
extended papers

40  acm Inroads  2010 March • Vol. 1 • No. 1

Model checking is a widely used formal method for the verifi cation of concurrent programs. 
This article starts with an introduction to the concepts of model checking, followed by a 

description of Spin, one of the foremost model checkers. Software tools for teaching concurrency and 
nondeterminism using model checking are described: Erigone, a model checker for teaching; jSpin, a 
development environment; VN, a visualization of nondeterminism.

INTRODUCTION
The June 2009 issue of inroads contained a special 
section on Formal Methods in Education and Train-
ing. Several of the papers described the central place 

of model checking for verifi cation of programs, primarily concurrent 
and distributed programs [14,17]. Model checking verifi es a pro-
gram by using software to analyze its state space, as opposed to 
the mathematical deductive methods proposed by the pioneers of 
verifi cation like C.A.R. Hoare. Edmund Clarke, Allen Emerson 
and Joseph Sifakis received the 2008 Turing Award for their inven-
tion of model checking. Software systems for model checking have 
become a cornerstone of both hardware and software development, 
especially in high integrity systems.

 I believe that model checking is appropriate as a vehicle to teach 
formal methods to introductory students: real model checkers are 
easy to use and, initially, little mathematical maturity is required. This 
article starts with an introduction to the concepts of model checking, 
followed by a description of Spin, one of the foremost model check-
ers. Then, I present software tools that I have developed for teaching 
concurrency and nondeterminism using model checking.

A BIT OF LOGIC
Suppose that you want to know if ~p->(p->q) is a 
valid formula of the propositional calculus. You could 
do what every mathematician does for a living: prove it 

using a deductive system consisting of axioms assumed to be valid 
and rules of inference that preserve validity. The same can be done 
for computer programs: Deductive systems pioneered by C.A.R. 
Hoare [8] can be used to prove that a program is correct, mean-
ing that the execution of the program gives an output that satisfi es 
a correctness property expressed as a formula in logic. Deductive 
systems were extended to concurrent computation by Amir Pnueli 
and Zohar Manna [12,13]. To express time-dependent correct-
ness properties like “the program never deadlocks” or “an interrupt 
is eventually handled,” their deductive system uses temporal logic, 
which is able to elegantly express concepts like “never” and “eventu-
ally.” Amir Pnueli received the 1996 Turing Award for his work on 
temporal logic. Sadly, he passed away in November 2009.

Constructing a proof requires mathematical insight and tenac-
ity, but not everyone is blessed with these talents, nor with the 
time needed to construct such proofs. Is there another way? Con-

1 2

Mordechai (Moti) Ben-Ari

A Primer 
   on Model 
 Checking



extended papers

2010 March • Vol. 1 • No. 1  acm Inroads  41

sider again the formula A = ~p->(p->q) and the claim that it is 
valid, meaning: the formula is true whatever values are given to the 
atomic propositions p and q. But any atomic proposition is either 
true or false, so there are only four interpretations to check: p=true
and q=true, p=true and q=false, p=false and q=true, p=false
and q=false. In fact, A is true in each of these interpretations; 
therefore, the formula A is valid.

Mathematicians tend to reject proofs by exhaustive checking of 
all cases as being less satisfying than deductive proofs, and with good 
reason. First, they are not applicable for proving theorems about 
integers and real numbers, which are infi nite domains so that the 
number of interpretations is infi nite and they cannot be exhaustively 
checked. Second, they offer no insight into why a theorem is true. 
But we computer scientists have more practical concerns. If we can 
check all computations of a program and show that they all satisfy 
a correctness property, we will be willing to forego elegance and be 
more than satisfi ed that our program has been proved correct.

