
Structuring Abstract Interpreters through
State and Value Abstractions

Sandrine Blazy1, David Bühler2, and Boris Yakobowski2

1 IRISA - University of Rennes 1, sandrine.blazy@irisa.fr ,
2 CEA, LIST, Software Safety Lab, {david.buhler,boris.yakobowski}@cea.fr

Abstract. We present a new modular way to structure abstract inter-
preters. Modular means that new analysis domains may be plugged-in.
These abstract domains can communicate through different means to
achieve maximal precision. First, all abstractions work cooperatively to
emit alarms that exclude the undesirable behaviors of the program. Sec-
ond, the state abstract domains may exchange information through ab-
stractions of the possible value for expressions. Those value abstractions
are themselves extensible, should two domains require a novel form of
cooperation. We used this approach to design eva, an abstract inter-
preter for C implemented within the Frama-C framework. We present
the domains that are available so far within eva, and show that this
communication mechanism is able to handle them seamlessly.

1 Introduction

Static analysis of C programs by abstract interpretation [9] has known con-
siderable progress in recent years, in terms of both research breakthrough and
industrial-strength implementations. Verifying C programs precisely remains of
paramount importance for at least two reasons. On the one hand, C remains
the choice language for safety-critical programs. Its low-level nature makes the
compilation process simple enough (with non-optimizing compilers) that the
equivalence between the source code and the binary produced can be checked.
This is often a requirement of the qualification process. On the other hand, many
programs routinely used in computers or embedded devices, and thus open to
cyber-attacks, remain written in C (the Linux kernel, bind, openssl, etc).

Designing sound abstract analyzers that remain precise on large classes of
programs is challenging. Having a sound analyzer generally means that a large
number of false alarms are emitted. To improve precision, the analyzer can be
extended with dedicated analysis domains, that will be better suited to han-
dle particular code fragments. However, integrating multiple domains remains
a challenge in itself. First, those domains must remain relatively independent:
adding one domain should not require modifying the existing ones. However,
they must also be able to cooperate, and exchange information.

In abstract interpretation, such communication is usually handled through
the use of a reduced product [10]. However, such products are hard to define
between rich domains. Moreover, reduced products are not modular, and adding

2 Sandrine Blazy, David Bühler, and Boris Yakobowski

a domain requires extensive modifications to existing ones. Thus, abstract ana-
lyzers often implement approximations of the reduced product [7]. Furthermore,
domains often do not inter-reduce directly, but instead use a communication
interface (see e.g. Astrée [11] and Verasco [16]).

The Frama-C framework [17] features an abstract interpreter called Value
Analysis (abbreviated as value), that has been successfully used to verify safety-
critical code [12]. Its main features are an intricate memory abstraction (able
to represent efficiently and precisely both low-level concepts such as unions and
bitfields, and high-level ones such as arrays), and an instance of a trace parti-
tioning domain [18] (able to unroll loops or to analyze separately the branches
of a disjunction). The abstract domain of value is not relational. Aggressive
trace partitioning can be used to work around this limitation: the relational
information is instead carried out by the disjunction encoded by the multiple
states. Nevertheless, relational domains are desirable. Also problematic was the
fact that the analyzer has been written around its domain, resulting in a very
tight coupling. So far, adding new domains – relational or not – was not possible.

In this work, we go beyond what was done in value and present an abstract
interpreter for C, called eva (for Evolved V alue Analysis). The main novelty of
this analyzer —and our contribution— lies in the generic communication lan-
guage between the abstract domains. This language is based on abstractions of
C values, while domains are abstractions of memory states. Both state and value
abstractions are extensible, and different domains may communicate through dif-
ferent values. Domains also cooperate to state the alarms about the undesirable
behaviors that may occur during a program execution. Finally, abstract domains
do not need to share the same abstraction for the memory, which facilitates the
integration of domains with different granularities in their vision of the program.

The main contributions of our paper are the following:
– A new design for abstract interpreters and the collaboration between do-

mains, relying on a separation between value and state abstractions.
– A semantics and a cooperative emission mechanism for the alarms that re-

port undesirable behaviors.
– An open-source abstract interpreter for C, relying on a modular architecture

aimed at easing the introduction of new abstractions.
– An implementation of multiple abstract domains, exercising the various com-

munication mechanisms.

The rest of the paper is organized as follows. The semantics of our language is
given in Section 2. We propose our new modular architecture in Section 3. Value
and state abstractions are described in Sections 4 and 5. The analysis domains
we have implemented are presented in Section 6. Related and future works are
discussed in Sections 7 and 8.

2 Formalization of our Language

Abstract interpretation links a very precise, but generally undecidable, concrete
semantics to an abstract one – the abstract semantics being a sound approx-

Structuring Abstract Interpreters through State and Value Abstractions 3

arith ::= char | (signed | unsigned) integer | float
scalar ::= arith | type pointer

τ ∈ type ::= scalar | τ [n] | {fieldi : τi}i≤n
e ∈ expr ::= cst cst ∈ V = Q ∪ {(x, i) | x ∈ X , i ∈ N}

| ♦ (en) ♦ ∈ {+,≤, (τ) , . . . }
| ∗τa

a ∈ addr ::= e | a.field | a[e]
stmt ::= ∗τa := e | e==0?

Fig. 1. Language syntax

imation of the concrete one. This section defines the syntax of our language,
its concrete semantics, and the properties expected from an abstract semantics.
The language itself is mostly orthogonal to the rest of the paper. However, it is
required to state the soundness properties of abstract transformers.

