire mission.

Approximately three minutes be-
fore landing the parachute deployed
to slow the spacecraft from 1,500
km/h to 300 km/h. The heat shield
was ejected, and less than a minute
before touchdown the descent stage
dropped away from the backshell (see
Figure 2). From this point on it was up
to the descent stage to guide the rover,
with wheels deployed, to the surface
(see Figure 3), disconnect itself, and
fly away a safe distance to crash. All
steps in this sequence were again con-

Mars
Code

doi:10.1145/2560217.2560218

Redundant software (and hardware) ensured
Curiosity reached its destination and
functioned as its designers intended.

By Gerard J. Holzmann

This image depicts the “fill-packet”
transmitted by the Curiosity rover many
times each sol (a day on Mars) whenever
there is no useful telemetry to send to Earth.
The fill packet lists 50 members of the NASA
JPL flight software team as well as an in
memoriam list of another 18, including
the crew of the Challenger and Columbia
shuttles and the astronauts killed in a pre-
launch test for Apollo 1, and inspirational
remarks from astronomer Carl Sagan.

contributed articles

66 communications of the acm | february 2014 | vol. 57 | no. 2

includes a good development process,
with clearly stated requirements, re-
quirements tracking, daily integration
builds, rigorous unit and integration
testing, and extensive simulation.

This article does not revisit these
well-known principles of software de-
sign. Instead, it focuses on a different
set of precautions the flight software
team took in the development of the
MSL mission software that is perhaps
less common. We restrict ourselves
here to three specific topics: First, the
coding standard we adopted, which is
distinguished by being sparse, risk-
based, and supported by automated
compliance-checking tools; second,
the redefined code-review process we
adopted, which allowed us to thor-
oughly scrub large amounts of code
efficiently, again leveraging the use of
tools; and third, logic model-check-
ing tools to formally verify mission-
critical code segments for the exis-
tence of concurrency-related defects.

Risk-based coding rules. No meth-
od can claim to prevent all mistakes,
but that does not mean we should
not try to reduce their likelihood. Be-
fore we can do so, though, we have to
know what types of mistakes occur

trolled by one of two available com-
puters located within the body of the
rover itself.

With each new mission flown to
Mars, the size and complexity of both
spacecraft hardware and software has
increased. The Mars Science Labora-
tory (MSL) mission, for instance, uses
more code than all previous missions
to Mars combined, from all countries
that have tried to do it. This rapid
growth in the size of the software is
clearly a concern, but one not unique to
this application domain. Unlike most

other software applications, though,
the embedded software for a spacecraft
is designed for a one-of-a-kind device
with an uncommon array of custom-
built peripherals. The code targets
just one user (the mission), and for the
most critical parts of the mission the
software is used just once, as in the all-
important landing phase, which lasts
only minutes. Moreover, the software
can be frustratingly difficult to test in
an accurate representation of the en-
vironment in which it must ultimately
operate, yet there are no second chanc-
es. The penalty for even a small coding
error can be not just the loss of a rare
opportunity to expand our knowledge
of the solar system, it can also mean the
loss of a significant investment and put
a serious dent in the reputation of the
responsible organization.

Reducing Risk
There are standard precautions that
can help reduce risk in complex soft-
ware systems. This includes the defi-
nition of a good software architec-
ture based on a clean separation of
concerns, data hiding, modularity,
well-defined interfaces, and strong
fault-protection mechanisms.18 It also

 key insights
 � �The software that controls an interplanet-

ary spacecraft must be designed to
a high standard of reliability; any small
mistake can lead to the loss of the mission
and its unique opportunity to expand
human knowledge.

 � �Extraordinary measures are taken in both
hardware and software design to ensure
spacecraft reliability and that the system
can be debugged and repaired from
millions of miles away.

 � �Formal methods help verify intricate
software subsystems for the potential
of race conditions and deadlocks;
new model-checking techniques
automate the verification process.

Figure 1. Spacecraft parts.

Backshell Interface Plate

Parachute Support
Structure

Parachute

Bridal
Umbilical
Device

Cruise Stage

Descent Stage

Entry Vehicle System

Rover

Heat Shield

Backshell

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 67

most often in this domain. Finding
the data is not difficult. Most anoma-
lies that have affected space missions
are carefully studied and document-
ed, with most information publicly
available. We used it to categorize the
root causes of each software anomaly
to produce a list of the primary areas
of concern.

