
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/2512358

JML:	a	Java	Modeling	Language

Article	·	October	1998

Source:	CiteSeer

CITATIONS

72

READS

79

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Aspect-Oriented	Programming	Reloaded	View	project

Java	Modeling	Language	(JML)	View	project

Gary	T.	Leavens

University	of	Central	Florida

243	PUBLICATIONS			8,024	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Gary	T.	Leavens	on	28	January	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/2512358_JML_a_Java_Modeling_Language?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2512358_JML_a_Java_Modeling_Language?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Aspect-Oriented-Programming-Reloaded?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Java-Modeling-Language-JML?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gary_Leavens?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gary_Leavens?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Florida?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gary_Leavens?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gary_Leavens?enrichId=rgreq-807e076568d59016ff0d9aa1cbc70ce2-XXX&enrichSource=Y292ZXJQYWdlOzI1MTIzNTg7QVM6MTAyMDEwMzg5MDA4NDAyQDE0MDEzMzI1ODA5OTY%3D&el=1_x_10&_esc=publicationCoverPdf

JML: a Java Modeling LanguageGary T. Leavens�, Albert L. Baker, and Clyde RubyDepartment of Computer Science, 226 Atanaso� HallIowa State University, Ames, Iowa 50011-1040 USAleavens@cs.iastate.edu, baker@cs.istate.edu, ruby@cs.iastate.eduSeptember 18, 1998AbstractJML is a behavioral interface speci�cation language tailored to Java. It also allowsassertions to be intermixed with Java code, as an aid to veri�cation and debugging.JML is designed to be used by working software engineers, and requires only modestmathematical training. To achieve this goal, JML uses Ei�el-style assertion syntaxcombined with the model-based approach to speci�cations typi�ed by VDM and Larch.However, JML supports quanti�ers, speci�cation-only variables, frame conditions, andother enhancements that make it more expressive for speci�cation than Ei�el.This paper discusses the goals of JML, the overall approach, and prospects for givingJML a formal semantics through a veri�cation logic.1 IntroductionJML [23], which stands for \Java Modeling Language," is a behavioral interface speci�cationlanguage (BISL) [44] designed to specify Java [2, 9] modules. Java modules are classesand interfaces. A behavioral interface speci�cation describes both the interface details of amodule, and its behavior. The interface details are written in the syntax of the programminglanguage; thus JML uses Java declaration syntax. In JML behavioral speci�cations arewritten using pre- and postconditions.1.1 GoalsThe long-term goal of our research is to better understand how to develop BISLs (and BISLtools) that are practical and e�ective. We are concerned with both technical requirementsand with other factors such as training and documentation, although in the rest of this paperwe will only be concerned with technical requirements. The practicality and e�ectiveness ofJML will be judged by how well it can document reusable class libraries, frameworks, andApplication Programmer Interfaces (APIs).We believe that to meet the overall goal of practical and e�ective behavioral interfacespeci�cation, JML must meet the following subsidiary goals.�The work of Leavens and Ruby is supported in part by a grant from Rockwell International Corporationand by NSF grant CCR-9503168. The work of Leavens and Baker is supported in part by the NSF grantCCR 9803843. 1

