Software Systems for IoT

Vermont Technical College Peter Chapin

- The "things" or devices are not just computers...
 - Sensors
 - Temperature, humidity, air pressure, magnetic fields, light...
 - Body temperature, blood pressure, heart rate, oxygenation, steps...
 - Acceleration, GPS location...
 - Camera, microphone...

- The "things" or devices are not just computers...
 - Actuators
 - Thermostat, lights, door locks...
 - Drug pumps...
 - Motors...
 - Displays, speakers...

- Wide range of computational capability
 - "Smart dust"
 - Battery operated wireless sensor nodes
 - Single board computers (Arduino, Raspberry Pi, etc.)
 - Large scale computer system
 - Telsa uses full Linux installation with GPUs for image processing

- Lower end systems often highly constrained
 - Slow CPUs (1 MHz clock)
 - Small memory (16 KB ROM, 4 KB RAM)
 - Low power (AA batteries... required to last for months)
 - Limited RF (range 10s or 100s of feet at most)
- Creates new programming challenges

- Low end systems might be disposable
 - Sensing fire information during forest fire
 - Volcanic eruptions
 - Animal tracking
 - Any application with a large number of sensors
- Consequence: sensor devices must be cheap

- Security!
 - Privacy: sensor personal information
 - Microphones pick up conversations
 - Cameras see things
 - Medical devices
 - Data integrity and confidentiality
 - On the way to/from the processing
 - Devices subject to physical attack
 - Cyber-physical systems! Attacks have physical consequences

- High integrity & High reliability
 - Safety critical systems
 - Medical devices
 - Autonomous vehicles
 - Infrastructure (power generation, etc.)
 - Software failure can cause major loss of life or other assets

- Various protocols
 - Traditional IPv4 and IPv6 (with Wi-Fi, IEEE 802.11)
 - ISM (Industrial, Scientific, Medical) bands
 - 2.4 GHz and also 915 MHz (in the USA)
 - IEEE 802.15.4
 - MAC/PHY layer protocol
 - Low rate WPAN network (Wireless Personal Area Network)
 - Bluetooth (was IEEE 802.15.1, now Bluetooth Special Interest Group)
 - Zigbee (rides over IEEE 802.15.4)
 - 6LoWPAN (IPv6 over IEEE 802.15.4)

- Low power devices have limited range
 - Necessitates multi-hop configurations
 - Ad-hoc networks
 - No pre-existing infrastructure
 - Nodes dynamically determine when and where to forward data
- Power saving may require frequent off time
 - Radios tend to consume a lot of energy; **keep them off**
 - Communication challenges when nodes are up/down often

- 5G (vs 4G)
 - Higher bandwidth
 - Better resource (bandwidth) utilization
 - Better able to manage crowded areas (many devices)
 - Lower latency
 - Potentially long range communication (compare: Wi-Fi)
 - e. g., Autonomous vehicles

- Millimeter wave communication (60-90 GHz)
 - Even more bandwidth
 - BUT...
 - Line of sight only (use multiple antennas to mitigate)
 - More attenuation by the atmosphere
 - Some IoT applications can live with these limitations
 - 5G may use this band, but focus is on lower bands

- DTN
 - "Delay/Disruption" Tolerant Networking
 - Useful for super-long latency systems
 - Spacecraft (latencies in minutes/hours!)
 - Useful for extremely unreliable links
 - Spacecraft (planetary blockage)
 - Undersea vehicles/devices (poor propagation through water)
 - Special protocols required

- DTN example: Europa mission
 - Earth to Europa orbiter (about 45 minutes at the speed of light)
 - Orbiter to lander on surface (sometimes blocked by Europa)
 - Lander to submarine in Europan under-ice ocean
- Data must multi-hop over several nodes with limited availability
 - Telemetry & science data must reach Earth
 - Command and control data must reach submarine
- Other questions:
 - How much behavior can be autonomous?
 - Where is data processing & evaluation done?

IoT Systems can use the Cloud

- Advantages of the Cloud
 - Global access
 - Enormous data storage capacity
 - e. g., 10⁵ sensors, taking multiple readings every second
 - Enormous computational capacity
 - Advanced data processing & reduction methods
 - Advanced machine learning algorithms
 - AI-based decision making
 - Broad access

IoT Systems can use the Cloud

- Disadvantages of the Cloud
 - Additional security concerns (privacy, access control)
 - Less local control
 - More expensive (maybe)
- Not all IoT applications need the cloud
 - Many could benefit from it