Among them are basic coding
and design errors, especially those
caused by an undisciplined use of
multitasking. Other frequently oc-
curring errors originate in the use
of dynamic memory-allocation tech-
niques, which in the early days of
space exploration often meant the
use of dynamic memory overlays. Fi-
nally, the data also shows even stan-
dard fault-protection techniques can
have unintended side effects that
can also cause missions to fail.

The coding standard we developed
based on this study differs from many
others in that it contained only risk-
related, as opposed to style-related,
rules.9,13 Our view is that coding style
(for instance, where curly brackets are
placed and how a loop statement is for-
matted) can be adjusted easily to the
preferences of a viewer (or reviewer) us-
ing standard code-reformatting tools.
Risk-reduction, though, is a consid-
eration that should trump formatting
decisions. We used two criteria for in-
clusion of rules in our new JPL coding
standard: First, the rule had to corre-
late directly with observed risk based
on our taxonomy of software anoma-
lies from earlier missions; and second,
compliance with the coding rule had to
be verifiable with tool-based checks.

Compliance with a coding standard
need not be an all-or-nothing proposi-
tion; not all code is equally critical to
an application. The coding standard
we developed therefore recognizes
different levels of compliance that ap-
ply to different types of software (see
Figure 4).

Level-one compliance, or LOC-1,
sets a minimal standard of workman-
ship for all code written at JPL. There
are just two rules at this level: The first
says all code must be language compli-
ant; that is, it cannot rely on compiler-
specific extensions that go outside the
language definition proper. For flight
software the language standard used
at JPL is ISO-C99. The second rule at

this level requires that all code can pass
both the compiler and a good static
source code analyzer without triggering
warnings. For this test, the compiler is
used with all warnings enabled.

LOC-2 compliance adds rules that

are meant to secure predictable execu-
tion in an embedded system context.
One important rule defined at this lev-
el is that all loops must have a statical-
ly verifiable upper bound on the num-
ber of iterations they can perform.

Figure 2. MSL descent stage.

Figure 3. MSL sky crane.

Figure 4. Life cycle of a code comment; orange arrow indicates where the developer
disagrees with a code change but is overruled in the final review.

Code
Comments

Disagree Code Fix Job Ticket

Agree

Discuss No Fix

Peer Reviewer
or Tool Created

Developer
Response

Code Review
Resolution

Code Review
Closeout

contributed articles

68 communications of the acm | february 2014 | vol. 57 | no. 2

tools can prove their value. A static an-
alyzer will not tire of checking for the
same types of defects over and over,
night after night, patiently reporting
all violations. We have therefore made
extensive use of this technology.

A wide range of commercial static
source-code-analysis tools is on the
market, each with slightly different
strengths. We found that running
multiple analyzers over the same code
can be very effective; there is surpris-
ingly little overlap in the output from
the various tools. This observation
prompted us to run not just one but
four different analyzers over all code as
part of the nightly integration builds
for the MSL mission.

The analyzers we selected—Cover-
ity, Codesonar, Semmle, and Uno—
had to be able to identify likely bugs
with a reasonably low false-positive
rate, handle millions of lines of code
efficiently, and allow for the defini-
tion of custom checks (such as verify-
ing compliance with the rules from
our coding standard). The output of
each tool was uniformly reformatted
with simple post-processing scripts
so all tool reports could be made avail-
able within a single vendor-neutral
code-review tool we developed, called
Scrub. The Scrub tool was designed
to integrate the output of the static
analyzers and any other type of back-
ground checkers with human-gener-
ated peer code review comments in a
single user-interface.8

In peer code reviews, the reviewers
are asked to add their observations
to the code in the Scrub tool, which is
prepopulated with static analysis re-
sults from the most recent integration
build of the code. The module owner
is required to respond to each report,
whether generated by a human peer
reviewer or by one of the static analy-
sis tools. To respond, the Scrub tool
allows the module owner to choose
from three possible responses: agree,
meaning the module owner accepts
the comment and agrees to change the
code to address the concern; disagree,
meaning the module owner has reason
to believe the code as written should
not be changed; and discuss, meaning
the comment or report is unclear and
needs clarification before it can be ad-
dressed (see Figure 5).