� JML must be able to document the interfaces and behavior of existing software, re-gardless of the analysis and design methods used to create it.If JML were limited to only handling certain Java features or certain kinds of soft-ware, then some APIs would not be amenable to documentation using JML. Sincethe e�ort put into writing such documentation will have a proportionally larger pay-o� for software that is more widely reused, it is important to be able to documentexisting reusable software components. This is especially true since software that isimplemented and debugged is more likely to be reused than software that has yet tobe implemented.� The notation used in JML should be readily understandable by Java programmers,including those with only standard mathematical training.A preliminary study by Finney [8] indicates that graphical mathematical notations,such as those found in Z [11, 37] may make such speci�cations hard to read, even forprogrammers trained in the notation. This accords with our experience in teachingformal speci�cation notations to programmers. Hence, our strategy for meeting thisgoal has been to shun most special-purpose mathematical notations in favor of Java'sown expression syntax.� The language must be capable of being given a rigorous, formal semantics, and mustalso be amenable to tool support.This goal also helps ensure that the speci�cation language does not su�er from logicalproblems, which would make it less useful for static analysis, prototyping, and testingtools.We also have in mind a long range goal of a speci�cation compiler, that would produceprototypes from constructive speci�cations [42]. Intermediate steps toward this goal wouldinclude an assertion checker, which would simply evaluate constructive assertions, and aprototyping tool for methods, which would construct the post-state values for a method fora given pre-state and list of actuals.As a general strategy for achieving these goals, we have tried to blend the Ei�el [31,32, 33] and Larch [10, 21, 44, 45] approaches to speci�cation. From Ei�el we have takenthe idea that assertions can be written in a language that is based on Java expressions.We also use the old notation from Ei�el, as described below, instead of the Larch styleannotation of names with state functions. However, Ei�el speci�cations, as written byMeyer, are typically not as complete as model-based speci�cations written, for example,in Larch BISLs or VDM [13]. For example, Meyer partially speci�es a remove (i.e., pop)operation for stacks as requiring that the stack not be empty, and ensuring that the stackvalue in the post-state has one fewer items than in the pre-state [33, p. 339]. However, theonly characterization of which item is removed is given informally as a comment. To allowmore complete speci�cations, we need ideas from model-based speci�cation languages.The semantic di�erences from Ei�el (and its cousins Sather and Sather-K) allow oneto write speci�cations as in model-based speci�cation languages. The most important ofthese is JML's use of speci�cation-only declarations. These model declarations, as will beexplained below, allow more abstract and exact speci�cations of behavior than is typicallydone in Ei�el; they allow one to write speci�cations that are similar to the spirit of VDMor Larch BISLs. A major di�erence is that we have extended the syntax of Java expressionswith quanti�ers and other constructs that are needed for logical expressiveness, but which2

are not always executable. Finally, we ban side-e�ects and other problematic features ofcode in assertions.On the other hand, our experience with Larch/C++ has taught us to adapt the model-based approach in two ways, with the aim of making it more practical and easy to learn. The�rst adaptation is again the use of speci�cation-only model (or ghost) variables. An objectwill thus have (in general) several such model �elds , which are used only for the purpose ofdescribing, abstractly, the values of objects. This simpli�es the use of JML, as comparedwith most Larch BISLs, since speci�ers (and their readers) hardly ever need to know aboutalgebraic style speci�cation. It also makes designing a model for a Java class or interfacesimilar, in some respects, to designing an implementation data structure in Java. We hopethat this similarity will make the speci�cation language easier to understand. (This kind ofmodel also has some technical advantages that will be described below.)The second adaptation is hiding of the details of mathematical modeling behind a fa-cade of Java classes. In the Larch approach to behavioral interface speci�cation [44], themathematical notation used in assertions is presented directly to the speci�er. This allowsthe same mathematical notation to be used in many di�erent speci�cation languages. How-ever, it also means that the user of such a speci�cation language has to learn a notationfor assertions that is di�erent than their programming language's notation for expressions.In JML we use a compromise approach, hiding these details behind Java classes. Theseclasses are pure, in the sense that they re
ect the underlying mathematics, and hence donot use side-e�ects (at least not in any observable way). Besides insulating the user of JMLfrom the details of the mathematical notation, this compromise approach also insulates thedesign of JML from the details of the mathematical logic used for theorem proving.1.2 OutlineSection 2 uses examples to show how Java classes and interfaces are speci�ed in JML.Section 3 discusses prospects for de�ning the semantics of JML formally, using a veri�cationlogic. Section 4 presents conclusions.2 Class and Interface Speci�cationsIn this section we give an example of a JML class speci�cation and describe some of thefeatures of JML. (These features can also be used to provide speci�cations for Java inter-faces.)2.1 Abstract ModelsA simple example of an abstract class speci�cation is the ever-popular UnboundedStacktype, which is presented in Figure 1. This �gure has the abstract values of stack objectsspeci�ed by the model data �eld theStack, which is declared on the fourth non-blank line.Since it is declared using the modi�er model, such a �eld does not have to be implemented;however, for purposes of the speci�cation we treat it exactly as any other Java �eld (i.e., asa variable). That is, we imagine that each instance of the class UnboundedStack has sucha �eld.The type of the model �eld theStack is a pure type, JMLObjectSequence, which is asequence of objects. It is provided by JML in the package edu.iastate.cs.jml.models,3

package edu.cs.iastate.jml.samples.stacks;//@ model import edu.cs.iastate.jml.models.*;public abstract class UnboundedStack {//@ public model JMLObjectSequence theStack;//@ public initially theStack.isEmpty();public abstract void pop();//@ behavior {//@ requires !theStack.isEmpty();//@ modifiable theStack;//@ ensures theStack.equals(old(theStack.trailer()));//@ }public abstract void push(Object x);//@ behavior {//@ modifiable theStack;//@ ensures theStack.equals(old(theStack.addFirst(x)));//@ }public abstract Object top();//@ behavior {//@ requires !theStack.isEmpty();//@ ensures result == theStack.first();//@ }}Figure 1: A speci�cation of the abstract class UnboundedStack (�le UnboundedStack.java).
4