2.1 Language

Fig. 1 introduces the syntax of our language, inspired by that of Miné [20].
Programs operate over a fixed, finite set of variables x ∈ X , whose types can
be char, signed or unsigned integers, floating-point, pointers, arrays of known
size or structures. Expressions e are either a scalar constant cst, the application
of a n-ary operator ♦ to n expressions, or the dereference of an address a. A con-
stant is either a rational (for arithmetic values) or the pair (x, i) of a variable x
together with a bytes-expressed offset i (for pointers). For readability, we often
write &x for (x, 0). Operators on expressions include arithmetic operations, com-
parisons and casts between scalar types. Addresses are either a direct expression
(interpreted as a pointer), or addresses plus offsets for fields in aggregates and
cells in arrays. The dereference ∗τa of the address a is called a lvalue. The direct
dereference of a variable ∗τ (&x) can be written x, as in the C syntax.

Statements are either assignments or tests that halt execution when the con-
dition does not hold. A program P is represented by its control-flow graph, where
nodes are integer-numbered program points and edges are labeled by statements.
For clarity, we write our examples using a C-like syntax.

2.2 Concrete Semantics

The concrete state of a program is described by an untyped memory m ∈ M,
mapping valid (defined later) byte locations to single-byte characters. The C
standard guarantees that a character value fits in one byte. The concrete values
Vτ of other scalar type τ may be encoded on successive bytes, whose number and
meaning depend on the hardware architecture (which we assume known). We
assume given the size sizeof (τ) of each scalar type, as well as a set of bijective
functions φτ , each one interpreting a sequence of n bytes as a value of the scalar
type τ of size n (hence of type

(
Vchar

)sizeof(τ) → Vτ) and conversely for their
inverse. The sizeof function is extended to expressions.

4 Sandrine Blazy, David Bühler, and Boris Yakobowski

[(♦)] : Vn → V +Ω
locτ (v) ,

{
(b, i+ n)0≤n<sizeof(τ) if v = (b, i) ∈ Lτ
Ω otherwise

mτ [v] , φτ (m (locτ (v)))

J♦ (en)Km , [(♦)]
(
JeK

n

m

)
J∗τeKm , mτ [JeKm]

|{ ∗τ a := e}| (m) , m
[
locτ

(
JaKm

)
7→ φ−1

τ (JeKm)
]

|{e==0?}| (m) ,
{
m if Je==0Km = 1
⊥ otherwise

Fig. 2. Selected rules of the concrete semantics

Concrete values in V are either arithmetic values in Q, or pointer values. A
pointer value is either the NULL pointer (interpreted as 0) or a pair of a variable
and an offset. A location is a pointer value together with a type. A location of
type τ is valid when its offset plus the size being read (i.e. the size of τ) is smaller
than the size of the type of the variable. The set of valid locations of type τ is
written Lτ . Hence, a memory m ∈M has actually type Lchar → Vchar.

Fig. 2 details some parts of the evaluation JeKm of an expression e of scalar
type in memory m. It produces either a value in V or an error Ω, in case of
an illegal operation. The evaluation of ♦ (en) relies on a semantics [(♦)] from the
values of the arguments to the result, that does not involve m. It is either defined
in the C standard, or implementation-defined. The rules for the evaluation of
addresses are not shown. Computing the address of an array cell e [e′] shifts
the address of e by the evaluation of e′, using pointer arithmetic; computing
the address of a field is similar. If a pointer expression e evaluates to a valid
τ -location l, its dereference ∗τe interprets the sizeof (τ) bytes of the memory
starting at location n (denoted by locτ (v)) as having type τ . Otherwise, the
dereference leads to the error value.

The semantics |{stmt}| of a statement is a transfer function over states, de-
scribed in the last equations of Fig. 2. An assignment stores in the memory bytes
of the lvalue the characters corresponding to the value of the right expression.
A test blocks the execution, only allowing states in which the condition holds.
The transfer of a statement fails if the evaluation of an expression leads to the
error value. An assignment also fails if the written location is not valid.

Our concrete semantics maps each program node n to the set S (n) of all
possible memories at this point. The semantics of the entire program P is then
the smallest solution to the following equations:

S (0) , M S (j) ,
⋃

(i,stmt,j)∈P |{stmt}| (S (i))

2.3 Abstract Semantics

The soundness of an abstract semantics usually relies on a concretization func-
tion γ, that connects each abstraction to the sets of concrete elements it models.

Structuring Abstract Interpreters through State and Value Abstractions 5

γ : X# → 2X

γ (>) = 2X

γ (⊥) = ∅

x1 v x2 ⇒ γ (x1) ⊆ γ (x2)
γ (x1) ∪ γ (x2) ⊆ γ (x1 t x2)
γ (x1) ∩ γ (x2) ⊆ γ (x1 u x2)

Fig. 3. Soundness requirements for lattices

Then, an abstract semantics |{ · }| # is a sound approximation of a concrete se-
mantics |{ · }| if for all abstract values v, |{γ (v) }| ⊆ γ(|{v}| #) (the semantics is
implicitly lifted on sets).

It is also convenient for the abstractions to have a lattice structure. Fig. 3
presents the soundness guarantees required for a lattice X#, with respect to
the concretization. The partial order is consistent with the inclusion of concrete
sets. The join t and the meet u over-approximate respectively the union and the
intersection of sets of concrete values. > is the greatest value, whose concretiza-
tion contains all concrete values. The smallest element ⊥ denotes the abstraction
with an empty concretization.

A sound lattice abstraction of concrete memory states defines an over approx-
imation |{stmt}| # of its semantics. The following equations define the abstract
semantics of a program P : the soundness properties ensure that any solution is
a correct approximation of its concrete semantics.

S# (0) , > S# (j) ,
⊔

(i,stmt,j)∈P |{stmt}| # (S# (i)
)

3 Architecture of a Modular Abstract Interpreter

In this section, we propose a new architecture to structure an abstract inter-
preter, introducing the distinction between value and state abstractions. We
then describe how this architecture has been implemented in eva to enable
some interactions between abstract domains.