The peer code reviews, and the re-

To reach LOC-3 compliance, one
of the most important rules concerns
the use of assertions. We originally
formulated the rule to require all
functions with more than 10 lines of
code contain at least one assertion.
We later revised it to require that the
flight software as a whole, and each
module within it, had to reach a mini-
mal assertion density of 2%. There is
compelling evidence that higher as-
sertion densities correlate with lower
residual defect densities.14 The MSL
flight software reached an overall as-
sertion density of 2.26%, a significant
improvement over earlier missions.
This rate also compares favorably
with others reported in the litera-
ture.1,7 One final departure from ear-
lier practice was that on the MSL mis-
sion all assertions remained enabled
in flight, whereas before they were
disabled after testing. A failing asser-
tion is now tied in with the fault-pro-
tection system and by default places
the spacecraft into a predefined safe
state where the cause of the failure
can be diagnosed carefully before
normal operation is resumed.

LOC-4 is the target level for all mis-
sion-critical code, which for the MSL
mission includes all on-board flight
software. Compliance with this level of
the standard restricts use of the C pre-
processor, as well as function pointers
and pointer indirections. The cumula-
tive number of coding rules that must
be complied with to reach this level
remains relatively low, with no more
than 31 risk-related rules.

Safety-critical and human-rated
software is expected to comply with
the higher levels of rigor defined in
LOC-5 and LOC-6. These two high-
est levels of compliance add all rules
from the well-known MISRA C coding
guidelines16 not already covered at the
lower levels.

We worked with vendors of static
source code analysis tools, including
Coverity, Codesonar, and Semmle, to
develop automatic compliance check-
ers for the majority of the rules in our
coding standard. Compliance with all
risk-based rules could therefore be
verified automatically with multiple
independent tools on every build of the
MSL software.

One additional precaution we un-
dertook starting with the MSL mission
was to introduce a new certification
program for flight-software developers,
allowing us to, for instance, discuss the
detailed rationale for all coding rules
and reinforce knowledge of defensive
coding techniques. The certification
program is concluded with an exam,
passage of which is required for all de-
velopers who write or maintain space-
craft software.

Tool-based code review. Not all
software defects can be prevented
by even the strongest coding rules,
meaning it is important to devise as
many methods as possible to inter-
cept the defects that slip through
and use them as early and often as
possible. One standard mechanism
for scrutinizing software is peer code
review. Traditionally, in a peer-code-
review session, expert developers are
invited to provide feedback in a guid-
ed code walkthrough. This process
can work exceptionally well, but only
for relatively small amounts of code.
If more than a few hundred lines of
code are examined in a single session,
the effectiveness of the session, mea-
sured by number of flaws exposed,
decreases rapidly. Reviewing a few
million lines of code in this manner
would severely strain the system, if
not the reviewers.8

Peer reviewers can excel at identify-
ing design flaws but are much less reli-
able at the more down-to-earth job of
checking for mundane issues like rule-
compliance and avoidance of com-
mon coding errors. Fortunately, this
is where static source-code-analysis

Figure 5. Coding standard levels of
compliance.

LOC-1: language compliance (2 rules)

LOC-2: predictable execution (10 rules)

LOC-3: defensive coding (7 rules)

LOC-4: code clarity (12 rules)

LOC-5: all MISRA shall rules (73 rules)

LOC-6: all MISRA should rules (16 rules)

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 69

sponses to all comments and reports,
are done offline, outside meetings. Just
one face-to-face meeting per module
code review is used to resolve disagree-
ments, clarify reports, and reach con-
sensus on the changes to the code that
have to be made.

In 145 code reviews held between
2008 and 2012 for MSL flight software,
approximately 10,000 peer comments
and 30,000 tool-generated reports
were discussed.20 Approximately 84%
of all comments and tool reports led to
changes in the code to address the un-
derlying concerns. There was less than
2% difference in this rate between the
peer-generated and the tool-generated
reports. Explicit disagree responses
from the module owner occurred in
just 12.3% of the cases. The responses
were overruled in the final code review
session in 33% of those cases, lead-
ing to a required fix anyway. A discuss
response was given for just 6.4% of all
comments and reports, leading to a
change in the code in approximately
60% of those cases.

