
Static Detection of Dynamic Memory Errors

David Evans

evs@larch. lcs.mit.edu

MIT Laboratory for Computer Science*

Abstract

Many important classes of bugs result from invrdid assumptions
about the results of functions and the values of parameters and

global variables. Using traditional methods, these bugs cannot be
detected efficiently at compile-time, since detailed cross-procedural

analyses would be required to determine the relevant assumptions.
In this work, we introduce annotations to make certain assumptions

explicit at interface points. An efficient static cheeking tool that ex-
ploits these annotations can deteet a broad class of errors including

misuses of null pointers, uses of dead storage, memory leaks, and

dangerous aliasing. This technique has been used successfully to
fix memory management problems in a large program,

1 Introduction

The LCLlnt checking tool [4, 2] has been used effectively in both
industry and academia to detect errors in programs, facilitate en-
hancements to legacy code, and support a programming method-

ology based on abstract types and explicit interfaces in C. In this
work, we extend LCLint to detect abroad class of important errors

including misuses of null pointers, failures to allocate or deallocate

memory, uses of undefined or deallocated storage, and dangerous or

unexpected aliasing. These errors are particularly difficult to detect

and correct through testing, since their symptoms are often platform
dependent and may be far-removed from the actual problem. Since

these errors typically involve violations of non-local constraints,
they cannot be detected efficiently at compile-time by traditional

methods.

Consider the sample code fragment in Figure 1. The function
setNanre assigns the formal parameter pnsme to the global vsri-
able gname. This code may be a correct implementation of some

function, but it depends on many assumptions not apparent from

the implementation:

● before the call, gname must not be the sole reference to

allocated storage. Otherwise, the assignment statement on

“ ~s work war supported in pm by ARPA (NCH31314-92-J.1795),NSF (9115797.
CCR), and DEC ERP.

Permission to make digitabtmrcf copy of part or all of HIS work for personal
or classroom usa is ranted without fee provided that copies are not made

!or distributed for pro It or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on sewets, or to redistribute to lists, requires prior specific permission
andlor a fee.

PLDI ’96 5/96 PA, USA
Q 1996 ACM 0-69791 -795-219WO005... $505O

●

●

I extern char *gname;

2

3 void setName (char *pnerne) {
4 gnarne = pnarne;

5]

Figure 1: sample. c

line 4 loses the last reference to this storage and it can never
be deallocated.

after the call, the actual parameter and the global gname are

aliased. The caller must not deallocate the storage pointed
to by the parameter if any code executed later depends on

gname (and vice versa).

after the call, gname may not be dereferenced if the parameter
was a null pointer. Fur&er, gname may not be de~eferenced
as an rvalue if the parameter did not point to defined storage.

As is, we cannot determine if a call to setName will cause the

program to crash or leak memory without careful analysis of the

entire program. This anrdysis would be infeasible for all but the
most trivial programs.

To enable local reasoning, we need more information about the

code. We extend the LCL interface specification language [5,9] to
provide ways of expressing assumptions about memory allocation,
initialization and sharing, and introduce annotations to make it con-

venient to express these assumptions using qualifiers on declarations
in C programs.

There have been many academic and commercial projects aimed at

producing tools that deted these kinds of errors at run-time (dmal-

10C [10], mprof [1 1], and Purify [Pure, Inc.]). These tools can be

effective in localizing the symptom of a bug — where a null pointer
is dereferenced or where leaking memory is being allocated. In

some cases, this is enough to discover the actual bug in the code.
In others, however, it may only be the beginning of the search.
Run-time checking also suffers from the flaw that its effectiveness
depends entirely on running the right test cases to reveal the prob-
lems. This is especially problematic since these tools are expensive
and intrusive enough that they are often not used when the code is
run in production.

In our work, annotations are used to make assumptions about func-

tion interfaces, variables and types explicit. Constraints necessary
to satisfy these assumptions are checked at compile-time. Places
where the constraints are violated are anomalies in the code, which

44

typically indicate bugs in the program or undocumented or incor-

rect assumptions. Section 2 describes how checking works at a

high level, and Section 5 describes the analysis in more detail. Sec-

tion 3 describes the storage model and what kinds of uses of storage

are irregular. Section 4 describes some of the annotations that can

be added to programs to make certain assumptions explicit, and

checking associated with each annotation, Section 6 illustrates the

process of adding annotations and detecting errors using a small ex-

ample program. Section 7 relates experience using this approach to

fix memory management problems and replace garbage collection

with explicit deallocation in a large program.

2 Analysis Overview

Since LCLint is run frequently and on large programs, it is essen-

tial that the checking be efficient and scale approximately linearly

with the size of the program. Hence, full interprocedttral analysis

is too expensive to be practicrd. Instead, each procedure is checked

independently, but using more detailed interface information then
is normally available. This information may include constraints on

the aliases that may be introduced by a called function, constraints
on how storage for a parameter or global variable must be defined

before a call and how it will be defined after a call, whether param-
eters and return values may be null or may share storage with other
references, and other constraints on what maybe modified or used

by a called function and how the result of a function call relates
to the values of its parameters. This information is available from

annotations added to the program.

When a function body is checked, annotations on its parameters and

the global variables it uses are assumed to be true when the function

is entered. The kutction body is checked using these assumptions.

At all return points, the function must satisfy the constraints implied

by the annotations on its return value, parameters, and the global

variables it uses.

When a function call site is encountered, LCLint checks that the

arguments and global variables used by the function satisfy the
assumptions made by the implementation of the called function.
The result of the function and the states of parameters and global
variables after the call are assumed to satisfy the constraints implied

by the function declaration.

By exploiting extra interface information in checking, a wide range

of errors can be detected through fairly simple procedural analyses.