3.1 Hierarchy of Abstractions

We separate the abstractions on which an abstract interpreter relies into both
state and value abstractions. A state abstraction represents the set of concrete
states that may occur at a program point during a concrete execution. A value
abstraction represents the C values an expression may have in some concrete
states. The state abstractions handle the semantics of statements, while the
value abstractions operate at the level of expressions. The value abstractions
are the communication interface used by the state abstractions to interact with
each other. Fig. 4 sketches the architecture of a modular analyzer following these
principles. The services each layer provides are given on the left, and the syntax
fragments on which they operate on the right.

We assume given a fixpoint engine that performs a forward analysis over a
control-flow graph. It propagates the state abstractions of an abstract domain,
inferring properties at each statement. An abstract domain has a join-semilattice

6 Sandrine Blazy, David Bühler, and Boris Yakobowski

Abstract Interpreter

Abstract Domains

Values and Alarms

Queries Transfer
provides uses

Functions

Statements

Expressions

Fixpoint engine

State Abstraction

C Values and Memory
Locations Abstraction

Fig. 4. Overall layers of our architecture

structure, fulfilling the properties given in Fig. 3. The join is used when two
branches of the graph merge. A widening operator is mandatory, to ensure the
convergence of the fixpoint computation. A domain must also provide:

– sound transformers, defining the abstract semantics of the domain. They
model the effect of a statement on a state, and must satisfy the properties
defined in Section 2.3.

– queries, which extract information from abstract states by assigning a value
to some expressions. They are detailed in Section 5.

The communication between abstract domains is achieved through non-relational
abstractions of values and locations. They over-approximate respectively the sets
of possible C values for an expression, and the sets of possible memory locations
for an address. Values and locations have a meet-semilattice structure, to inter-
sect the values produced by multiple abstract states. They also provide sound
approximations of the arithmetic operators on expressions and addresses. As the
concrete operators may cause undesirable behavior at execution time, their ab-
stract counterparts also produce alarms, which signal the error cases. The alarms
are abstractions of the undesirable behaviors (mostly, undefined behaviors [14,
Annex J.2]) that the analyzer tracks. Importantly, the alarms are part of the
communication interface between abstract domains, along with values and loca-
tions. They are all formally defined in Section 4, while the interactions between
domains are detailed in Section 5. In this paper, we do not distinguish values
and locations further, as they fulfill the same role and the same requirements.

3.2 Communication through Value Abstractions

This design has been successfully implemented in eva, the new modular abstract
interpreter of Frama-C. Eva features a cooperative evaluation of expressions in
a product of abstract states. It computes alarms and value abstractions for each
expression or address involved in a statement, using the information provided
by each domain. Then, all the computed abstractions are made available for
the state transformers, to precisely model the effect of the statement. As these
abstractions have been computed cooperatively, information may flow from a
domain to another, without direct exchanges.

Structuring Abstract Interpreters through State and Value Abstractions 7

Within eva, the evaluator for expressions interleaves forward and backward
evaluation steps. Informally, a forward evaluation is a bottom-up propagation of
value abstractions, from the lvalues and constants, to the root of an expression. It
queries the state abstractions to extract a value for variables, and relies otherwise
on the value semantics of the C operators. Conversely, a backward evaluation is a
top-down propagation aiming at reducing the values computed for the subterms
of an expression. It relies on the backward counterparts for value operations,
which learn information from a result and try to reduce the arguments. Note
that all domains may benefit from the reductions achieved by the evaluator.

Importantly, both states and values are extensible, and may be a combination
of multiple abstractions. A generic combiner is provided for both of them. For
the domain, relational and non-relational abstractions can be composed together.
They interact through the shared computation of value abstractions. This may
appear to prohibit the communication between abstract domains understand-
ing different value abstractions. However, value abstractions may themselves be
combined into a regular reduced product. The inter-reduction between value
components indirectly achieves an inter-reduction of abstract domains working
on different values, as shown by the example below.

Example 1. We consider two memory domains I and C storing information
about the possible values of integer variables. I and C respectively use intervals
and congruences as value abstractions. Assume a condition x > 3, where I and C
provide respectively the interval abstraction [0..12] and the congruence 0[3] for x.
The two values for x are reduced to [4..12] and 0[3] when backward-evaluating
the condition. Then, the inter-reduction between values reduces the interval in-
formation to [6..12]. Finally, I can learn this more precise information for x when
it abstracts the effects of the whole condition.

4 Value Abstractions

This section presents the semantics of alarms and value abstractions, that are
cooperatively used to approximate the evaluation of expressions.

4.1 Alarms

An abstract interpreter emits an alarm at each program point where it fails
to prove the absence of undesirable behaviors. Each alarm may reveal a real
bug, or be due to the over-approximations made by some abstractions. As such,
alarms are over-approximations of the undesirable behaviors of a program. They
stem from illegal operations on expressions. They are produced by the abstract
operators on value abstractions, accumulated during expression evaluation, and
ultimately raised by the analyzer. By pointing out all the potential run-time
errors, alarms are the main result of the analyzer for the end user. In order to
produce as few alarms as possible, it is essential that the domains may directly
influence the generation of alarms during an evaluation. Thus, in our architec-
ture, alarms are part of the interface between the domains and the analyzer.

8 Sandrine Blazy, David Bühler, and Boris Yakobowski

inconsistency
true false

unknown
kind = closed | open

A = (assertion→ status)× kind

e ∈ exprn V ⊆ Vn A ∈ A [(♦ (en))] : Vn → V +Ω

A = (A, kind) |=A [(♦ (e))](V)⇔
∀a ∈ A, ∀v ∈ Vn, ¬a [e← v] ⇔ ♦ (v) = Ω (1)
∀a ∈ A, A(a) = true ⇒ ∀v ∈ V , a [e← v] (2)
∀a ∈ A, A(a) = false ⇒ ∀v ∈ V ,¬a [e← v] (3)
kind = closed⇒ ∀v ∈ V , (∀a ∈ A, a [e← v])⇒ ♦ (v) 6= Ω (4)

Fig. 5. Semantics of alarms

Formally, we define alarms as maps from assertions to logical statuses ranging
over true, false or unknown. The assertions are guards against the undesirable
behaviors. If the status of an assertion is true, then its corresponding undesirable
behavior never occurs. Otherwise, the undesirable behavior may occur (unknown
status) or definitely happens if the program point is reachable (false status).
The alarm maps may be closed or open: a closed map contains all alarms which
may occur for the given expression, while an open map just gives a status to some
of these alarms. closed maps are always sound abstractions of all undesirable
behaviors of an expression. open maps are simpler to assert. They can exclude
or guarantee some errors but offer no assurance of completeness.