These statistics from the MSL code-
review process illustrate that the large
majority of comments and tool re-
ports led to immediately agreed-upon
changes to the code and did not require
discussion in the code review close-out
meetings. The time saved allowed us to
push the code-review process further
than would have been possible other-
wise. Critical modules, for instance,
could now be reviewed multiple times
before the code was finalized for launch.

Model checking. The strongest type
of check we have in our arsenal for
analyzing multithreaded code is logic
model checking. The code for the MSL
mission makes significant use of mul-
tithreading, with 120 parallel tasks
being executed under the control of a
real-time operating system. The po-
tential for race conditions therefore
always exists and has been a signifi-
cant cause of anomalies on earlier mis-
sions. To thoroughly analyze the code
for race conditions, we made exten-
sive use of the capabilities of the logic
model checker Spin,10 together with an
extended version of a model extraction
tool for C code.12

Spin was developed in the Comput-
ing Science Research group of Bell Labs
starting in the early 1980s and has been
freely available since 1989. We earlier

used this tool on the verification of key
parts of the control software for a num-
ber of spacecraft, including Cassini,21
Deep Space One,5,6 and the Mars Explo-
ration rovers.11 We also used it in the
recent investigation of possible triggers
for unintended acceleration in Toyota
vehicles.17 In almost all these cases, the
verification effort succeeded in iden-
tifying unsuspected software defects,
especially concurrency-related issues
that would be very difficult to uncover
by other means.

The model checker Spin specifi-
cally targets verification of distributed-
systems software with asynchronous
threads of execution. Its internal verifi-
cation algorithm is based on Vardi and
Wolper’s automata-theoretic verifica-
tion method.23 Informally, Spin takes
the role of a demonic process schedul-
er, trying to find system executions that
violate user-defined requirements.
Simple examples of the type of require-
ments that can be proven or disproven
this way are the validity of program as-
sertions and the absence of deadlock
scenarios. But the model checker can
also reach farther by verifying more
complex requirements on feasible or
infeasible program executions that can
be expressed in linear temporal logic.19

We analyzed several critical soft-
ware components for the MSL mis-
sion, including a dual-CPU boot-
control algorithm (the algorithm that
controls which of two available CPUs
will take control of the spacecraft
when it boots), the nonvolatile flash
file system, and the data-management
subsystem. Several vulnerabilities
identified through these analyses
could be eliminated from the code
before the mission was launched, ef-
fectively helping reduce the risk of in-
flight surprises. The basic procedure
of software model checking, using the
tools we developed, can be illustrated
with a small example. (Because NASA
rules prevent us from publishing ac-
tual flight code from the rover, we use
equivalent public-domain code for
this example.)

It can be unreasonably difficult to
prove manually that a concurrent al-
gorithm is correct under all possible
execution scenarios. We take as our
example a non-blocking algorithm
for two-sided queues presented in De-
tlefs et al.2 together with a four-page

Peer reviewers can
excel at identifying
design flaws but
are much less
reliable at the more
down-to-earth job
of checking for
mundane issues like
rule-compliance
and avoidance of
common coding
errors.

contributed articles

70 communications of the acm | february 2014 | vol. 57 | no. 2

summary of a proof of correctness. A
few years following its publication an
attempt was made to formalize that
proof with a theorem prover22 as part of
a master’s thesis project.3 The formal-
ization revealed that both the original
proof and the algorithm were flawed.
A correction to the algorithm could
be proven correct with the theorem
prover.4 Each proof attempt, for both
the original algorithm and the cor-
rected version, reportedly took several
months.

Lamport15 later formalized the
original algorithm in +CAL, showing
the flaws could be found more quickly
through a model checker. Lamport
noted the proof with the TLA+ model
checker could be completed in less
than two days, most of which was
needed to define a formal model of the
original algorithm in the language sup-
ported by the model checker.

As shown here, a model extractor
can help avoid the need for manual
construction of a formal model as well,
allowing us to perform these types of
verification on multithreaded code
fragments in minutes instead of days.
We use the original algorithm from
Detlefs2 to show how this verification
approach works. With it, finding the
flaw in the implementation of the al-
gorithm requires no more than typing
in a few lines of text and executing a
single command.

The algorithm uses an atomic
Double-word Compare-And-Swap, or
DCAS, instruction; Figure 6 gives the
semantics of this instruction as de-
fined in Detlefs.2 Figure 7 reproduces
two C routines from Detlefs2 for adding
an element to the right of the queue
and for deleting an element from the
same side. The routines for adding or
deleting elements from the left side
of the queue are symmetric. The node
structure used has three fields: a left
pointer L, a right pointer R, and an in-
teger value V.