MODEL CHECKING
The problem with concurrent programs is that the 
number of possible computations is astronomical, so 
it seems that exhaustive checking is impractical as a 

method of gaining confi dence in the correctness of the program. In 
the 1980s, Clarke, Emerson and Sifakis showed that it can be fea-
sible to check all possible computations of a concurrent program. 
Their key insight was to note that both a concurrent program and 
its correctness property can be transformed into nondeterministic fi -
nite automata (NDFA) and “run” simultaneously. Given the NDFA 
corresponding to the program and the NDFA corresponding to the 
negation of the correctness property (expressed in temporal logic), 
a model checker searches for an “input string” accepted by both au-
tomata. If it fi nds one, the input represents a computation of the 
program that falsifi es the correctness claim; therefore, the program 
is not correct and the computation can be reported as a counterex-
ample to the correctness claim.

Let me demonstrate these concepts with a trivial concurrent pro-
gram that models changing the value of a memory cell, where the 
arithmetic is done in a register. The two processes could be an appli-
cations program together with an interrupt routine. When an inter-
rupt occurs, the contents of the registers are saved and then restored 
when the interrupt routine is exited; the effect is that the application 
program and the interrupt routine have separate sets of registers.

integer n = 0;

process P

 integer regP = 0;

p1: load n into regP

p2: increment regP

p3: store regP into n

p4: end

process Q

 integer regQ = 0;

q1: load n into regQ

q2: increment regQ

q3: store regQ into n

q4: end

A state of this program has fi ve components: the instruction 
pointers (IP) of the two processes and the values of the three vari-
ables (the two local registers and the global variable n). One pos-
sible state is (IP(P)=p3, IP(Q)=q1, regP=1, regQ=0, n=0); since all 
states have the same components, it will be convenient to abbrevi-
ate them using positional instead of named notation: (p3, q1, 1, 0, 
0). The initial state is (p1, q1, 0, 0, 0) and there are two transitions 
from this state, one obtained by executing the instruction at p1 
and one obtained by executing the instruction at q1. The number 
of possible states is fi nite: there are four values for each of the two 
IPs, and at most three values (0,1,2) for each of the three variables, 
in total, 4x4x3x3x3=432 states. Furthermore, there are at most two 
outgoing transitions from each state. It is tedious, but easy, to con-
struct the NDFA that corresponds to the possible computations. 
One possible computation is:

(p1,q1,0,0,0) → (p2,q1,0,0,0) →
(p3,q1,1,0,0) → (p4,q1,1,0,1) →
(p4,q2,1,1,1) → (p4,q3,1,2,1) →
(p4,q4,1,2,2).

The last state is a fi nal state of the automaton, since there are no 
transitions from either p4 or q4.

Let us now try to prove the correctness claim that “when the 
program terminates, the value of n is 2” or, more formally:
 terminates -> (n = 2).
Its negation is

terminates && !(n = 2),
which can also be expressed as

terminates && (n != 2).

This can be translated into a trivial automaton with one state 
containing this formula and one transition that loops back to the 
state. By checking the entire state space, it is easy to see that there 
is a computation that is simultaneously accepted by the NDFA for 
the program (that is, the program terminates) and by the NDFA 
for the negation of the correctness claim:

(p1,q1,0,0,0) → (p2,q1,0,0,0) →
(p2,q2,1,0,0) → (p3,q2,1,0,0) →
(p3,q3,1,1,0) → (p4,q3,1,1,1) →
(p4,q4,1,1,1).

Not only have we proved that the correctness claim can be falsifi ed, 
but we have also found a counterexample, that is, a specifi c computation 
where the claim is false. We can use this counterexample to fi nd the 
bug, which can be either in the program or in the correctness claim.

 If a correctness claim is true, checking the state space will not
fi nd a computation that is both a legal execution of the program 
and also satisfi es the negation of the correctness claim. Note the 
double negation: a program is correct if there is no computation 
negating correctness. This can be somewhat confusing at fi rst, but 
you quickly get used to it.

3



extended papers

A Primer on Model Checking
continued

42  acm Inroads  2010 March • Vol. 1 • No. 1

MODEL CHECKING ALGORITHMS
The theoretical insight of Clarke, Emerson and Sifakis 
was followed up by research on algorithms and imple-
mentation techniques for dealing with the astronomical 

number of states that can be part of a computation. Fortunately, real 
computations cannot have an infi nite number of (distinct) states, for 
the simple reason that the number of bits in a computer’s memory 
is fi nite. A variable of type int can have at most 232 values unlike a 
mathematical integer which can have an infi nite number of values. 
Still, in a program that uses 1 megabyte of memory where each byte 
has 28 possible values, memory alone accounts for 28 x 220 different 
possible states of the computation, and this has to be multiplied by 
the number of transitions in the NDFA for each process and by the 
number of transitions in the NDFA for the correctness property.