Dataflow vahres keep track of extra information for variables, as
well as references derived from variables (e.g., a field in a structure

pointed to by a variable) when appropriate. This information in-

cludes whether or not the reference is defined or maybe null, what
other storage it might alias or be aliased by, and what other refer-

ences might share its storage. This information may be different on
different program paths. Rules are used to combine values at con-
fluence points. In cases where values cannot be sensibly combim?d
art error is reported (e.g., if storage is deallocated on only one of the
paths through an if statement).

Certain simplifying assumptions are used to make compile-time

analysis feasible and efficient. The key assumptions are: arty pred-

icate expression may be true or false, the effects of any while or

for loop are identical to those for executing the loop zero or cme

times, compile-time unknown array indexes (or pointer offsets) are
either all the same element of the array or independent elements
(depending on art LCLint flag that maybe set locally).

LCLint may produce messagesfor correct code (e.g., a use-before-
definidon error in a branch that would only be taken if art earlier
branch initialized the variable). The alternative would be not report-
ing many anomalies that are likely errors. Since spurious messages

can be suppressed locally by placing stylized comments around the

code that produces the message, this unsoundness has rarely been a
serious problem in practice.

LCLint may also fail to produce messages for certain kinds of

incorrect code in some contexts, For example, if art alias is not

detected because it would be produced only after the second iteration

of a loop, LCLint will fail to detect an error involving the use of

released storage that is only apparent if the alias is detected. It is
harder to estimate the costs of undetected errors, since there is no

way of knowing how many undetected errors remain.

Since our goal is to detect as many real bugs as possible efficiently

and with no programmer interaction, we are willing to accept art
analysis that is neither sound nor complete. Instead of using worst-
case assumptions, LCLint uses approximations that follow from

likely-case assumptions. Clearly, this would be unacceptable in
a compiler optimizer or a theorem prover. However, for a static

checking tool it allows many more ambitious checks to be done

and more errors to be detected with only the occasionally annoying

spurious message.

3 Storage Model

This section describes execution-time concepts for describing the

state of storage. Some of these concepts correspond to analysis
properties used by LCLint. Certain uses of storage are likely to
indicate program bugs, and are reported as anomalies.

LCL assumes a CLU-like object storage model. 1 An object is a
typed region of storage, Some objects use a fixed amount of storage

that is allocated and deallocated automatically by the compiler.

Other objects use dynamic storage that must be managed by the

program.

Storage is undejined if it has not been assigned a value, and defined
after it has been assigned a value. An object is completely de$ined

if all storage that may be reached from it is defined. What storage

is reachable from an object depends on the type and vrdue of the

object. For example, if p is a pointer to a structure, p is completely
defined if the vahte of p is NULL, or if every field of the structure p

points to is completely defined.

When an expression is used as the left side of an assignment ex-
pression we say it is used as an lvalue. Its location in memory is

used, but not its value. Undefined storage may be used as art lvalue

since only its location is needed. When storage is used in arty other

way, such as on the right side of art assignment, as an operand to a
primitive operator (including the indirection operator, ‘)? or as a

function parameter, we say it is used as an rvalue. It is an anomaly

to use undefined storage as art rvalue.

A pointer is a typed memory address. A pointer is either live or
dead. A live pointer is either NULL or art address within allocated

storage. A pointer that points to an object is an object pointer. A
pointer that points inside an object (e.g., to the third element of
an allocated block) is an oflset pointer. A pointer that points to
allocated storage that is not defined is an allocated pointer. The

result of dereferencing an allocated pointer is undefined storage.
Hence, it is art anomaly to use it as an rvalue. A dead (or “dangling”)

pointer does not point to allocated storage. A pointer becomes dead
if the storage it points to is deallocated (e.g., the pointer is passed to

the free library function.) It is an anomaly to use a dead pointer
as art rvalue.

There is a special object null corresponding to the NULL pointer in
a C program. A pointer that may have the value NULL is a possibly-

%is is similar to theLISP storagenwdel, exceptfiat OWCB~ tY@.
‘Excepts i zeo f, which dees not need tie vatue of its argument.

45

null pointer. It is an anomaly to use a possibly-null pointer where

a non-null pointer is expected (e.g., certain function arguments or
the indirection operator).

To allow descriptions of memory constraints, we view each object

as having an associatedowners set. The owners set indicates which
external references may legitimately refer to an object. A reference
is a variable or a location derived from a variable (e.g., a field of

a structure). Different references may share the same storage. For
example, if s and t are char pointers, and s is assigned to t,

then the references *s and *t are different ways of referring to
the same storage. The owners set for the storage *s includes both

*s and *t. In a function implementation, an external reference is
any reference that is visible in the environment of the caller (i.e., a
reference to any storage that can be reached from the parameters,
global variables, or return value).

The size of the owners set is less than or equal to the traditional
reference count since it includes only external references and refer-
ences that it is valid to dereference (constraints on memory usage
may make it invalid to dereference some references, such as those

that have been deallocated). It is an anomaly if the owners set for
an explicitly allocated object is empty, since this means there are no
valid references and the storage associated with the object cannot

be released.

Failures to free storage are relevant only when memory is explicitly

deallocated by the programmer, and could he avoided by using a

garbage collector [1]. If LCLint is used to check programs designed
for use with a garbage collector, flags can be used to adjust checking

so only those errors relevant in a garbage-collected environment are

reported.

4 Annotations

Annotations provide a convenient way of expressing interface as-

sumptions. Although many of the same assumptions are expressible

in LCL function specifications, annotations are easier to write and

have the important advantage that they can be used to determine

appropriate static checking in a straightforward way. We can use

annotations in LCL specifications, or directly in the source code as

syntactic comments (/* @[annotation]@ */). For example, nul I in

an LCL specification or / *@nul I@* / in a C source file may be used
in a variable declaration to indicate the variable is a possibly-null

pointer (i.e., it may have the vrdue NULL).

Annotations may be used in a type declaration to constrain all in-
stances of a type, in function parameter or return value declarations

to constrain the use and vahre of parameters and results, and in
global and static variable declarations to constrain the value and

use of the variable.