To verify the code we first define a
simple test driver that exercises the
code by adding and deleting elements
(see Figure 8). For simplicity, this ex-
ample uses only the pushRight() and
popRight() routines.

In the example test driver in Figure
8, the writer initializes the queue on
line 74, and the reader waits until this
step is completed on lines 57–59. The

Figure 6. Semantics of the DCAS instruction.

boolean DCAS (val *addr1, val *addr2,
 val old1, val old2,
 val new1, val new2)
{
 atomically {
 if (*addr1 == old1 && *addr2 == old2)
 { *addr1 = new1;
 *addr2 = new2;
 return true;
 } else
 { return false;
 } }
}

Figure 7. C code for pushRight and popRight routines.

 1 Node *Dummy, *LH, *RH;
 2
 3 val
 4 pushRight(val v)
 5 { Node *nd, *rh, *lh, *rhR;
 6
 7 nd = (Node *) spin_malloc(sizeof(Node));
 8
 9 if (!nd) return FULL;
10
11 nd->R = Dummy;
12 nd->V = v;
13
14 while (true)
15 { rh = RH;
16 rhR = rh->R;
17 if (rhR == rh)
18 { nd->L = Dummy;
19 lh = LH;
20 if (DCAS(&RH,&LH,rh,lh,nd,nd))
21 return OKAY;
22 } else
23 { nd->L = rh;
24 if (DCAS(&RH,&rh->R,rh,rhR,nd,nd))
25 return OKAY;
26 } }
27 }
28
29 val
30 popRight(void)
31 { Node *rh, *lh, *rhL;
32 val result;
33
34 while (true)
35 { rh = RH;
36 lh = LH;
37
38 if (rh->R == rh)
39 return EMPTY;
40
41 if (rh == lh)
42 { if (DCAS(&RH,&LH,rh,lh,Dummy,Dummy))
43 return rh->V;
44 } else
45 { rhL = rh->L;
46 if (DCAS(&RH,&rh->L,rh,rhL,rhL,rh))
47 { result = rh->V;
48 rh->R = Dummy;
49 rh->V = null;
50 return result;
51 } } }
52 }

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 71

reader contains an assertion on line 64
to verify the values sent by the writer
are received in the correct order, with-
out omissions.

We can perform the test using dif-
ferent threads for the reader and the
writer, though these tests alone can-
not establish the correctness of the al-
gorithm. A model checker is designed
to perform this type of check more rig-
orously. If there is any possible inter-
leaving of the thread executions that
can trigger an assertion failure, the
model checker is guaranteed to find
it. To use the model checker we define
a small configuration file that indenti-
fies the parts of the code we are inter-
ested in. This configuration file allows
us to define an execution context for
the system we want to verify by extract-
ing the relevant parts of the code and

placing them into an executable sys-
tem that is then analyzed.

Figure 9 shows the complete con-
figuration file needed to verify this ap-
plication. The first four lines identify
four functions in source file dcas.c we
are interested in extracting as instru-
mented function calls. The next two
lines identify sample _ reader and
sample _ writer as active threads
that will call these functions. The last
three lines in the configuration file de-
fine the required header file dcas.h
that holds the definition of data struc-
ture Node and the name of the source
file (dcas.c) to which the verifier must
be linked for additional routines, in-
cluding a C encoding of the function
that defines the semantics of the DCAS
instruction (also shown in Figure 6).

The verification of the algorithm
can now be performed with a single
command, using the model-extraction
tool Modex and the model checker Spin
(see Figure 10).

The command takes approximately
12 seconds of real time to execute, of
which only 0.02 seconds is needed for
the verification itself. The rest of the
runtime is taken by the model extrac-
tor to generate the verification model
from the source code, for Spin to con-

vert that model into optimized C code,
and finally for the C compiler to pro-
duce the executable that performs the
verification. None of these steps re-
quires further user interaction.

A replay of the error-trail reveals a
race condition that can lead to an as-
sertion violation and therefore shows
the algorithm to be faulty (see figures
11, 12, and 13). Statements executed
by the writer process are marked with
W and statements executed by the
reader process with R. First consider
Figure 11. After the initial call to ini-
tialize in the sample _ writer
routine (line 74 in Figure 8), the writer
initiates its first call to pushRight on
line 77, with value 0. This value is then
stored by executing lines 7 through 19
in the pushRight routine.