We are saved by the fact that not all states are reachable. Con-
sider, again, the above example, where we calculated that there are 
432 possible states. But, all three variables must have the value zero 
whenever process P is at p1 and process Q is at q1. In other words, 
the only reachable state of the form (p1,q1,...,...,...) is (p1,q1,0,0,0); 
the other 26 states of the form (p1,q1,...,...,...) are not reachable 
and need not be consider when constructing the state space.

We can reduce the number of reachable states that need be 
explored and the resources required to check them by generating 

them on-the-fl y. The reachable states can be constructed by start-
ing with the initial state and generating the states that are reached 
by following each of the outgoing transitions. Synchronously, new 
states of the NDFA representing the correctness claim are gen-
erated. Whenever these new states are generated, the correctness 
property is checked: if the property is false, the model checker re-
ports an error; if not, generation of new states continues.

The state space is structured as a directed graph, so construct-
ing and exploring the state space is done by a breadth-fi rst or 
depth-fi rst search of the directed graph. (The state space for the 
example is shown in Figure 1.) In practice, depth-fi rst search is 
preferred because requires relatively little memory: a stack that 
records the states visited and the number of the last transition 
taken in each state. The use of a stack means that reporting a 
counterexample is trivial: it is simply the list of states and transi-
tions that appear on the stack. Fortunately (well, actually, unfor-
tunately), we tend to write more programs with bugs than we do 
correct programs, in which case the entire space of reachable states 
need not be generated. We need only generate states until an er-
ror is encountered and this often happens sooner rather than later.

Consider the example again. Suppose that we wish to verify the 
(correct) property:

terminated -> (n <= 2)

and suppose that our depth-fi rst search has 
checked all computations starting with:
(p1,q1,0,0,0) → (p2,q1,0,0,0) → (p3,q1,1,0,0).

Since no error is found, the search will 
backtrack, generate the state (p2,q2,0,0,0) and 
continue on; again, it will not fi nd an error. 
Eventually, the search will start to explore com-
putations that start with a transition of process 
Q, leading to:
(p1,q1,0,0,0) → (p1,q2,0,0,0) → (p2,q2,0,0,0).

But wait. This state has already been gener-
ated and found not to lead to an error, so there 
is no reason to explore it again. In a large pro-
gram, there may be a large subgraph of reachable 
states starting from any given state, so model 
checking will be much more effi cient if we don’t 
check the same subgraph more than once.

To prevent duplicated effort, a model check-
er must maintain a data structure with the set of 
all states that have been encountered; whenever 
a new state is generated, this data structure is 
checked and if the state appears in it the search 
continues with the next reachable state. The 
data structure commonly used is a hash table, 
since we only insert elements and check if they 
are already there; removing elements is never 
done. This hash table for storing states deter-
mines the memory requirements and (along 
with CPU time) limits the size of models that 

4

Figure 1: The state space of the example



extended papers

2010 March • Vol. 1 • No. 1  acm Inroads  43

can be checked. Much effort has been devoted to improving the 
hash algorithms and compression algorithms for storing the states. 
Fortunately, large memories are relatively cheap and this has made 
it feasible to increase the size of models that can be checked.

MODELING SYSTEMS
Model checking is primarily used in the verifi cation 
of properties of concurrent and distributed systems 
where the actual content of the data is immaterial. 

We are interested in verifying that a message that is sent over a 
network is received, but the actual content of the message is not 
important. Similarly, we may need to show that a real-time system 
doesn’t deadlock, or that a resource is used atomically, or that a 
server responds to a client, but the actual computation that poten-
tially deadlocks, or the content of the resource, or the nature of the 
service do not affect the correctness of the synchronization mecha-
nism or the communications protocol. Therefore, the fi rst step in 
model checking is to write a model of the system to be verifi ed.