Annotations are syntactically similar to C type qualifiers. More

than one annotation may be used with a given declaration, although
certain combinations of annotations are incompatible and will pro-

duce static errors. An annotation applies only to the outer level
of a declaration (e.g., nul 1 char **name means that the char
* * re ferenc~ by name is a possibly-null pointer, but the ch= *

referenced by *name is unqualified,) A type definition can be used

to apply annotations to non-outer level declarations..

The idea of keeping additional state information on variables is
similar to that used by the NIL compiler. The NIL compiler [8]
extends type checking to also check typestates. Each type has a
set of typestates defined by the programming language that can be

determined by the compiler at any point in the code. An object
can be in only one typestate at a given point in the code, but may
change typestates during execution. A subset of all operations
of a type are permitted on an object in a particular typestate and

1

2

3

4

5

6

extern char *gnarae;

void setName (/ *@null@*/ char *pnarae)

{
gnarae = pnarae;

}

Figure 2: sample. c with nul 1 annotation.

operations may be declared to change the typestate of an object.
The NIL compiler detects execution sequences that violate typestate

constraints at compile time. Some of the memory annotations used
by LCLint could be emulated using typestates.

Annotations used by LCLint are simple since our main focus is

detecting errors at interface points. ADDS [6] presents an approach
for dealing with recursive data structures by constraining possible

aliasing relationships within datatypes. Better checking of internal

aliasing would improve LCLint checking, but since our focus here
is on detecting errors at interface boundaries, the annotations we

use are sufficient to detect a wide range of errors.

The remainder of this section describes some of the annotations

and associated checking done by LCLint. A complete list of the

annotations related to memory checking is found in Appendix B.

Null Pointers

A common cause of program failures is when a null pointer is deref-

erenced. LCLint detects these errors by distinguishing possibly-null
pointers at interface boundaries, and checking that a possibly-null
pointer is not dereferenced or used where a non-null pointer is

required.

In Figure 2, the null annotation is used to indicate that a possibly-

null pointer may he passed as the parameter pnarne. LCLint will

report an error if there is a path leading to a dereference of the
pointer along which there is no check to ensure the pointer is not

null. Code can check that a possibly-null pointer is not null by

USing a Simple COS31pMkOn(e.g., x ! = NULL) or a function call. To
indicate that a function returns true when its argument is null the

truenull annotation is used on the return valu% f alsenul I is
used to indicate that a function returns true only if the argument is
not null.

Running LCLint on the version of sample. c in Figure 2 produces

the message3:

sample.c6: Function returns with non-null global gname
referencing null storaga

sample.c:5: Storage gname may become null

The error is reported at the exit point. It would not be an anomaly

to assign gname to NULL in the body of setName, as long asit is re-
assigned to a non-null value before the function returns or smother
function using the global gname is called.

The error can be fixed by removing the null annotation on the
parameter (which would produce messages elsewhere if setNarne
is called with a possibly null value) or adding a nul 1 annotation to
the de&ration of gname (which would produce messages if gname
is dereferenced without first checking it is not null). Another fix

is shown in Figure 3. Here, a truenul I function is called to test

3LCLint messagesoften include extra information describing the nnonrsly.detected.
In this message, the first pnrt explains the anomaly md where it is detected (line 6).
The indented pat shows where the value may become null (line 5),

46

extern char *gname;
extern /*@truenull@*/

isNull (/*@null@*/ char *x) ;

void setName (/*@null@*/ char *pname)
{

if (!isNull (pname)) { gname = pname; }

}

Figure3: Fixing sample.c bycallinga truenull function.

whether pname is null, and the assignment is only done for non-null

values,

A variable of a pointer type with no annotation is interpreted as non-

null, unless the type wasdeclared using null. Inthesecases, the

type’s null annotation may be overridden for specific declarations
of the type using the notnull annotation. This is particularly

useful for parameters to hidden (static) operations of abstract
types where the null test has already been done before the function
is called, and for return values that are never null.

Anadditionalannotation, relnullmaybeused torelaxnullchock-
ing. Arelnull pointer isassumed to benon-null when itis used,
but no error is reported if a possibly null value is assigned to it.
This is generally used for structure fields that mayor may not be
null depending onsome other constraint. Itisupto the program-
merto ensure that this constraint is satisfied before the pointer is
dereferenced.

Definition

There is an implicit constraint that all function parameters and global
vrtriables used by afunction arecompletely defined before a call,

and that theretum vahseis completely defined after the call. For
example, LCLint will report anerror ifapointer acturd parameter
is allocated but the storage it points to is not defined, or if a field in

a structure pointed to by the return value is not defined. Function
implementations are checked assuming all parameters and globat

variables are completely defined at entry to the function.

Occasionally, it is desirable to have parameters or return values that
reference undefined or partially definrxt storage. For example, a

pointer may be passed as an argument that is intended as an address

to store a result, or a memory allocator may return allocated but

undefined storage. The out qualifier cart be used to denote storage
that may be not be completely defined,

An actual parameter that corresponds to a formal parameter with an

out annotation must be defined but need not be completely defined.
That is, the actual parameter is used as an rvalue so it must be

defined, but storage reachable from the actual parameter need not
be defined. LCLint does not report an error when allocated storage
is passed as an out parameter. After the call, storage that was

passed as an out parameter is assumed to be completely defined.

Within the implementation of a function, LCLint will assume that

an out formal parameter is allocated but that storage reachable from

the parameter is undefined. Hence, an error is reported if storage
derived from it is used as an rvalue before it is defined. An error is
reported if the implementation does not define all storage reachable

from an out parameter before returning.

An analogous annotation, undef, may be used on a global variable
in the globals list for a function to indicate that the global variable
may be undefined when the function is called.

The part ial qualifier can be used to relax checking of structure
fields. A structure qualified with partial may have undefintxl

fields. LCLint reports no errors when these fields are used. Similar

to reh-ml I, the reldef qualifier is provided to relax definition

checking, and is sometimes useful in field declarations.