The next statement in the execution
of pushRight would now be a call on
DCAS to complete the update, but that
call is delayed. Meanwhile, the sam-
ple _ reader is free to proceed with
calls to popRight to poll the queue
for new elements (see Figure 12). The
first call (line 62 in Figure 8) succeeds
and retrieves the stored value 0. The
remaining steps in Figure 12 illustrate
the execution of the popRight rou-
tine for that call.

Figure 10. Verification steps.

$ time modex -run dcas.c
MODEX Version 2.0 - 2 September 2011
c_code line 111 precondition false:
 (Psample_reader->rv==Psample_reader->i)
wrote model.trail
...
pan: elapsed time 0.02 seconds

7.69 user 4.02 system 0:12.04 elapsed 97% CPU
$

Figure 11. Part 1, partial execution of pushRight by the test writer.

74 W: initialize()
76 W: i = 0
76 W: (i<10)
77 W: # v = pushRight(i) ::
 7 W: nd = (Node *) spin_malloc(sizeof(Node));
 9 W: !(!nd)
11 W: nd->R = Dummy;
12 W: nd->V = v;
14 W: (true)
15 W: rh = RH;
16 W: rhR = rh->R;
17 W: (rhR == rh)
18 W: nd->L = Dummy;
19 W: lh = LH;

Figure 8. C code for a sample test driver.

53 void
54 sample_reader(void)
55 { int i, rv;
56
57 while (!RH)
58 { /* wait */
59 }
60
61 for (i = 0; i < 10; i++)
62 { rv = popRight();
63 if (rv != EMPTY)
64 { assert(rv == i);
65 } else
66 { i--;
67 } }
68 }
69
70 void
71 sample_writer(void)
72 { int i, v;
73
74 initialize();
75
76 for (i = 0; i < 10; i++)
77 { v = pushRight(i);
78 if (v != OKAY)
79 { i--;
80 } }
81 }

Figure 9. Modex configuration file.

%X -e pushRight
%X -e popRight
%X -e initialize
%X -e dcas_malloc
%X -a sample_reader
%X -a sample_writer
%D
#include “dcas.h”
%O dcas.c

contributed articles

72 communications of the acm | february 2014 | vol. 57 | no. 2

ule implemented in approximately
45,000 lines of C. The design of this
subsystem was converted manually
into a Spin verification model of ap-
proximately 1,600 lines, in close col-
laboration with the module designer.
In most cases, the model-checking
runs successfully identified the exis-
tence of subtle concurrency flaws that
could be remedied in the software.
For the file system software in par-
ticular, the model-checking runs be-
came a routine part of our regression
“tests,” executed after every change
in the code, often surprising us with
the ease with which it could identify
newly committed coding errors.

Conclusion
The MSL spacecraft performed flawless-
ly in delivering Curiosity to the surface of
Mars in August 2012 where it is currently
exploring the planet (see Figure 14). The
rover has meanwhile achieved its pri-
mary mission, which was to determine
if our neighbor planet could in principle
have supported life in the distant past.

Every precaution was taken to opti-
mize the chances of success, and not
just in the development of the soft-
ware. Critical hardware components
were duplicated, including the rover’s
main CPU. But though it is not difficult
to see how duplication of an essential
hardware component helps improve
system reliability, seeing how one can
use redundancy to improve software
reliability is less simple.

We gave two examples of how
software redundancy was nonethe-
less used on the MSL mission. The
first—emphasis on use of assertions
throughout the code—may sound ob-
vious but is rarely recognized as a pro-

This call should not succeed be-
cause the pushRight call, initiated
by the writer in Figure 11, has not yet
completed its update. But the trap has
now been set. The sample _ reader
thread now moves on to the next call,
after incrementing the value of i. This
second call to popRight completes
the same way it did before and again
returns the value 0, resulting in the fail-
ure (see Figure 13).