A model of a system is a description of the system at a level that 
is usually higher than what can be effi ciently implemented. Abstract 
models are important because they enable the software engineer to 
write specifi cations that are understandable and that do not pre-
maturely constrain an implementation. Models written in a formal 
specifi cation language have the additional advantage that their cor-
rectness properties can be verifi ed. While it is true that implement-
ing an abstract model can lead to errors, implementation errors are 
usually easier to fi nd and correct than errors in a specifi cation.

Suppose that we wish to model a temperature controller in a 
power station. The possible values returned by the thermometer 
may range over several hundred degrees, but—as we all know from 
bitter experience—bugs invariably occur at the limits of the value 
of a variable. Rather than model the entire range of the thermom-
eter, it will generally be suffi cient to model a handful of representa-
tive values: the lowest value, the highest value and one or two more 
within the range. The challenge for a software engineer is to model 
a system in suffi cient detail so that it is faithful to reality, but at a 
suffi ciently high level of abstraction so that it is easy to understand 
and tractable to verify.

SPIN
Before we turn to a description of Spin, one of the 
foremost model checkers, let us note some other im-
portant model checkers:

●  SMV/NuSMV [7] uses a different temporal logic for specifying 
correctness properties and a different way of storing and search-
ing the state space. This approach is widely used for verifying 
synchronous systems such as hardware, where many components 
change their state simultaneously upon receiving a clock pulse.

●  Java PathFinder [18] is an attempt to verify programs written in 
an actual programming language, as opposed to a simple modeling 
language as in Spin. The verifi cation is, therefore, more realistic, 
but the size of the models can be verifi ed is limited because a Java 
program is much more detailed with many more states.

●  Concurrent programs abstract away from absolute time and 
are based upon the interleaving of atomic instructions from 
the processes. The UPPAAL model checker [11] models time 
so that it can be used to check the correctness of real-time 
programs.

Spin (http://spinroot.com) is a model checker that has been 
developed over many years by Gerard J. Holzmann, currently at 
NASA/JPL [9]. In 2001, Holzmann received the ACM Software 
Systems Award for Spin. Originally designed for verifying com-
munications protocols, it has since become one of the most widely 
used verifi cation tools. Spin is particularly suited for modeling con-
current and distributed systems that are based upon interleaving of 
atomic instructions.

After I learned about Spin and model checking several years 
ago, I rewrote my concurrency textbook to include material on 
these topics [2], and later wrote an introductory textbook on Spin 
itself [3]. What attracted me to Spin was a unique intersection 
of two seemingly confl icting universes: professional software and 
pedagogical software. We are all familiar with the confl icting pres-
sures: should students be taught using pedagogical software that 
facilitates learning, or should they be trained to use the most up-
to-date professional tools? Although we can often demonstrate 
improved learning outcomes using the former, students and em-
ployers frequently expect us to teach the latter. The Spin model 
checker is one of the leading verifi cation tools used by professional 
software engineers, but to my surprise I found that it is eminently 
suitable as a teaching tool.

The suitability of Spin for teaching results from the same dilem-
ma that is at the base of model checking: constrained and effi cient 
or expressive and ineffi cient. Holzmann chose the former: mod-
els in Spin are written in Promela, a language with a very limited 
set of features. Expressions and assignment statements in Promela 
have a syntax and semantics that are almost the same as those in 
C and Java. Dijkstra’s guarded commands are used for the control 
structures to facilitate writing nondeterministic programs. While 

5

6

The Spin model checker 
is one of the leading 
verifi cation tools used 
by professional software 
engineers, but to my 
surprise I found that it is 
eminently suitable as a 
teaching tool.



extended papers

A Primer on Model Checking
continued

44  acm Inroads  2010 March • Vol. 1 • No. 1

guarded commands may be initially unfamiliar, they are not dif-
fi cult to understand. The data types are integers and bytes, together 
with one-dimensional arrays. The rest of the features in Spin are 
those needed to build models of concurrent systems: processes, a 
construct for specifying that a sequence of statements is atomic, 
and channels that are generalizations of CSP channels. Correct-
ness properties are expressed using either local assert statements 
or globally using linear temporal logic. That’s it. No pointers, func-
tions, parameters, classes, generics, constructors. Since the syntax 
and semantics of the sequential part of Promela are relatively fa-
miliar, the instructor can concentrate on teaching concurrency and 
verifi cation, while students can write models with very little learn-
ing “overhead.”