Fig. 5 defines the soundness of alarm maps in A. In the concrete semantics,
C operators on expressions may return either a value in V or an error Ω, in case
of undesirable behaviors. Given a predicate a, a [e← v] represents the truth-
value of a where expressions e are replaced by concrete values v. We denote by
A |=A [(♦ (e))](V) the fact that the alarms A are a sound abstraction of the
possible undesirable behaviors of the n-ary operator ♦ applied to a vector e of
expressions whose values are in the concrete set V . This requires that:
– (1) the assertions of A correspond exactly to undesirable behaviors: for any

vector of values v, an assertion in A is not satisfied if and only if ♦ (v) fails;
– (2 and 3) the precise statuses assigned to assertions in A are correct: the

assertions bound to true (resp. false) in A are satisfied (resp. their negation
is satisfied) for all values in V ;

– (4) if A is closed, the conjunction of all its assertions ensures the absence
of undesirable behavior: if all these assertions are satisfied for values v in V ,
then the computation of ♦ (v) succeeds.

This definition extends easily to any expression e and concrete state m. The
evaluation JeKm fails if one of its operators fails. A map of alarms A is a sound
abstraction of JeKm if each assertion of A prevents an undesirable behavior of an
operator in e, if the statuses of A are correct in m, and if the map is closed, then
the evaluation of e succeeds whenever all the assertions of the map are satisfied.
This is denoted by A |=A JeKm.

The alarms are also equipped with a bounded lattice structure. The join ta
and meet ua are defined pointwise. The domains of the two maps are equalized,

Structuring Abstract Interpreters through State and Value Abstractions 9

γv : V# → 2V ∀e ∈ en, ∀v ∈ (V#)n, ∀r ∈ V#,

F#
♦ : en→(V#)n→V#×A

B#
♦ : (V#)n × V#→(V#)n

F#
♦ (e, v) = (r,A)⇒

{
A |=A [(♦ (e))] (γv(v))
[(♦ (e))] (γv (v)) \Ω ⊆ γv (r)

{x ∈ γv (v) |[(♦ (e))] (x) ∈ γv (r)} ⊆ γv(B#
♦ (v, r))

Fig. 6. Semantics of values

by adding in each the assertions present only in the other, with a true status
for closed maps and an unknown for open ones. Then, the join or meet of the
statuses lattice is applied pointwise on the maps. The join with an open map
returns an open map, while the meet with a closed map returns a closed
map. The meet may discover an inconsistency between statuses, which stops the
analysis. The bottom of the alarms lattice is the closed empty map, denoting an
absence of undesirable behavior. Its top is the open empty map: any undesirable
behavior may happen, and no assertion has a precise status.

4.2 Values

Values in V# are non-relational abstractions of sets of concrete values. They are
equipped with a meet-semilattice structure, and provide a forward and a back-
ward abstract counterpart F#

♦ and B#
♦ for each C operator ♦ on expressions. We

define the soundness of the value abstractions through a concretization function
γv that connects each value to the set of concrete values it represents. Then, the
lattice must have the properties specified in Fig. 3, while the correctness of the
abstract semantics is stated in Fig. 6.

Given value abstractions of the arguments, the forward abstract operator F#
♦

produces an alarm map and a value: the alarms are a sound abstraction of the
undesirable behaviors of the operation, and the value is an over-approximation of
the set of possible resulting C values when no undesirable behavior occurs. The
forward operators receive the involved expressions needed to return the alarms.

Conversely, the backward operator B#
♦ tries to reduce the abstractions for its

arguments, according to an abstraction of the result. The reduced abstractions
over-approximate all the possible C values for the arguments leading to a value
included in the result through the operator. For instance, the backward operator
on interval abstractions for the comparison > ≤ [0..10] with result [1] reduces the
first argument value to [−∞..10], and lets the second argument value unchanged.

Values are abstractions of C values of scalar types only. However, in a lan-
guage such as C, variables may contain addresses. Hence, values must also be
abstractions of memory locations, and their abstract transformers encompass all
operations involving addresses and lvalues. Such abstractions allow the domains
to express properties about memory locations, including pointer aliasing. Thus,
the analyzer does not depend on a specific pointer analysis or memory model.
Instead, these features are implemented as –potentially dedicated– domains that
exchange their results with the others.

10 Sandrine Blazy, David Bühler, and Boris Yakobowski

type eval = value * alarms
val F#

∗τ
: oracle :(exp -> eval) -> state -> location -> eval

val F#
D : oracle :(exp -> eval) -> state -> exp -> eval

∀e ∈ expr , ∀v, l ∈ V#, ∀S ∈ D, ∀A ∈ A,
F#
∗τ (S, l) = (v,A)⇒ ∀a ∈ γv (l) , ∀m ∈ γd (S) ,

{
A |=A J∗τaKm
mτ [a] ∈ γv (v) ∪ {Ω}

F#
D (S, e) = (v,A)⇒ ∀m ∈ γd (S) ,

{
A |=A JeKm
JeKm ∈ γv (v) ∪ {Ω}

Fig. 7. Interface and soundness of domains queries

5 State Abstraction

Abstract domains carry state abstractions collecting properties about program
variables. For an abstract domain D, a concretization γd links abstract states S
to sets of concrete memories m. The soundness of an abstract domain is defined
according to the concretization.