The model-extraction method used
here is defined in such a way it allows
for very simple types of instrumenta-
tion in basic applications. The model
extractor always preserves the applica-
tion’s original control flow. However,
it also supports the definition of more
advanced abstraction functions in con-

figuration files (similar to the one in
Figure 9) that can be used to reduce the
complexity of extracted models. The
default conversion rule, which defines
a one-to-one mapping of statements
from the source code into the model,
allows for direct verification of a sur-
prisingly large set of multithreaded C
programs and algorithms.

The MSL mission made exten-
sive use of this automated capabil-
ity to verify critical multithreaded
algorithms, directly using their im-
plementation in C. For larger subsys-
tems, we also manually constructed
Spin verification models in a more
traditional way and analyzed them.
The largest such MSL subsystem was
a critical data-management mod-

Figure 12. Part 2, call to popRight by the test reader.

57 R: !(!RH)
61 R: i = 0
61 R: (i < 10)
62 R: # rv = popRight() ::
34 R: (true)
35 R: rh = RH;
36 R: lh = LH;
38 R: !(rh->R == rh)
41 R: (rh == lh)
42 R: DCAS(&(RH),&(LH),rh,lh,Dummy,Dummy)
43 R: return rh->V;

Figure 13. Part 3, second call to popRight by the reader, with the writer still stalled in its
first call to pushRight, leading to the assertion violation.

62	 R: rv = popRight(i) # rv is 0
63	 R: (rv != EMPTY) # true
64	 R: assert(rv == i) # true
61	 R: i++; # i is now 1
61	 R: (i<10) # true
62	 R: rv = popRight() # rv is again 0
63	 R: (rv != EMPTY) # true
64	 R: assert(rv == i) # false

Figure 14. First MSL wheel tracks on Mars.

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 73

tection mechanism based on redun-
dancy. An assertion is always meant to
be satisfied, meaning that technically
its evaluation is almost always redun-
dant. But sometimes the impossible
does happen, as when, say, external
conditions change in unforeseen ways.
Assertions prove their value by detect-
ing off-nominal conditions at the earli-
est possible point in an execution, thus
allowing fault-protection monitors to
take action and prevent damage.

The second example of software re-
dundancy was used to protect the criti-
cal landing sequence. This was the only
phase of the mission in which both the
main CPU and its backup were used
simultaneously, with the backup in
hot standby. Running the same land-
ing software on two CPUs in parallel
offers little protection against soft-
ware defects. Two different versions
of the entry-descent-and-landing code
were therefore developed, with the
version running on the backup CPU a
simplified version of the primary ver-
sion running on the main CPU. In the
case where the main CPU would have
unexpectedly failed during the land-
ing sequence, the backup CPU was
programmed to take control and con-
tinue the sequence following the sim-
plified procedure. The backup version
of the software was aptly called “sec-
ond chance,” and to everyone’s relief
proved itself redundant by never being
called on to execute.

Acknowledgments
This research was carried out at the
Jet Propulsion Laboratory, California
Institute of Technology, Pasadena,
CA, under a contract with the National
Aeronautics and Space Administra-
tion. Credit for the nearly flawless per-
formance of the MSL flight software to
date goes to the superb software devel-
opment team that created, reviewed,
analyzed, tested, and retested the code,
working countless hours. 	

References
1.	 Chalin, P. Ensuring Continued Mainstream Use of

Formal Methods: An Assessment. Roadmap and
Issues Group, D.S.R., TR 2005-001, Concordia
University, Montréal, Canada, 2005.

2.	D etlefs, D.L., Flood, C.H., Garthwaite, A.T. et al. Even
better DCAS-based concurrent deques. In Distributed
Algorithms, LNCS Vol. 1914, M. Herlihy, Ed. Springer
Verlag, Heidelberg, 2000, 59–73.

3.	D oherty, S. Modelling and Verifying Non-blocking
Algorithms that Use Dynamically Allocated Memory.
Master’s Thesis, Victoria University, Wellington, New
Zealand, 2004.

4.	D oherty, S., Detlefs, D.L., Groves, L. et al. DCAS is
not a silver bullet for nonblocking algorithm design.
In Proceedings of the 16th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, P.B.
Gibbons and M. Adler, Eds. (Barcelona, Spain, June
27–30). ACM Press, New York, 2004, 216–224.

5.	G luck, P.R. and Holzmann, G.J. Using Spin model
checking for flight software verification. In Proceedings
of the 2002 Aerospace Conference (Big Sky, MT, Mar.
9–16). IEEE Press, Piscataway, NJ, 2002.