TOOLS FOR TEACHING WITH SPIN
Spin is written in C and is distributed as a single ex-
ecutable fi le for Windows and Linux. One way that 
Spin achieves effi ciency is that it does not perform 

the model checking itself; instead, it generates a highly optimized 
model checking program in C for each model and each correctness 
claim to be verifi ed. The user need not look at this C code, although 
to use Spin you need to have a C compiler installed. A verifi cation 
in Spin can be run with a three-line script (generate the verifi er, 
compile it and run it); alternatively, a development environment 
can be used. A TCL/TK-based environment XSpin was developed 
by Holzmann. For pedagogical use, I developed the JSpin envi-
ronment. Aside from the standard features of an environment (fi le 
handling, editing and invoking the tools), jSpin includes a fi ltering 
capability that can present the output in a more understandable 
form. It is worth emphasizing that when using jSpin, the model 
checking itself is being performed by the professional Spin soft-
ware, so that the experience gained is directly transferable to gradu-
ate research and industrial practice.

An Example
Let us return to the example of updating a global variable and 

let us execute it in a loop, ten times in each process:
integer n = 0;

process P

integer regP = 0;

do 10 times

 load n into regP

 increment regP

 store regP into n

end

process Q

integer regQ = 0;

do 10 times

 load n into regQ

 increment regQ

 store regQ into n

end

Before reading further, try to analyze the program yourself and 
answer the question: What are the possible values of n when the 
program terminates?

Here is the Promela source code for this program:
byte n = 0, fi nish = 0;

active [2] proctype P() {

  byte register, counter = 0;

  do :: counter = 10 -> break

     :: else ->

  register = n;

  register++;

  n = register;

  counter++

  od;

  fi nish++

}

active proctype WaitForFinish() {

  fi nish == 2;

  printf(“n = %d\n”, n)

}

The declaration active [2] proctype P() creates two pro-
cesses so we don’t have to replicate source code in order to model 
multiple processes. The guarded command do-od has two alter-
natives; the guards are evaluated and a nondeterministic choice 
is made between them. The alternative else is taken only if all 
other alternatives are false. Therefore, the command in this pro-
gram implements a familiar for-loop. The only truly unfamiliar 
statement is the expression fi nish == 2. In Promela, an expression 
can be used as a statement and its meaning is: if the expression 
is true go to the next statement; otherwise, the process is blocked. 
Of course, such a statement is meaningful only in the context of a 
concurrent program where another process can change the values 
of variables so that the expression becomes true and thus execut-
able. The intention here is that the value of n be printed only 
when both processes P have terminated. When fi nish is equal to 
2, the only executable process is WaitForFinish and it will print 
the value of n.

Spin can be run in four modes:
● Random simulation mode uses a random number generator to 

resolve the nondeterminism inherent in a concurrent program 
(from which process should an instruction be executed?) as well as 
the possible nondeterminism in the guarded commands of a single 
process. In this mode, Spin can replace the classical concurrency 
simulator [6] as a tool for studying concurrent programs.

● Interactive simulation mode enables the user to choose the next 
instruction to be executed. Interactive simulation is also supported 
in concurrency simulators and is essential for demonstrating 
scenarios (such as those for starvation or fairness) that are very 
unlikely to occur randomly.

●  In verifi cation mode, Spin systematically searches the entire state 
space looking for a counterexample, a computation that violates a 
correctness specifi cation.

7



extended papers

2010 March • Vol. 1 • No. 1  acm Inroads  45

●  If a counterexample is found, a trail of the incorrect computation 
can be used in guided simulation mode to recreate the computation 
to the user to examine.