Allocation

There are two kinds of deallocation errors with which we are con-

cerned: deallocating storage when there are other live references to
the same storage, or failing to deallocate storage before the last ref-

erence to it is lost. To handle these deallocation errors, we introduce
a concept of an obligation to release storage. Every time storage is

allocated, it creates an obligation to release the storage. This obli-
gation is attached to the reference to which the storage is assigned.

Before the scope of the reference is exited or it is assigned to a new

value, the storage to which it points must be released. Annotations
can he used to indicate that this obligation is transferred through
a return vahre, function parameter or assignment to an external
reference.

The only annotation is used to indicate that a reference is the only

pointer to the objeet it points to. We can view the reference as having

an obligation to release this storage. This obligation is satisfied by
transferring it to some other reference in one of three ways:

1. pass it as an actual parameter corresponding to a formal pa-

rameter declared with an only annotation

2. assign it to an external reference declared with an onl y an-

notation

3. return it as a result declared with an only annotation

After the release obligation is transferred, the original reference is

a dead pointer and the storage it points to may not be used.

All obligations to release storage stem from allocation routines
(e.g., malloc), and are ultimately satisfied by calls to dealloeators
(e.g., free). The standard library provides some allocation and
deallocation routines, The basic allocator, mal 10C, is specified as,

null out only void *malloc (size_t size) ;

It returns a possibly-null pointer (it returns NULL when the requested

memory cannot be allocated) that is not completely defined and is

not referenced by any reference other than the function return value.

The deallocator, free, is specified as

void free (null out only void *ptr) ;

The argument to free is a possibly-null,4 not necessarily com-
pletely defined, pointer to unshared storage. Since the parameter is

deelared using only, the caller may not use the referenced object
after the call, and may not pass in a reference to a shared objcet.
There is nothing special about malloc and free — their behavior
can be described entirely in terms of the provided annotations.s

Other annotations can be used to express different assumptions
about memory management. The temp annotation is used on a

formal parameter to indicate that the called function may not deal-
locate the storage the parameter refers to or create new external
references to this storage. At a call site where a reference is passed

as a temp parameter, the aliases to the storage it references are the
same before and after the call.

4’Ilre ANSI Standard allows a null pninter to be passed to free. Many older
C implermntat.ions do not suppnrtthis, so it may be desirable to use an akemative
specificationwith no nul 1 annotation.

‘To check that rdlecated objects are completely destroyed (e.g., aSlunshared objects
inside a s@nctureare deallocated heforz the structure is deallocated), LCLint checks
thatanyparameterpassedasanout only void * dries not cnntain references
to Sive,unshared objects. This makes sense,since such a parameter could not be used
sensibly in any way other than deallocating its storage.

47

1

2

3
4
5
6

extern /*@onlYt?*/ char *gname;

void setName (/*@temp@*/ char *pname)

{
gname = pname;

}

Figure4 sample .cwithonly sndtemp annotations,

Figure 4 shows sample. c with inconsistent only and temp anno-
tations. LCLhttp rodttcest womessages:

sample.c:5: Only storage gname not released befora assignment
gnama. pname

sample.c:l: Storage gname becomes only
sample.c:5. Temp storage pname assigned to only gname = pname

sample.c:3 Storage pname becomes temp

The first message reports a memory leak. Because gname is de-
clared using the only annotation, gname is the only reference to an

object and after the assignment the storage used by thk object can
never be reclaimed.

The second error warns of an anomaly that could lead to problems,
The only reference gname now references shared storage. If the
caller deallocates the actual parameter, gname will become a dead
pointer.

One way to fix the problem would be to assign to gname a copy of
the object pointed to by pname. Another fix would be to change the

declaration of pname from tenrp to only. This would lead to other

messages reporting places where setName is called with an actttrd

parameter that is not an unshared reference or where the value of

the actual parameter is used after the cdl to setName.

In real programs it is sometimes necessary to use weaker assump-

tions about memory use. The owned annotation denotes a refer-

ence with an obligation to release storage. Unlike only, however,
other external references (marked with dependent annotations)
may share this object. It is up to the programmer to ensure that the

lifetime of a dependent reference is contained within the lifetime
of the corresponding owned reference.

Additional annotations provided for handling reference counted

storage, tmfreeable shared storage, and exposure for internrd refer-
ences are described in [3].

Aliasing

Program errors often result when there is unexpected sliasing be-

tween parameters, return values, and global variables. Since alias-

ing problems sometimes lead to deallocation errors, the annotations
provided for detecting allocation anomalies also detect many of

the common aliasing anomalies. llvo additional annotations are
provided to improve alias analysis and to detect other problems
involving aliases.

The returned qualifier cart be used in a formal parameter decla-
ration to indicate that the return value may alias this parameter. It
may be used in conjunction with the allocation qualifiers, and is

commonly used with t emp to indicate that no new aliases for the

parameter will be created except for the return value.

The unique qualifier is similar to on~y except it does not transfer
the obligation to release storage and does not prevent aliasing that
is invisible to the called function.

I typedef /*@nullG*/ struct _list

2{

3 /*@only@* / char *this;
4 /*@null C3*//*Cionly@*f struck _list *next;

5} *list;

6
7 extern /*@out2@* / / *@only@* / void *

8 smalloc (size_t) ;

9
It)void

II list_addh (/*@tempo?*/ list 1,

12

13 {

14

15

16

17

18

19

20

21
22
23
24

25 }

/*~only@* / char ‘e)

if (1 != NULL)

{
while (l->next

{
1 = l->next;

)

!. ~LL)

l->next = (list)
smalloc (sizeof (*1-> next)) ;

l->next->this = e;

}

Figure 5: Buggy 1 is t .addh implementation.