6.	H avelund, K., Lowry, M., Park, S. et al. Formal analysis
of the remote agent: Before and after flight. IEEE
Transactions on Software Engineering 27, 8 (Aug.
2001), 749–765.

7.	H oare, C.A.R. Assertions: A personal perspective.
IEEE Annals of the History of Computing 25, 2 (Apr.-
June 2003), 14–25.

8.	H olzmann, G.J. Scrub: A tool for code reviews.
Innovations in Systems and Software Engineering 6, 4
(Dec. 2010), 311–318.

9.	H olzmann, G.J. The power of ten: Rules for developing
safety critical code. IEEE Computer 39, 6 (June
2006), 95–97.

10.	H olzmann, G.J. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, Boston, 2004.

11.	H olzmann, G.J. and Joshi, R. Model-driven software
verification. In Proceedings of the 11th Spin Workshop,
LNCS 2989 (Barcelona, Spain, Apr. 1–3). Springer
Verlag, Berlin, 2004, 76–91.

12.	H olzmann, G.J. and Smith, M.H. Automating software
feature verification. Bell Labs Technical Journal 5, 2
(Apr.-June 2000), 7–87.

13.	 Jet Propulsion Laboratory. JPL Coding Standard for
Flight Software; http://lars-lab.jpl.nasa.gov/JPL_
Coding_Standard_C.pdf

14.	 Kudrjavets, G., Nagappan, N., and Ball, T. Assessing
the relationship between software assertions and
faults: An empirical investigation. In Proceedings
of the IEEE International Symposium on Software
Reliability Engineering (Raleigh, NC, Nov. 7–10). IEEE
Press, Piscataway, NJ, 2006, 204–212.

15.	 Lamport, L. Checking a multithreaded algorithm with
+CAL. In Proceedings of Distributed Computing: 20th
International Conference (Stockholm, Sweden, Sept.
18–20). Springer-Verlag, Berlin, 2006, 151–163.

16.	 Motor Industry Software Reliability Association.
MISRA-C Guidelines for the Use of the C Language in
Critical Systems. MIRA Ltd., Warwickshire, U.K., 2012;
http://www.misra-c.com/

17.	NA SA. NASA Engineering and Safety Center, Technical
Assessment Report. National Highway Traffic
Safety Administration (NHTSA), Toyota Unintended
Acceleration Investigation, Appendix A: Software,
Washington, D.C., Jan. 18, 2011; http://www.nhtsa.gov/
staticfiles/nvs/pdf/NASA_FR_Appendix_A_Software.pdf

18.	O ng, E.C. and Leveson, N. Fault protection in a
component-based spacecraft architecture. In
Proceedings of the International Conference on
Space Mission Challenges for Information Technology
(Pasadena, CA, July 13–16). Jet Propulsion
Laboratory, Pasadena, CA, 2003.

19.	 Pnueli, A. The temporal logic of programs. In
Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (Providence, RI, Oct.
31–Nov. 1). IEEE Computer Society, Washington, D.C.,
1977, 46–57.

20.	R edberg, R. and Holzmann, G.J. Reviewing Code
Review. LaRS Report, Jet Propulsion Laboratory,
Pasadena, CA, Nov. 2013.

21.	 Schneider, F., Easterbrook, S.M., Callahan, J.R.,
and Holzmann, G.J. Validating requirements for
fault-tolerant systems using model checking. In
Proceedings of the International Conference on
Requirements Engineering (Colorado Springs, CO,
April 6–10). IEEE Computer Society, Washington, D.C.,
1998, 4–13.

22.	 SRI International, Computer Science Laboratory. The
PVS Specification and Verification System; http://pvs.
csl.sri.com/

23.	V ardi, M. and Wolper, P. An automata-theoretic
approach to automatic program verification. In
Proceedings of the First IEEE Symposium on Logic
in Computer Science (Cambridge, MA, June 16–18).
IEEE Computer Society, Washington, D.C., 1986,
332–344.

Gerard J. Holzmann (gholzmann@acm.org) is a senior
research scientist and a fellow at NASA’s Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA.

© 2014 ACM 0001-0782/14/02 $15.00

Every precaution
was taken to
optimize the
chances of success,
and not just in
the development
of the software.
Critical hardware
components
were duplicated,
including the rover’s
main CPU.