If you run the above example in random simulation mode, the 
interleaving of the two processes is chosen by a random number 
generator. From experience, the value printed will usually be in the 
range 14–18. It is easy to see that if the processes are executed 
sequentially, the fi nal value of n is 20, while if executed in “perfect” 
interleaving (choosing to execute one statement alternately from 
each process), the result is 10. Spin can also be run in interactive 
mode, where the user resolves the nondeterminism inherent in the 
interleaving of the processes. You can easily get the program to 
print 20 or 10.

Incredibly, there is a scenario in which the fi nal value of n is 2 
[4]! This is highly unlikely to occur in a random simulation, and in 
fact, it is quite diffi cult to fi nd the scenario. 
For years, I taught that the possible answers 
are between 10 and 20; when a student re-
ceived the answer 9 on a random simulation, 
it took quite some time before I was con-
vinced that it was a genuine result and not 
a bug in the concurrency simulator we were 
using. Once I fi gured out how a scenario can 
give 9 for the fi nal result of n, it was not too 
diffi cult to construct the scenario for 2.

Suppose that we claim—as I once be-
lieved—that the algorithm always gives re-
sults greater than or equal to 10. Let us now 
ask Spin to prove that correctness claim by 
adding the assertion assert (n >= 10)

as the last statement of the process Wait-
ForFinish. Run Spin in verifi cation mode 
and within a few seconds, we are told that 
the claim is in error. Spin writes a trail fi le, 
which can be used by a guided simulation 
to reconstruct the scenario that is the coun-
terexample. We can also try to verify the 
program with the assertion assert (n>2). 
Again, Spin fi nds an error and can reconstruct the scenario for a 
counterexample, namely, one for which the fi nal value of n is 2.

Our simple example has used just assertions, but model check-
ers like Spin are able to fi nd counterexamples for correctness prop-
erties expressed in temporal logic such as:

[]!deadlock,

meaning “it is always true that deadlock is false,” that is, “the pro-
gram never deadlocks.” This safety property is relatively easy to 
check, since it is suffi cient that a single state exist where deadlock 
is true. Another example is:

[](request-resource ->

 <>granted-resource),

meaning “always (if a resource is requested, it is later granted)” or 
“whenever a resource is requested, eventually it is granted.” This 
liveness property is diffi cult to check, since a counterexample is 
one in which a computation containing a request for the resource 

continues indefi nitely without granting the resource. In terms of 
the graph of the state space, there must be a strongly-connected 
component (SCC) where granted-resource is false in all of its 
states and the SCC is reachable from a state where request-re-
source is true.

NONDETERMINISM
Nondeterminism is a central concept in computer sci-
ence. It was fi rst defi ned by Rabin and Scott for their 
nondeterministic fi nite automata [15] and the most 

intractable theoretical problem in CS (P=NP?) asks whether non-
determinism can make algorithms more effi cient. Nondetermin-
ism appears frequently in applications: grammars of programming 
languages, algorithms, and the interleaving model of concurrency. 
Nevertheless, it is a diffi cult subject to teach. For a historical survey 

of nondeterminism and an analysis of the 
pedagogical problems, see [1].

At fi rst glance, models checkers like Spin 
would seem to be inappropriate for teaching 
nondeterminism, because the semantics of 
concurrency is universal (all computations 
must be correct), whereas for an NDFA the 
semantics is existential (a string is accepted 
if there exists a computation that terminates 
in an accepting state after reading the entire 
string). However, a simple technique en-
ables Spin to implement NDFAs and other 
nondeterministic algorithms such as the 
8-queens problem (see Chapter 8 of [3] for 
several examples).

An NDFA is easily programmed using 
the guarded if-command for nondetermin-
istic transitions. Consider, for example, an 
NDFA whose set of transitions from state 
q5 is:

{(q5, a, q7), (q5, a, q3), (q5, b, q5)}.