5 Analysis

The annotations and type definitions determine the initial dataflow
vaiues of variables and constrain the acceptable vahtes ,for parame-

ters, global variables, and function results at interface points. Three
values are associated with each reference: the definition state (de-

fined, partially defined, allocated, etc.), the null state (definitely

null, possibly null, not null, etc.), and the “allocation” state (cor-
responding to the allocation annotation, e.g., only, t emp). These
vahres may change when assignments or function calls occur in the

program. An anomaly is reported if values are inconsistent at an

interface point,

Figure 5 shows abuggy program to add anode at the end of a linked

list. There are two problems: the case where the parameter I. is
null is not handled correctly and the next field of the new node

rdlocated on line 21 is never defined. Figure 6 shows the control
flow graph that corresponds to 1 is taddh. The circled numbers

are used to refer to execution points.

Point 1 is the function entry point. Here, the dataflow values are

set according to the annotations and type definitions. For parameter
1, the type definition for 1 is t has a nul 1 artnotation so its null

state is POSS ibly-nul 1. It has no definition annotation, so it
is complet el y-de fined. Because of the temp annotation, its
allocation state is temp. Similarly, the parameter e is characterized

as completely-defined, not-null, and only.

Since the function parameter may be assigned to a new vahte in the

function implementation, we need a way of distinguishing a refer-
ence that corresponds to the actual parameter from the parameter

inside the function body. We introduce a local variable 1 to repre-
sent the parameter in the function body. In this discussion, we use
1 to refer to the local variable and argl to refer to the externally
visible parameter. At the function entrance, 1 aliases argl.

At point 2, the null state of 1 is not null. Because of the i f statement
in line 14, we know at compile-time that 1 is non-null if point 2 is

48

18:

?

Function Entrance 1

14: if (1 != NULL)

~ykf

1 = l->next

/’-v6

7

21: l->next = smalloc (...)

?

8

/

%

23: l->next->this = e

9

10

bFunctionExit 11

Figure6: Controlflow graphforlist-addh.

reached. Conversely, atpoint3 weknowthatl is null.

The while loop is treated identically to an if statement — there is

no back edge torepresent normal loop execution. This means the
analysis can be done efficiently without any need to do iteration.
Tbkresults in a less accurate approximation fortbe acturd pro-

gram execution than would be achieved using an iterative dataflow

analysis, but it is good enough for the kinds of analyses we do here.

‘f% ebodyofth ewhileloo passignsl-mext tel. Atpoint 6,1

mayalitts argl-~next. Atpoint 7,the branches merge. Theonly
difference is that on the true branch I aliases argl-mext and on
tbefalse brrmchl aliases argl. Tbepossible aliases atconfluence
points istheunion of thepossible aliases oneach branch. So, at

point 7,1mayalias arglorargl->next. Unreality, lmayalias
argl->next’ for any i >= O (i.e., the loop may he executed any

number of times). Since LCLint does not model executions over

the loop back edge, the only aliases of 1 that are detected are argl
and argl -Fnext,

At line 21, the result of a call to smal 10C is assigned to 1 -mext.
The return value of smalloc is annotated out and only, so after

the assignment (point 8) 1 -mext is characterized as allocated,
non-nul 1, and only. Since 1 -=-next may alias argl - >next (and

argl-mext-mext), the state of argl->next is also allocated,
non-null, and only.

The change in definition state propagates to its base reference, I
(and argl, because of aliasing). Before the assignment, 1 was
completely defined, Now, we have assigned storage derivable from

1 to a vahte that is incompletely defined, so I is now characterized

as Dartially-def ined.

Line 23 assigns e to l->next ->this. Before the assignment, e
is defined, not-null, and only. ‘f’be assignment transfers the

obligation to release storage, since the thLs field of the 1 is t type

is annotated with only. So, the allocation state of e becomes kept.

This means its obligation to release storage has been satisfied, but it
can still be safely used. (If it had been passed as an only parameter

instead, its definition state would become dead to indicate that is

may not be used.) Since e aliases arg2, the allocation state of arg2

is also set to kept, and the obligation to released storage implied

by the only annotation on the parameter e has been satisfied on

this path. After the assignment in line 23, I ->next ->this is
de f i.ned. As before, this definition propagates to its base storage,

and 1 ->next and 1 (which is already partially-defined) are

marked partially-clef ined.

At point 10, the two branches merge. On the true branch, the
allocation state of e is kept. On the fake branch, it is only, This
is a confluence error since there is no sensible way to combine the

allocation states — one means the storage must be released, and
the other means it must not be released. LCLint reports this as a
program anomaly. To prevent further errors, the allocation state of

e is set to a special error marker.

Also at point 10, we need to merge the dataflow values associ-

ated with I and arql. On the true branch from point 9, I and
l->next arepartially-def ined, l-znext-zthis is def ined,

and 1 -mext->next is undefined. On the false branch, 1 is
completely defined. Definition states are combined using the
weakest assumption. Hence, at point 10, 1 and 1 -mext are

part ially-def ined, ~d 1 ->next -mext is undefined. Tire

definition states for argl and its derived storage are handled simi-
larly.

Point 11 is the function exit. LCLlnt checks that the function
implementation satisfies the extemrd constraints. One implicit con-

straint is that argl must be completely defined when the call re-

turns. Since the definition state of argl is partially-defined,
LCLint checks that all storage derivable from argl is defined. Since

argl - snext - ~next is uncle f i.ned, LCLint produces an error re-
porting an incomplete definition anomaly.

6 Example

This section demonstrates how annotations can be added to an
existing program, thereby improving its documentation and main-
tainability, and detecting errors in the process. For this example,
we use the toy employee database program (1000 lines of source
code and 300 lines of interface specifications) described in [5]. In
[2], we described how LCLint without dynamic memory checking
was used on the original databaseprogram, Here, we start with the
databaseprogram after correcting the errors described there. (For
information on obtaining the complete code used in this example,
seeAppendix A.)

