
High-Integrity Multitasking in SPARK:
Static Detection of Data Races and Locking Cycles

S. Tucker Taft
AdaCore

Lexington, MA USA

Email: taft@adacore.com

Florian Schanda
Altran UK Limited

Bath, UK

Email: florian.schanda@altran.com

Yannick Moy
AdaCore

Paris, France

Email: moy@adacore.com

Abstract—SPARK is a subset of Ada designed to enable formal
verification. A new release of SPARK 2014, based on the Ada
2012 standard, incorporates support for multitasking, based on
the Ravenscar Profile, which subsets the full Ada tasking model to
a relatively static, single-level tasking model. This paper describes
the safety requirements relating to multitasking in this version of
SPARK, and the corresponding static checks performed by the
SPARK 2014 toolset.

Index Terms—formal verification, multitasking.

I. INTRODUCTION

The SPARK language and toolset [1] are designed to support

the development and formal verification of software systems

providing the highest level of safety and security. The 2014

version of the SPARK language is based on the Ada 2012 pro-

gramming language standard [2], subsetted to enable formal

verification, and augmented using the Ada 2012 annotation

syntax to support more complete behavioural specifications.

The additional annotations allow the full specification of

functional effects and information flow of every component of

the software system, which can then be verified fully statically,

or using a combination of static and dynamic techniques.

The initial release of SPARK 2014 was limited to the

sequential constructs of the language. The latest release incor-

porates support for real-time multitasking, including explicit

declarations of task types and task objects to provide multiple

threads of control, and data-oriented synchronization and

coordination capabilities based on the monitor-like protected
type feature of Ada.

The formal verification of SPARK programs is supported

by a set of tools that translate the SPARK programs into

an intermediate verification language (Why3 [3]), which is

then transformed into a set of verification conditions (VCs)

that can be discharged by one or more SMT solvers [4]

(including CVC4, Alt-Ergo, and Z3). In addition, the SPARK

2014 programs may be compiled by an Ada 2012 compiler to

produce an executable program, allowing the use of run-time

checking of assertion expressions, including preconditions,

postconditions, and type invariants, for parts of the code not

yet statically verified.

As part of supporting concurrency in the new release of

SPARK 2014, an additional set of safety requirements with

corresponding static checks has been specified to ensure that

there are no data races, no locking cycles, and no task

suspensions while holding a lock, in the resulting programs.

This article makes the following contributions:

• Language features which facilitate static checking of

safety requirements,

• and which static checks are performed by the SPARK

2014 toolset.

II. MULTITASKING SAFETY REQUIREMENTS

The Ada language defines a set of rules for the safe use

of data objects shared among multiple tasks [2]. Ada does

not generally require that violations of these rules be detected

either statically or dynamically, and, if they are violated, the

effects are generally not predictable. By contrast, the SPARK

2014 toolset statically detects possible violations of these

rules; in other words, the SPARK 2014 toolset performs static

data-race detection.

Ada also provides mechanisms to avoid cyclic locking

structures, which can lead to deadlock. However, these mecha-

nisms are enforced by a priority-ceiling approach, which only

provides protection on a monoprocessor, and are based on

run-time checks between the priority of the task requesting

exclusive access to a resource, and the ceiling priority of the

resource [5]. The SPARK 2014 toolset extends this protection

against cyclic locking to multiprocessor contexts, and enforces

the rules statically rather than dynamically.

Finally, Ada has a rule disallowing executing a potentially
blocking operation while holding a lock. As with data races,

this rule is not required to be enforced by a standard Ada

compiler nor by the Ada run-time system, though if a vio-

lation is detected, the run-time system will raise a run-time

exception. By contrast, the SPARK 2014 toolset enforces this

rule statically.

III. STATIC MULTITASKING CHECKS

The multitasking release of SPARK supports both tasks,

which represent a separate thread of control, and protected
objects, which are resources with procedure and entry opera-

tions that upon call acquire exclusive read/write access to the

object, and function operations that upon call acquire shared

read-only access to the object.

Data races are eliminated in SPARK by a simple rule:

any global object referenced from a task shall be marked

2016 IEEE 17th International Symposium on High Assurance Systems Engineering

1530-2059/16 $31.00 © 2016 IEEE

DOI 10.1109/HASE.2016.54

238

as Part_Of that task, or be a synchronized object. A syn-
chronized object is an object that can support simultaneous

access by multiple tasks without incurring a data race. This

includes protected objects, atomic objects (all access is via

atomic instructions), and suspension objects (a kind of pri-

vate semaphore). Normal objects, such as integer or floating

point variables, are not synchronized, and, if global, may be

referenced only by the task they are associated with via a

Part_Of annotation. If the global variable has no Part_Of
annotation, then it may only be referenced by the environment
task of the program, that is the main task, the task in which

execution of the program begins.