This can be easily modeled by the labeled 
guarded command:

q5:

if

:: input == ‘a’ ->

 input = next-symbol; goto q7

:: input == ‘a’ ->

 input = next-symbol; goto q3

:: input == ‘b’ ->

 input = next-symbol; goto q5

fi 

Next, add the alternative:
:: end-of-input -> assert(false)

to the guarded command for every accepting state. Accepting com-
putations of the NDFA now correspond to computations that ex-

8

Spin can also 
be run in 

interactive 
mode, where 

the user 
resolves the 

nondeterminism 
inherent in the 
interleaving of 
the processes.



extended papers

A Primer on Model Checking
continued

46  acm Inroads  2010 March • Vol. 1 • No. 1

ecute assert(false). Since Spin only reports computations that are 
errors, we artifi cially make “good” computations (one that are ac-
cepting for the NDFA) into errors to be found.

Each of Spin’s modes of execution corresponds to a different 
way of understanding NDFAs:

●  Random simulation is the execution of the NDFA with arbitrary 
resolution of nondeterministic transitions.

●  Interactive simulation is the execution of an NDFA with an oracle 
(you) ensuring that an accepting computation is found.

●  Verifi cation represents the metalevel determination if there exists 
an accepting computation or not.

The VN software tool that I developed demonstrates these 
concepts. It automatically generates the Promela program from 
a graphical representation of an NDFA. Accepting and rejecting 
computations are also displayed graphically (Figure 2). By slight 
modifi cations of the generated Promela programs, it was easy to 
add other features: searching for all accepting computations of a 
given string or of strings of a given length, and partitioning the 
inputs of a deterministic automaton into equivalence classes.

A SIMPLIFIED MODEL CHECKER
Although Spin is relatively easy to use, it is not en-
tirely trivial since it requires that a C compiler be in-
stalled. Furthermore, the output of Spin is not uni-

form or well defi ned, so the output fi ltering in jSpin was diffi cult 
to develop and is somewhat fragile. Finally, Spin itself is written in 
C and has little documentation, so it is quite diffi cult to study the 
source or to modify it. For these reasons, I developed the Erigone 
model checker [5] that is compatible with Spin. It solves the above 
problems: it is a single executable fi le; the output uses a uniform 
named association format that is easy read and easy to parse by 
postprocessors; it is written in a high-level language (Ada 2005) 
and much effort was invested to ensure that the program is well 
structured and well documented. There is a version of jSpin that 
uses Erigone instead of Spin, and VN now uses Erigone instead of 
Spin so that it is easier to install and use.

Erigone is intended as a pedagogical tool for learning concur-
rency with model checking. Since it supports a large subset of 
Promela, when a student needs the performance of a professional 
tool to verify a model, the transition to using Spin is immediate. 

9

Figure 2: VN visualizing an accepting computation of an NDFA



extended papers

2010 March • Vol. 1 • No. 1  acm Inroads  47

Erigone can also be used to learn model checking itself. The basic 
algorithms are relatively simple, but they are based on important 
concepts like backtracking and data compression, and use central 
algorithms and data structures like depth-fi rst search of directed 
graphs, stacks and hash tables.

SUMMARY
Formal methods are no longer academic curiosities. 
They have been used to give customers a guaran-
tee of the correctness of a program [16] (unlike our 

packaged applications with their infamous “end-use license agree-
ments”), and recently the correctness of the kernel of an operating 
system has been verifi ed [7].

Model checking is a formal method that can facilitate learning 
important CS concepts like concurrency, verifi cation, and nonde-
terminism. Just as importantly, model checking can motivate the 
study of discrete mathematics and theoretical computer science by 
showing how they are used in a real-world application: automata 
theory (programs as NDFAs), logic (the propositional and tempo-
ral logics of correctness claims), graph theory (depth-fi rst search 
and SCCs), hashing functions, data compression.

Although Spin is a professional software tool widely used in 
industry, the simple and clean syntax and semantics of Promela, 
and the ease of running simulations and verifi cations make it ideal 
as a teaching tool, and I have developed tools such as jSpin and 
Erigone to simplify the use of model checking even further. I be-
lieve that formal methods should be taught as early as possible in 
the computer science curriculum and model checking is an excel-
lent way to do so.