We start with a program with no annotations. LCLint’s interpre-
tations of declarations with no annotations are chosen to make it
possible to begin finding errors in an existing program without hav-
ing to spend a lot of time adding annotations or being overwhelmed
by messages,The default interpretations can be controlled by flags,
to better suit a particular program.

The interpretation of a declaration with no null pointer or definition
annotation is chosen so that the interpretations when annotations

are missing place the strictest constraints on actual parameters and
return values — they may not be null, and must be completely
defined. LCLint checking will alert the programmer to places where

this is not the case. These maybe errors in the code or places where
a nul I or out annotation should be added.

An unqualified formal parameter is assumed to be temp storage.
This places the weakest constraints on actual arguments, but con-

strains how the parameter may be used in the function implementa-

49

typedef struct _elem {

eref val; struct _elem *next;
} *ercElem;

typedef struct {

ercElem *vals; int size;

] *erc;

,..

16erc erc_create (void) {
17 erc c = (erc) malloc (sizeof (*c));
18

19 i.f (c == NULL) {
20 error (“malloc returned null”) ;

21 exit (EXIT_FAILURE) ;
22)
23

24 C->vals = NULL;

25 C->size = O;

26 return c;
27 }

Figure7: erc.create fromerc.c

tion. Implicitonly annotations canatso beappliedtoretum values,
structure fields andglobal variables. Forthis example, wehave not
used any of the implicit onlyrmnotations, sowewill see how the
checking leads us to make these annotations explicit,

Adding annotations is an iterative process. With each iteration,
LCLint detects some anomaties, annotations are added or discov-

ered bugs are fixed, and LCLint is run again to propagate the new

annotations up the call chain. The rest of this section will show
how different types of checking lead us to add annotations and
mskechsngestothecode. Onlyafewannotationsarenecessaryto

getusefulchecking, todetectafewreal problems inthecode, and

toenhancetheinterface documentation.

Null Pointers

One anomaty involving null pointers is reported for the function
erc.create (shown in Figure 7):

erc.c:26: Null storage c+vals derivable from return value: c
erc.c24 Storage c->vals becomes null

The vak field of c was assigned to NULL on line 24. In this case,
the code is correct and the reported anomaty suggests that a nul 1
annotation is needed on the vals field in the type definition for
erc:

typedef struct {
/*@null@*/ ercElem ‘vals; int size;

} ‘erc;

Running LCLint after this change detects three new anomalies. One
i~ in the macro definition of erc.choose for the parameter c of type
erc:

erc.h:l 4: Arrow access from possibly null pointer c+vals:
(c+vals)->val

Since we have added the nul 1 annotation to the vals field of erc,
c ->va Is may be a null pointer. So, LCLlnt detects an snomaty

when it is dereferenced by the arrow operator. The specification for

erc.choose includes a requires clauseb constraining the size of the

6A rrquires clause in an LCL specification places constminrs on the caller before
dre function is cutled. If the requires clause is not satisfied, tbe behavior of the
implementation is unconstmined. The requires clause is not interpreted by LCLkrt.

collection to be greater than o. From this it follows that the value

of c - >vals is not null. An assertion is added to the code to check
that c-xals is not null.

The other two anomtiles involve similar problems in other func-
tions. While none of these indicate a bug in the code because of the

requires clauses, they do draw our attention to places where there
are dependencies on extemat constraints and the added assertions
may be helpful in debugging clients that do not satisfy the requires

clauses. The checking has directed us to places where adding

assertion cheeks would be good defensive programming practice.
Further, the null annotation on the vals field of the type definition

serves as useful documentation.

Allocation

Next, we look for errors involving deallocation. We are starting with
a program with no allocation annotations, but using a standard li-
brary with annotated versions of malloc and free. For expository

purposes, we run LCLint with a command line flag (-al I imponly)
that turns off the implicit only annotations on return values, global
variables, and structure fields. Hence, LCLint will produce a mes-

sage everywhere newly allocated storage is returned or external

storage is deallocated, (It would be impractical to check a rest

program without using impticit annotations.) Seven anomalies are
detected by LCLint, all resulting from missing only annotations.

TWO messages concern the return statements in erc-create and
erc-sprint. Both functions return a pointer that was the result of

a call to malloc. Since the function result has no only annotation,
the obligation to release this storage is not transferred to the caller

and a memory leak is suspected. Hence, only annotations are

added to the function return value declarations.

Four messages concern assignment of allocated storage to fields of

a static variable (eref _pool in eref. c). These are fixed by adding

only annotations to two fields of the type declaration.

The remaining message concerns the call to free in erc_f inal:

erc.c:49: Implicitly temp storage c passed as only param: free (c)

Since c is an external parameter with no only qualifier, an anomaly
is detected when it is passed to free since it matches a formal

parameter declared with an only annotation. The only annotation
needs to be added to the parameter declaration for erc-f inal.

After the changes, LCLint detects six new anomalies. They result

from the only annotations that were added to erc propagating to
crdIing functions. They are similar to those we have already seen and
can be fixed by adding only annotations to function declarations.

As before, the new annotations propagate up the call chain to pro-
duce more messages. Six memory leaks are detected in the test
driver code where variables referencing allocated storage are as-

signed to new values before the old storage is released. After these
are fixed by adding calls to free, no allocation anomrdies are de-
tected by LCLint. If we had not used the flag to disable the implicit

annotations, these six errors would have been found directly, The
onty annotations that would be needed are the annotations on the
parameters.