The data race rule is enforced relatively easily in SPARK

because all subprograms must identify the global variables

they manipulate with a Global annotation. Hence, the main

body of a task must not call a subprogram whose Global
annotation identifies an object which is not synchronized and

not Part_Of the calling task. The Global annotation of a

subprogram includes all indirect references as well as direct

references, so no hidden side effects are possible. Note that,

as a convenience to the user, the SPARK 2014 toolset can

also infer Global annotations automatically, but the rule

remains effectively the same, based on the inferred Global
annotations.

Cyclic locking, potential violations of ceiling priority rules,

and use of potentially blocking operations while holding a

lock, are all checked for by the SPARK 2014 toolset by

propagating across calls information about the invocation of

operations on protected objects. In a later release, program-

mers will be able to declare their usage of protected operations

and potentially blocking operations with explicit annotations

on the specification of a subprogram. But in the current release,

the toolset propagates the information automatically, rather

than relying on user-provided annotations.

For cyclic locking, the check is simply that a protected

procedure or entry of a given object must not make an external
call on a protected operation of the same object, directly or

indirectly. For the ceiling priority rule, the check is that the

priority of a task must be less than or equal to the ceiling

priority of any protected object it operates upon, directly or

indirectly. Similarly, a protected operation whose object has a

given ceiling priority must not call a protected operation on

an object with a lower ceiling priority, directly or indirectly.

Finally, for the potentially blocking rule, the static check is that

a protected operation does not invoke, directly or indirectly, a

potentially blocking operation.

The data-race rule is checked in a modular fashion, in

that it can be performed without access to the complete

program, thanks to the user-provided Global annotations.

By contrast, these locking-related checks all rely on a prop-

agation of information across calls, globally throughout the

program. This means that these checks are not modular and

cannot be performed without access to the entire program.

Once the SPARK toolset supports the explicit specification

on a subprogram of the protected and potentially blocking

operations it performs, these checks can be performed in a

modular fashion. Nevertheless, the toolset will still provide

support for inferring these annotations, so the programmer

can still have the convenience of omitting these explicit

annotations, presuming they do not have a requirement for

modular checking.

IV. RELATED WORK

Detection of race conditions and deadlocks has a relatively

long history, and both static [6] and dynamic [7] approaches

have been used. A unique feature of the SPARK detection

approach is that it can provide a guarantee that no data races,

no cyclic locking, and no violations of the ceiling priority and

potentially-blocking rules remain in the program, because the

language has itself been subsetted to enable static detection

of all such violations. This guarantee is important to users

of the SPARK language, as the applications are often at the

highest level of criticality. In other contexts, identifying race

conditions or deadlocks is seen as simply finding another

kind of program defect. In SPARK, if multitasking is used,

then eliminating possible data races, cyclic locking, and other

sources of potential deadlocks is considered part of ensuring

the overall safety of the software. The work presented in this

article was based on the RavenSPARK [8] profile of earlier

SPARK toolsets; a more restricted language with less support

for the standard Ada run-time and implementation that only

supported modular analysis as it could not infer contracts.

V. FUTURE WORK

Some incremental extensions to the language will be natural,

such as annotations for announcing tasks and relaxing the

Ravenscar profile. Automatic abstraction to communicating

sequential processes (CSP) may be one way to achieve this.

Other work could include support for the proposed parallel

programming extensions [9] for Ada.

ACKNOWLEDGEMENTS

This work was performed as part of a joint development

project of AdaCore and Altran UK.

REFERENCES

[1] J. W. McCormick and P. C. Chapin, Building High Integrity Applications
with SPARK. Cambridge University Press, 2015.

[2] International Standards Organization, “ISO IEC 8652:2012,” Program-
ming Languages and their Environments – Programming Language Ada,
2012.

[3] J.-C. Filliâtre and A. Paskevich, “Why3 - where programs meet provers,”
in Programming Languages and Systems. Springer, 2013, pp. 125–128.

[4] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction
and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–77,
2011.

[5] J. W. McCormick, F. Singhoff, and J. Hugues, Building parallel, embed-
ded, and real-time applications with Ada. Cambridge University Press,
2011.

[6] D. Engler and K. Ashcraft, “Racerx: effective, static detection of race
conditions and deadlocks,” in ACM SIGOPS Operating Systems Review,
vol. 37, no. 5. ACM, 2003, pp. 237–252.

[7] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: efficient detection of
data race conditions via adaptive tracking,” in ACM SIGOPS Operating
Systems Review, vol. 39, no. 5. ACM, 2005, pp. 221–234.

[8] The SPARK Ravenscar Profile, Altran UK Limited, April 2004.
[9] B. Moore, L. M. Pinho, S. Michell, and T. Taft, “Safe parallel pro-

gramming in ada with language extensions,” in High Integrity Language
Technology ACM SIGAdas Annual International Conference, 2014.

239