γd : D→ P (M)
An abstract domain supplies the generic evaluator with value abstractions

on lvalues, but also on whole expressions. When preparing its answer, it may
also request additional information from other domains.

5.1 Domain Queries

A state abstract domain D must provide two query functions, on which the
generic evaluator relies. Those functions extract information from an abstract
state, translating AST fragments into alarms and value abstractions. Fig. 7 shows
their signature, as well as their soundness requirements. The explanation of the
oracle argument is postponed to the next subsection.

The first query is an abstract semantics F#
∗τ for dereferences. It receives the

possible memory locations of the dereferenced lvalue, and computes a sound
value abstraction of the C values that may be stored in these locations, in all
the memories abstracted by a state. It also produces an alarm map that ensures
the validity of the location, and that the contents of the read memory slice are
proper (i.e. not indeterminate in C parlance, and in particular initialized). Using
F#
♦ and F#

∗τ , an expression can be fully evaluated by induction on its syntax.
The second query F#

D supplies additional information about arbitrary C ex-
pressions. It computes sound alarm maps and value abstractions for their evalu-
ations in all the memories abstracted by a state. For instance, a domain tracking
inequalities may express that e1−e2 is positive when it has inferred e1 ≥ e2. For
any query on which the domain has no precise information, the top elements of
values and alarms are always a sound over-approximation.

A generic evaluator queries the state domains on each lvalue and expression.
If the domain is a combination of domains, all their answers are intersected using
the u operator on alarms and values. Thereby, each domain may easily contribute
to reduce the abstract value computed for an expression, or decrease the number

Structuring Abstract Interpreters through State and Value Abstractions 11

1 int t [5] = {1 , 2 , 3 , 4 , 5 } ;
2 int tmp = t [i]+1;
3 i f (i == 2)
4 • r = t [i] + 1 ;

Env Array Eq

State S i 7→ [2]
tmp 7→ [2..6]

t :
[1; 2; 3; 4; 5]

tmp = t [i] + 1
i = 2

tmp [2..6] > J∗ (&t [i]) +1K#

i [2] > >
t [i] > [3] >

t [i] + 1 > > JtmpK#

JiK#(S) = F#
∗int (S,&i) = [2] uv >v = [2] (1)

J&t [i]K#(S) = (&t→0) +# sizeof (int)×# JiK#(S) = &t→8 (2)

J∗(&t [i])K#(S) = F#
∗int (S,&t→ 8) = >v uv [3] = [3] (3)

J∗(&t [i])+1K#(S) = J∗(&t [i])K#(S) +# J1K#(S) = [4] (4)

Fig. 8. Collaboration between domains

of emitted alarms. If the values are themselves a combination of abstractions,
each domain may have a precise answer for some value components and return >
for the others. Using this lightweight collaboration mechanism, abstract domains
may track a specific undesirable behavior, such as the initialization of variables.
Open maps of alarms allow a domain to assert that some alarms cannot hap-
pen, without understanding e.g. the contents of variables. They also may collect
properties only on a subset of the C language, and rely on the other abstractions
to interpret together the whole semantics.

Example 2. Fig. 8 illustrates the collaboration between state abstractions, when
analyzing the C code at the left, where the value of i ranges between 0 and 4 at
the first line. We use intervals as arithmetic value abstractions and maps from
memory bases to intervals-expressed byte offsets as pointer value abstractions.
Two abstract domains cooperate, an environment mapping integer variables to
intervals, and an array domain, able to represent precisely the value of each array
cell. A third domain gathering symbolic equalities between expressions will be
used later. The state S of the domains at the bullet point is given in the first
line of the table, as well as their answers to some queries in the following lines;
[i] represents a singleton interval. In this example, each domain has information
about some expressions, and returns > for the others.

We focus on the evaluation of expression ∗ (&t[i]) + 1 at line 4. We omit here
the calls of the domain queries on non-lvalue expressions, as the domains have
no information about them. We also write the abstract value semantics F#

♦ with
an infix notation ♦#. The equations of Fig. 8 detail the steps of the evaluation,
which proceeds bottom-up. First, for the variable i, the environment gives the
precise value [2], while the array domain returns >v. The meet of those two
values is [2]. Then, the abstract value operator on array subscripts computes an
abstraction for the address of t [i] , namely &t → [8]. Third, using this precise
abstraction of the address, the array domain is able to provide a precise value
for the dereference of t [i] , which is [3]. Last, the abstract addition semantics
applied on t [i] and 1 finally leads to [4] as the value being assigned to r.

12 Sandrine Blazy, David Bühler, and Boris Yakobowski

1 int t [4] = {1 , 2 , 3 , 4 } ;
2 int tmp = t [i]+1;
3 i f (i == 2) • r = tmp ;

F#
∗int (S,&tmp) = [2..6] uv Jt[i]+1K# = [2..6] uv [4] = [4]

Fig. 9. Using the oracle during evaluation

5.2 Interaction through the Oracle

To compute precise abstractions for an expression, a domain —and especially a
relational one— may need additional information about other expressions. Thus,
the domain can request the evaluation of new expressions, through the oracle
argument of the query functions. The oracle triggers the requested evaluation
using all available domains, and returns the cooperatively computed abstractions
to the initial domain. The oracle has the same specification as the evaluation:
in the current state S, it provides an alarm map and a value that are sound
approximations of the concrete evaluation of the expression.

oracle (S, e) = (v,A)⇒ ∀m ∈ γd (S) ,
{

A |=A JeKm
JeKm ∈ γv (v) ∪ {Ω}

An uncontrolled use of the oracle may lead to (1) a loop in the forward
evaluation, or (2) to an infinite chain of evaluations of different expressions. To
prevent (1) from happening, the oracle can return > on re-occurrences of the
same expression. The number of recursive uses of the oracle is also limited by a
parameter of the analysis, to avoid (2).