Aliasing

one aIiasing anomaly is reported in employee-setName (shown in
Figure 8):

employee.cl 3 Parameter 1 (e+name) to function strcpy is declared
unique but may be aliased externally by parameter 2 (s)

50

4 bool

5employee_setName (employee *e, char *s)
6(
.. (checkssize ofs)

13 strcpy(e->narne, s) ;

14 return TRUE;
15)

Figtrre8: employee.setName fromemployee.c

Thespecificationof strcpyinthe strmdard libraryis:

char *strcpy
(out returned unique char *s1, char *s2);

The uni~e qualifier indicates that SI. must refer to storage that
is not shsredby any other parameter or accessible globaf (in this

case, the parameter s2), This is necessary since the behavior of

strcpyis undefined if the arguments share storage space. Since
theargumentstoemployee.setName arenotqualified,it impossible

that e-xmmeands refer tothe same storage. Weaddaunic~e

qualifier to the parameter declaration for s to document that the
parameter must not reference any external storage reachable from
this function. Since there are no global variables, this means the

parameters e and s must not share any storage. Now, if a client

calls emploYee-setName with dependent parameters, LCLint will
report an anomaly.

Summary

A total of 15 annotations were needed to resolve all deteeted artonla-

lies — one null annotation on a structure field, one out annota-
tion on a parameter (that was detected through complete definition

checking), and 13 only annotations. Of the 13 only annotations,
only 2 would have been necessary if we had set command-line flags
to use implicit annotations. With minimal effort in adding armota-
tions, a few emors in the code were found and the documentation

was improved considerably.

7 Experience

Part of the motivation for this work was my own troubles deal-
ing with memory management in the implementation of LCLilot.

LCLint is over 100000 lines of source code7 and incorporates code

from at least three different authors employing different memory

management styles. The original implementation did not attempt
to deallocate memory completely, and a garbage collector was used
to reclaim storage. Although this was satisfactory as a research

vehicle, it had practical disadvantages and limited the number of

platforms to which LCLint could be easily ported, Several earlier

attempts to fix LCLint’s memory management by myself and oth-

ers had failed. One frustrated person who attempted to port LCLint
wrote

..its implementation with regard to memory manage-
ment is horrible. Memory is allocated willy-nilly with-

out any way to track it or recover it. Malloeed pointers
are passed and assigned in a labyrinth of complex in-
ternal data structures. It becomes impossible to find

‘LCLint does many checks not described in this paper (snd not related to dynamic
memory msnagemcnt). Approximately 7GO0tines of code are dircctty related to the
checks described here.

their true scope, let alone determine when they might
be safely freed. [7]

We used the annotations and associated checking described in this

paper to make substantial improvements to LCLint. Garbage col-

lection was replaced by explicit memory deallocation, producing a

more portable system with improved performance. Numerous bugs

relating to null pointer dereferences, incomplete definition (usually
forgetting to initialize a structure field), and aliasing were detected.

Memory artnotations also enabled certain efficiency improvements
(such as sharing storage Or US@NULL to represent the empty string)

that were considered too risky to attempt without them. Further,
the resulting system is clearly documented with checked memory

annotations. This allows maintenance changes to be made easily,

and their extemrd effects to he detected quickly.

Annotations were added in an iterative process, similar to that de-
scribed in Section 6, Running LCLint on the code with no armo-

tations produced on the order of a thousand messages. Nearly all
of these messages, however, were quickly eliminated by adding an
annotation or making a small change to the code (usually adding a

missing free to fix a storage leak). Often, adding a single annota-
tion on a type declaration or parameter would eliminate dozens of
messages.

Since LCLint was run repeatedly on the code after changing anno-
tations, it was important that the checking was efficient, It takes
less than four minutes (on a DEC 3000/500) to check the entire

program. During the later phases, checking became more modular

as I focused on subtle problems in a single file. By using libraries
to store interface information, a representative 5000 line module is

checked in under 10 seconds.

It took a few days (split over severaf weeks) to add all the annotations
and fix the detected problems. This compares favorably to more than

a week spent previously trying to fix these problems unsuccessfully
using run-time methods. For the most part, adding annotations is

a fairly methodical process, and I hope future work will make it
possible to automate a large portion of it.

In the course of checking, the need for the relaxed checking an-
notations (relnul 1, part ial, and relde f) became apparent.

There were situations where simple annotations were not expressive

enough to describe constraints, so checking needed to be relaxed
to eliminate spurious messages. This eliminates many messages

without much effort, but it also means less checking is done and

more errors may be undetected.

Some of the reported messages were considered spurious. There

were 75 places where stylized comments were used to suppress
messages relating to checks described in this paper. The most

common problem was where different branches of an if statement

used storage inconsistently. Many of these were places where the
code was attempting to reeover from a failed assertion or handling an
error condition (e.g., anew object denoting an error is returned from
a function that does not normally return only storage), so LCLint

was correct in reporting an anomaly but it was not considered a bug
that needed to be fixed. The remaining spurious messages resulted

from places where either LCLint’s alias analysis is not good enough

to handle the code correetly, LCLint’s execution flow analysis is not
good enough to determine that a particular path through the code
will never be taken, or where the code violates constraints imposed

by the annotations in a way that I believed to be safe because of
external constraints. The dangers of suppressing messages became
clear when testing revealed that one of these suppressed messages
indicated a real bug.

After checking was complete, I tested the program with explicit
deallocation. As expected, not all memory management bugs had
been detected statically. There were a few errors involving incor-

51

rectly freeing storage resulting from pointer arithmetic, two errors
resulting from freeing static storage, * two errors resulting from

missing annotations in the standard library specification, and one
emor involving a complex dependency on a global variable. Then,
run-time tools were used to look for remaining memory leaks. Sev-

eral were detected, relating to storage reachable from global and

static variables that was not deallocated. Since LCLint does not do
interprocedural program flow analysis, it cannot detect failures to
free global storage before execution terminates,g

8 Conclusion

In this paper, we have seen how annotations can be added to make
assumptions about memory management explicit at interface points.

The annotations improve program documentation, and can be used

by a static checker to detect anomalies that typically indicate bugs
or incorrect annotations. We were able to use thk approach to
fix memory relocation problems in a large program where ad hoc

and run-time checking methods had failed. Annotations and static
checking made it possible to fix memory management problems in
a systematic, goal-directed manner. The memory annotations were

a great help in maintaining and developing code. It is easy to see

the effect of a change in memory sharing by changing an annotation

and running LCLint.