ACKNOWLEDGEMENTS
I would like to thank Peter Henderson for suggesting that I write 
this article and for his helpful comments on early drafts. Michal 
Armoni assisted in the design of VN. Gerard Holzmann’s help was 
invaluable during the development of the software tools.

References
 [1]  Michal Armoni and Mordechai Ben-Ari. The concept of nondeterminism: Its development 

and implications for education. Science & Education, 18(8):1005–1030, 2009. Reprinted in: 
SIGCSE Bull. 41(2), 2009, 141--160.

 [2]  Mordechai Ben-Ari. Principles of Concurrent and Distributed Programming (Second Edition). 
Addison-Wesley, Harlow, UK, 2006.

 [3]  Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer, London, 2008.
 [4]  Mordechai Ben-Ari. Tool presentation: Teaching concurrency and model checking. In Proceed-

ings of the 16th International SPIN Workshop on Model Checking Software, pages 6–11, 
Berlin, Heidelberg, 2009. Springer-Verlag.

 [5]  Mordechai Ben-Ari and Alan Burns. Extreme interleavings. IEEE Concurrency, 6(3):90–91, 1998.
 [6]  Bill Bynum and Tracy Camp. After you, Alfonse: A mutual exclusion toolkit. SIGCSE Bull., 

28(1):170–174, 1996.
 [7]  Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, 

Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An opensource tool for 
symbolic model checking. In CAV ‘02: Proceedings of the 14th International Conference on 
Computer Aided Verifi cation, pages 359–364, London, UK, 2002. Springer-Verlag.

 [8]  C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

 [9]  Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston MA, 2004.

 [10]  Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, 
Dhammika Elkaduwe, Kai Engelhardt, Michael Norrish, Rafal Kolanski, Thomas Sewell, 
Harvey Tuch, and Simon Winwood. seL4: Formal verifi cation of an OS kernel. In Proceedings 

10

of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, Big Sky, MT, 2009, 
207–220..

 [11]  Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International Journal on 
Software Tools for Technology Transfer, 1(1–2):134–152, 1998.

 [12]  Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems. 
Volume I: Specifi cation. Springer-Verlag, New York, 1992.

 [13]  Zohar Manna and Amir Pnueli. The Temporal Verifi cation of Reactive Systems. Volume II: 
Safety. Springer-Verlag, New York, 1995.

 [14]  Hideaki Nishihara, Koichi Shinozaki, Koji Hayamizu, Toshiaki Aoki, Kenji Taguchi, and 
Fumihiro Kumeno. Model checking education for software engineers in Japan. SIGCSE Bull., 
41(2):45–50, 2009.

 [15]  Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM Journal 
of Research and Development, 3(2):636–644, 1959.

 [16]  Philip E. Ross. The exterminators. IEEE Spectrum, pages 36–41, September 2005.
 [17]  Yasuyuki Tahara, Nobukazu Yoshioka, Kenji Taguchi, Toshiaki Aoki, and Shinichi Honiden. Evolu-

tion of a course on model checking for practical applications. SIGCSE Bull., 41(2):38–44, 2009.
 [18]  Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model checking 

programs. In ASE ‘00: Proceedings of the 15th IEEE International Conference on Automated 
Software Engineering, page 1–36, Washington, DC, USA, 2000. IEEE Computer Society.

MORDECHAI (MOTI) BEN-ARI
Department of Science Teaching
Weizmann Institute of Science
Rehovot 76284 Israel

benari@acm.org
http://stwww.weizmann.ac.il/g-cs/benari/

Categories and Subject Descriptors: F.3.1 [Logics And Meanings Of Programs] Specifying 
and Verifying and Reasoning about Programs; K.3.2 [Computers and Education] Computer and 
Information Science Education  
General Terms: Verifi cation  
Keywords: Model checking, Verifi cation, Concurrent programming, Spin, Erigone

DOI: 10.1145/1721933.1721950

©2010 2153-2184/10/0300 $10.00✼

Explore 
Computing 

History
◆ ◆ ◆ ◆ ◆

The 
Charles Babbage 

Institute
www.cbi.umn.edu