Thanks to the oracle, the abstract domains share information through value
abstractions, without a direct communication between domains. Especially, the
oracle allows a relational domain to fully avail the relations it has inferred, and
lets the other domains collaborate in leveraging these relations. The following
example illustrates this with a simple equality domain.

Example 3. Let us come back to Example 2, but on the variant shown in Fig. 9
and with the equality domain enabled. At line 4, the value of t [i]+1 is still
assigned to r, but through the intermediate variable tmp. The abstract states
shown in Fig. 2 remain valid. Note that the environment domain maps tmp to
the interval [2..6], coming from its assignment to t [i]+1 at line 2, when i was still
imprecisely known; the value for t [i] was then provided by the array domain,
and was not reduced by the condition at line 3.

However, the equality domain can use information it has inferred, namely
tmp==t[i]+1. When the generic evaluator requests a value for tmp, the equal-
ity domain queries the value of t [i]+1 through the oracle. The main forward
evaluation computes the precise interval [4] for t [i]+1, as in the initial example.
This abstract value is finally returned by the equality domain as a sound value
abstraction of tmp. Thanks to the equality domain, we obtain the same precision
for the value assigned to r as in the original example.

During the evaluation of t [i]+1, the equality domain may request the eval-
uation of tmp through the oracle. Then, the evaluator detects a loop in the
evaluation, and returns the top abstractions without any further computation.

Structuring Abstract Interpreters through State and Value Abstractions 13

val B#
∗τ

: s t a t e −> l o c a t i o n −> value −> l o c a t i o n
val B#

D : s t a t e −> exp −> value −> (exp ∗ value) l i s t

∀e ∈ expr ,∀v, l ∈ V#, ∀S ∈ D,{
{a ∈ γv(l) | ∃m ∈ γd(S),mτ [a] ∈ γv(v)} ⊆ γv(B#

∗τ (S, l, v))

∀(e′, v′) ∈ B#
D (S, e, v), ∀m ∈ γd(S), JeKm ∈ γv(v)⇒ Je′Km ∈ γv(v′)

Fig. 10. Backward propagation inside domains

5.3 State Backward Propagation

Within the value abstraction, forward and backward propagators are dual. Like-
wise, abstract domains must provide the backward counterparts of queries. Fig. 10
presents their requirements. When the abstract value v# stored in a lvalue is
reduced, the abstract memory location l# for the lvalue might be reduced as well
(e.g. when some locations of l# are known not to contain v#). This typically hap-
pens on memory accesses through an imprecise pointer. The backward seman-
tics B#

∗τ of dereference serves this purpose: it takes an abstract state, an abstrac-
tion of the memory location of a lvalue and its new value abstraction v. It returns
a possibly more precise location abstraction, which is an over-approximation of
the concrete locations for which the lvalue has a value in γv(v).

Moreover, the relations known by a relational domain may also induce further
interesting reductions. For instance, if a ≤ b holds, then any reduction of the
infimum of the possible values of a implies the same reduction for b. Hence, when
performing a reduction, the generic evaluator notifies the domains through the
function B#

D , which returns a list of new reductions to be backward propagated
by the evaluator. The new reductions, deduced from the prior one and from the
inferences made by the domain, must be correct in the concrete states for which
the initial reduction was valid. To avoid diverging, the generic evaluator must
limit the number of times this function is used.

5.4 Abstraction of Statement Semantics

The generic transfer function on statements starts by evaluating all involved
expressions. For an assignment, the location of the lvalue is also evaluated, and
reduced to its valid part. The alarms produced at each step are accumulated,
and eventually raised to report all undesirable behaviors that may have occurred
at this point. The concrete states satisfying the emitted assertions are ensured to
succeed on this statement. Then, the abstract transformers of the domains are
applied. They have to be a sound approximation of the program semantics for
these safe states. For that purpose, each domain can use the value abstractions
that have been cooperatively computed by the evaluator. Thus, an abstract
transformer benefits from the properties inferred by all domains.

14 Sandrine Blazy, David Bühler, and Boris Yakobowski

6 EVA: a Modular Abstract Interpreter for Frama-C

We have implemented the architecture described in this paper in an extensible,
modular abstract interpreter named eva, an open-source plugin of Frama-C3.
Eva handles the subset of C99 commonly used in embedded code, as well as
some extensions4. It detects the most common undefined behaviors of the C
standard [14], including invalid memory accesses, reading uninitialized memory,
divisions by zero, integer overflows, undefined bit shifts, writes in const memory,
reads of bits of a dangling address, invalid pointer comparisons and subtractions,
infinite or NaN floating-point values5.

This section presents the value and state abstractions currently available in
eva. In particular, the Cvalue domain implements the abstract semantics of
value, the former abstract interpreter of Frama-C. The five other abstract
domains are new. By lack of space, we only give a short overview.

Eva provides several value abstractions (and their semantics) establishing an
already rich communication interface between abstract domains. These abstrac-
tions may be extended to achieve further communication. The current integer
abstractions are a reduced product between small sets of discrete integers (whose
maximal cardinal is user-configurable), integer intervals and linear congruences.
Floating-point abstractions are intervals, excluding infinite and NaNs. Pointer
and location abstractions are maps from memory bases (roughly, variables) to
byte offsets represented by an integer value. Pointer values may thus express
precise alias information between program variables. Such alias information is
especially useful for numerical domains that do not include an alias analysis,
in particular to process assignments through pointers. Numeric domains may
also collaborate to reduce the possible offsets on a variable. The operators for
these value abstractions handle all kinds of alarms, and always produce closed
maps of alarms. New value abstractions are thus simpler to write: they may limit
themselves to a subset of C and focus on a certain kind of alarms (through open
maps of alarms).