Static checking cannot detect all errors, and certainly does not
eliminate the need for run-time checking and extensive testing.
However, a combination of static checking using annotations and

run-time checking and testing can help produce reliable code with
less effort than traditional methods.

We do not yet have experience using this approach as a new program

is developed. I suspect adding annotations while a new program is

being developed would not pose a major overhead. Programmers

should consider their assumptions about external constraints, and

the annotations provide a convenient and precise way of document-
ing some of these assumptions.

Acknowledgements

I thank John Guttag for help with this research and writing this
paper, Thomas Reps from the program committee for constructive

comments well beyond the call of duty, Raymie Stata for reviewing

a draft of this paper, and Sheryl Risacher for help with the abstract.

References

[1]

[2]

[3]

[4]

Hans-J. Boehm and Mark Weiser. Garbage collection in an

uncooperative environment. Software Practice and Experi-

ence, September 1988.

David Evans. Using Specifications to Check Source Code,
MIT/LCS/TR-628, MIT Laboratory for Computer Science,

June 1994.

David Evans. LCLint User’s Guide, Version 2.0. February
1996. (http:/flarch-w.lcs. mit.edu:8OOlllarcMclinffguide/)

David Evans, John Guttag, Jim Horning and Yang Meng
TarL LCLint: A tool for using specifications to check code.
SIGSOIT Symposium on the Foundations of Software En-
gineering, December 1994.

8LCLint hassincebeenimprovedto detectIi’eeingoffsetpointersandststicstnrage,
‘If the programk nm in an environmentwhereall memory is reclaimed when

execntion exits, this is not a serions prnblem.

[5] J.V. Guttag and J.J. Homing with S.J. Garland, K.D. Jones,

A. Modet, and J.M. Wing. Larch: Languages and Tools for
Formal Specijlcation, Springer-Verlag, 1993.

[6] Laurie Hendren and Joseph Hummel. Abstractions for recur-
sive pointer data structures: improving the analysis and trans-
formation of imperative programs. SIGPLAN Conference on

Programming Language Design and Implementation, 1992.

[7] Posting in comp. os. linux, August 1994.

[8] Robert Strom and Nagui Halim. A new progrdng
methodology for long-lived software systems. IBM-RC

9979, IBM T. J. Watson Research Center, March 1983.

[9] Yang Meng Tan. Formal Speci@cation Techniques for Pro-

moting Software Modulan’~, Enhancing Sojlware Documen-
tation, and Testing Speci$cations, MIT/LCS/TR-619, MIT

Laboratory for Computer Science, June 1994.

[10] Gray Watson, Debug Malloc Library, November 1994.
(ftp://ftp.lelters.conVsrc/dmalloc/docs/dmalloc.ps)

[11] Benjamin Zom and Paul Hilfinger. A memory allocation

profiler for C and Lisp programs.

(ftpi/gatekeeper.dec.com:/pbu/misc/mprof-3.O.tar.Z)

A Availability

The web home page for LCLint is
http://larch-www.lcs. mit.edu:8OOl/larcMclint/index.html

LCLint can be downloaded from
http:/llarch-wmv.lcs, mit,edu:8001 /larcMclint/download .html

or obtained via anonymous ftp from

ftp:/ilarch.lcs. mit,edu/pub/LarcMclinff

Several UNIX platforms are supported and source code is available.

LCLint can also be run remotely using a form at

http://larch-www.lcs. mit.edu:8OOl/larcMclint/run.html

The example described in Section 6 is found at
http:/flarch-www.lcs. mit.edu:8OOl/larcMclint/samplea/db/

To receive announcements of new releases, send a (human-readable)

message to lclint-request@ larch.lcs.mit.edu.

B Memory Management Annotations

All annotations may be used in either an LCL specification or in a C

source or header file preceded by / *@. Unless excluded explicitly,
annotations can be applied to a type definition, variable declara-

tion, parameter declaration, or function return value. At most oue

annotation in any category can be used on a given declaration.

Null Pointers

nu 11 May have the value NULL.

notnul 1 Not permitted to have the value NULL. This is implied if
there is no annotation, but maybe necessary for some decla-
rations to override nul 1 in a type definition.

re lnul I Relax null checking. Value assumed to be non-rwrLL
when it is used, but maybe assigned to NULL.

52

Definition

out Referenced storage need not be defined. Forpararneters, this
means passed memory must be allocated but not necessarily
defined. For return values, it means the result is allocated but
not necessarily defined.

in Referenced storage is completely defined, (Normally, this is
assumed if no other definition annotation is used. Flags can
be used to allow the out annotation to be assumed for unan-
notated parameters where it would prevent a message.)

part ia I. Referenced storage is partially defined. No errors are
reported when incompletely defined storage is transferred asa
part ial, and no error is reported when storage derived from
a partial is Used.

relde f Relax definition checking, Value assumed to be defined
when it is used, but need not be assigned to defined storage.

Allocation

only Refers to unshared storage; confers obligation to release this
storage or transfer the obligation.

keep Like only, except that the caller may safely use the reference
after the call. (Function parameters only.)

temp Temporary storage. Function may not deallocate or add new
external references to storage. (Function parameters only,)

owned Refers to storage that may be shared by dependent refer-
ences. This reference is responsible for releasing the storage.

dependent Refers to storage that may be shared by an owned
reference. This reference may not release the storage.

shared Refers to arbitrarily shared storage; may not be deallo-
cated. (For use with garbage collectors.)

Parameter Aliasing

unique May not share storage with any other fimction parameter
or accessible global. (Function parameters only,)

Returned References

returned A reference to the parameter may be returned. (Func-
tion parameters only.)

Exposure

observer Returned storage must not be modified (this disallows
deallocation rdso) by caller. (Return values only.)

exposed Mutable returned storage from internal abstract type or
passedmutable storage assigned to field of abstract type. May
be modified but not deallocated. (Return values and function
parameters only.)

53