The Cvalue domain is the biggest abstract domain of eva. It is inherited from
value, and was retrofitted for eva. It uses the standard values of eva. Its state
domain is quite involved, and we refer the reader to [17,3] for a more complete
explanation. The memory is (roughly) a map from variable × offset × width to
abstract values, plus two additional booleans that abstract the possibility that
the value may be uninitialized, or a dangling pointer. The memory is untyped,
and it is possible to write an abstract value of any type anywhere in the mem-
ory. Assignments overlapping existing bindings are automatically handled, and

3 Directory src/plugins/value/ of the Frama-C source files, available at http://
frama-c.com/download.html

4 Bitfields, flexible array members and some GNU extensions are supported. Support
for dynamic allocation is preliminary. Recursion, setjmp/longjmp, complex types,
alloca and variable-length arrays are not supported.

5 These are not undefined behaviors w.r.t. the ISO C99 or IEEE 754 specifications,
but we choose to report them as undesirable errors.

Structuring Abstract Interpreters through State and Value Abstractions 15

remain precise. Assignments to a very large number of non-contiguous locations
are automatically approximated.

The equality domain is a symbolic domain tracking Herbrand equalities be-
tween C expressions. Our intentions are somewhat similar to those of Miné [21],
in particular abstracting over temporary variables resulting from code normaliza-
tion. The equalities are deduced from equality conditions and from assignments.
The (cooperatively computed) information about locations are used to invalidate
equalities that may no longer hold after an assignment. This domain uses the
oracle and its backward counterpart (Section 5.3) to avail its inferred relations.
It is thus independent of the chosen value abstraction, and is implemented by a
functor from values to state abstractions.

The symbolic locations domain tracks accesses to arrays or through pointers
in a symbolic way. It intends to precisely analyze codes such as if (t [i]<e) v=t[i].
Indeed, when i is imprecise, domains that represent arrays in extenso cannot
learn information from the condition (because any cell may be involved). The
domain shares some similarities with the recency abstraction [1]. Its state is a
map from symbolic locations (such as t [i] , ∗p or p−>v) to an abstract value.
Strong reductions are performed on those values when analyzing conditions, to
be shared with the other domains when the location is encountered again later.

The Apron domains: we have implemented a simple binding to the numer-
ical abstract domains available in apron [15]. The resulting domains (boxes,
octagons, strict or loose convex polyhedra, linear equalities) demonstrate that
the relational domains of Apron fit easily within the communication model of
eva. The abstract state is an apron state. Since those contain no aliasing in-
formation, the binding relies instead on the other domains (mostly cvalue) to
evaluate memory locations. A mapping between the apron dimensions and the
variables of the program is used as a correspondence table. The domain answers
queries for arithmetic expressions, by translating them into the apron inter-
nal language. Sub-expressions that cannot be handled by apron are linearized
on-the-fly into intervals, using the cooperatively computed value.

The bitwise domain aims at adding bitvector-like reasoning to eva (including
on floating-point values and pointers), without resorting to a dedicated imple-
mentation. Instead, we reuse the expressivity of the abstraction for sequences of
bits in the cvalue domain. Indeed, this abstraction is already able to extract
the possible values of some bits in a memory range. This bitwise domain works
on a new kind of value abstractions, namely a sequence of bits of known length.
Only the forward and backward abstract semantics for the bitwise C operators,
as well as integer casts and multiplication/division by a power of 2, have been
implemented. All other operations degenerate to >v. The reduced product be-
tween the standard values and those new bitwise values performs a conversion
between the two representations when possible.

The gauges domain [22] is a weakly relational domain, able to efficiently
infer general linear inequality invariants within loops. Technically, the variables
involved in the invariants are all related to loopcounters, that model the current
number of iterations in each loop. Gauges are especially useful to infer invariants

16 Sandrine Blazy, David Bühler, and Boris Yakobowski

for pointer offsets, as pointer arithmetic introduces +4 or +8 increments (for
32- and 64-bits architecture respectively), that cannot be directly handled by
domains such as octagons [19]. The gauge domains communicates integer and
pointer values through the standard values of eva.

We believe the variety of domains presented above validates our design
choices on how to structure a collaborative analyzer. Having an implementation
of values independent from domains is natural, and avoids code duplication. The
cooperative evaluation of value abstractions achieves an exchange of information
between abstract domains, without direct interactions. This modularity facili-
tates the introduction of new abstractions. Furthermore, allowing the relational
domains to directly trigger new complete evaluations or backward propagations
spares the other domains from processing relational instructions. Finally, having
only value and location abstractions as a direct means of communication did not
feel limiting, especially since they are extensible.

7 Related Works

Splitting value abstractions from state abstractions was proposed by Cousot [8]
to design an abstract interpreter, but was not used to enable a communication be-
tween different state abstractions. Cortesi et al. [7] survey the use of products (re-
duced or not) in abstract interpretation. Although most abstract-interpretation-
based analysis frameworks use multiple domains internally (e.g. [5]), few explain
how the different domains exchange information. In theory, a reduced product
considers the equivalence classes of the direct products that have the same con-
cretization, and reduces the result of each abstract operation to the smallest
representative of its class. Abstract interpreters usually implement an approxi-
mation of the reduced product, but let the domains interact during an operation.

The open product [6] achieves the reduction by a set of boolean functions
(queries) provided by any domain and used by the abstract operators to receive
more information from the environment. Our design defines clearly the scope
of our queries (through value abstractions), and goes beyond direct queries be-
tween domains by sharing all the evaluation engine of expressions to facilitate
the interpretation of a statement: abstractions of expressions are automatically
computed from properties expressed on subterms (and conversely through back-
ward propagation).

Astrée implements an approximate reduced product through communica-
tion channels [11]. This mechanism has later been implemented in Clousot and
Verasco [13,16]. Each channel carries an information of a certain kind: interval
range, integer congruence, equalities between expressions, etc. New messages can
be added if needed, and domains need not to understand all messages. Messages
sent on channels play a role similar to our value abstractions, but important
differences exist. First, our design allows domains to cooperate at another level,
namely by emitting statuses on alarms. Second, maintaining a network of com-
munication channels in parallel of all transfer functions seems more invasive
(from an engineering point of view) than using value abstractions. Indeed, the

Structuring Abstract Interpreters through State and Value Abstractions 17

latter are naturally understood by the evaluation functions. Third, our oracle
mitigates the need for messages containing relational information, that must be
understood and processed by non-relational domains. With the oracle, no new
abstract transformer needs to be added. Fourth, the reduced product of value
abstractions allows information to flow between domains, even if they under-
stand different values. Thus, domains need not be adapted when a new kind of
value is added. Finally, our products are unordered, while communication chan-
nels are oriented. This potentially allows for more reduction opportunities in the
domains.

Beyer et al. [2] propose an extension of configurable program analysis (CPA)
in which a precision information is tracked. This precision is used to dynamically
alter the amount of information the abstract domain infers. The composition of
two domains is done through a cartesian product, except that the functions
related to precision can use information from both domains. This way, it is
possible to reduce the precision of a domain when another one is precise enough.

The CodePeer analyzer [4] for Ada uses internally an SSA form on value-
numbered expressions to represent its abstract state. A state is a mapping from
SSA expressions to an abstract value. (The domains for values include disjunc-
tions of integer intervals and floating-point intervals.) Storing information for
entire expressions alleviates the need for relational domains; instead, a value for
e.g. x− y is stored. There are some similarities between this state and the par-
tial maps internally used by the eva evaluator to store the value abstractions
of expressions. However, a major difference is that we reset the map after each
statement. Keeping such information longer could be useful.

8 Conclusion

eva is a major development: 13k lines of new or heavily adapted code, out of 53k
for eva, value and all the shared abstractions. It has already replaced value
as the default abstract interpreter in the latest version of Frama-C. The new
domains we have implemented validate our design so far. The separation between
value and state abstractions is conceptually useful, and reduce the amount of
code that must be written when new state domains are implemented. We plan to
mature the domains presented in Section 6, and to write new value abstractions
(e.g. to represent structs) and state abstractions (e.g. to improve the handling
of dynamic allocation).

Regarding collaborative evaluation, two important things remain to be done.
First, value uses an automatic summarization mechanism to speed up analy-
ses [23]. It needs to be extended to arbitrary domains, while remaining cost-
efficient. Second, in the current implementation of eva, domains cooperate only
to evaluate the C part of the AST. A collaborative evaluation of logical asser-
tions is a worthwhile goal. However, this will probably complexify the abstract
values and domains, that will have to understand the fine print of assertions
(e.g. real numbers in specifications).

18 Sandrine Blazy, David Bühler, and Boris Yakobowski

References

1. Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated
storage. In Kwangkeun Yi, editor, Static Analysis, 13th International Symposium,
SAS 2006, Seoul, Korea, August 29-31, 2006, Proceedings, volume 4134 of Lecture
Notes in Computer Science, pages 221–239. Springer, 2006.

2. Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Program analysis with
dynamic precision adjustment. In ASE, pages 29–38, 2008.

3. Richard Bonichon and Pascal Cuoq. A mergeable interval map. Stud. Inform.
Univ., 9(1):5–37, 2011.

4. Jean-Louis Boulanger, editor. Static Analysis of Software: The Abstract Interpre-
tation. Wiley-ISTE, 2011.

5. Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. IKOS: A framework
for static analysis based on abstract interpretation. In Software Engineering and
Formal Methods, pages 271–277, 2014.

6. Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Combina-
tions of abstract domains for logic programming: open product and generic pattern
construction. Sci. Comput. Program., 38(1-3):27–71, 2000.

7. Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. A survey on product
operators in abstract interpretation. In Essays Dedicated to D. Schmidt on the
Occasion of his 60th Birthday, pages 325–336, 2013.

8. Patrick Cousot. The calculational design of a generic abstract interpreter. In
Calculational System Design. NATO ASI Series F. IOS Press, 1999.

9. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Principles Of Programming Languages, pages 238–252, 1977.

10. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Principles Of Programming Languages, pages 269–282, 1979.

11. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. Combination of abstractions in the Astrée
static analyzer. In Advances in Computer Science - ASIAN, pages 272–300, 2006.

12. Pascal Cuoq, Philippe Hilsenkopf, Florent Kirchner, Sébastien Labbé, Nguyen
Thuy, and Boris Yakobowski. Formal verification of software important to safety
using the Frama-C tool suite. In NPIC & HMIT, 2012.

13. Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. In Formal Verif. of Obj.-Oriented Software, pages 10–30, 2010.

14. International Organization for Standardization (ISO). International Standard
ISO/IEC 9899:1999 - Programming languages - C, 2007. Technical Corrigendum 3.

15. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract do-
mains for static analysis. In Computer Aided Verification, pages 661–667, 2009.

16. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In Princ. Of Prog. Lang., pages
247–259, 2015.

17. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A software analysis perspective. Formal Asp. Comput.,
27(3):573–609, 2015.

18. Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In Europ. Symp. on Programming, pages 5–20, 2005.

19. Antoine Miné. The octagon abstract domain. In Elizabeth Burd, Peter Aiken, and
Rainer Koschke, editors, Proceedings of the Eighth Working Conference on Reverse

Structuring Abstract Interpreters through State and Value Abstractions 19

Engineering, WCRE’01, Stuttgart, Germany, October 2-5, 2001, page 310. IEEE
Computer Society, 2001.

20. Antoine Miné. Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In LCTES, pages 54–63. ACM, 2006.

21. Antoine Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In VMCAI, pages 348–363, 2006.

22. Arnaud Venet. The gauge domain: Scalable analysis of linear inequality invariants.
In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, volume 7358 of Lecture Notes in Computer Science, pages 139–154.
Springer, 2012.

23. Boris Yakobowski. Fast whole-program verification using on-the-fly summarization.
In Workshop on Tools for Automatic Program Analysis, 2015.