which is imported in the second non-blank line of the �gure.1 Note that this importdeclaration does not have to appear in the implementation, since it is modi�ed by thekeyword model. In general, any declaration form in Java can have this modi�er, with thesame meaning: that the declaration in question is only used for speci�cation purposes, anddoes not have to appear in an implementation.Following the declaration of the model �eld, above the speci�cation of pop in Figure 1, isan initially clause. (Such clauses are adapted from Resolve [34].) This clause is declaredpublic, since it only refers to public model �elds.An initially clause permits data type induction [12, 46] for abstract classes and inter-faces, by supplying a property that must appear to be true of the starting states of objects.In each visible state (outside of the methods of UnboundedStack) all reachable objects ofthe type UnboundedStack must have a value that makes them appear to have been createdas empty stacks and subsequently modi�ed using the type's methods.Following the initially clauses are the expected speci�cations of the pop, push, andtop methods.The use of the modifiable clauses in the behavioral speci�cations of pop and push isinteresting (and another di�erence from Ei�el). These give frame conditions [4], which saythat no objects, other than those mentioned (and those on which these objects depend, asexplained below) may have their values changed.2 When the modifiable clause is omitted,as it is in the speci�cation of top, this means that no objects can have their state modi�edby the method's execution. Our interpretation of this is very strict, as even benevolent sidee�ects are disallowed if the modifiable clause is omitted [27, 26].When a method can modify some objects, these objects have di�erent values in the pre-state and post-state of that method. Often the post-condition must refer to both of them.A notation similar to Ei�el's is used to refer to the pre-state value of a variable. In JMLthe syntax is old(E).3 The meaning of old(E) is as if E were evaluated in the pre-stateand that value is used in place of old(E) in the assertion. This is sensible if E denotes aprimitive value (such as an int), or if the type of E is a pure type. If E denotes an objectthat is modi�able, then the expression may not mean what is desired. For example, if a isa Java array, thenold(a)[3] == a[3]does not constrain the value of a's third element, because it only saves a reference to a,while the following does,old(a[3]) == a[3]because it saves the value of a[3].For example, in pop's postcondition the expression old(theStack.trailer()) has typeJMLObjectSequence, which is a pure type. The value of theStack.trailer() is computedin the pre-state of the method (just after the method is called and parameters have beenpassed, but before execution of the body).1Users can also de�ne their own pure types, as we will explain below.2An object is modi�ed by a method when it is allocated in both the pre- and post-states of the method,and when some of its variables (model or concrete) change their values. This means that allocating objects,using Java's new operator, does not cause a modi�cation.3We use explicit parentheses following old, which indicates the expression to be evaluated in the pre-stateexplicitly; this is a di�erence from Ei�el. 5

Note also that, since JMLObjectSequence is a reference type, one is required to useequals instead of == to compare them for equality of values. (Using == would be a mistake,since it would only compare them for object identity, which in combination with new wouldalways yield false.)The speci�cation of push does not have a requires clause. This means that the methodimposes no obligations on the caller. (Logically, the meaning of an omitted requiresclause is that the method's precondition is true, which is satis�ed by all states, and henceimposes no obligations on the caller.) This seems to imply that the implementation mustprovide a literally unbounded stack, which is surely impossible. We avoid this problem, byfollowing Poetzsch-He�ter [35] in releasing implementations from their obligations to ful�llthe postcondition when Java runs out of storage. That is, a method implementation iscorrect if, whenever it is called in a state that satis�es its precondition, either� the method terminates in a state that satis�es its postcondition, having modi�ed onlythe objects permitted by its modifiable clause, or� Java signals an error, by throwing an exception that inherits from Error.2.2 Other Aspects of JMLWhile the example in this short paper does not require its use, JML does support quanti�edassertions. The following simple examples illustrate JML quanti�ed assertions:forall (int i) [intSet.isIn(i) => i > 0]// all elements of intSet are positiveexists(int i) [intSet.isIn(i) && i % 2 == 0]// there is an even element of intSetFollowing Leino [27, 26], JML uses depends and represents clauses to relate model�elds to the concrete �elds of objects. A depends clause, such as the following,depends size on theElems;says that the model �eld sizemay change its value when theElems changes. A representsclause says how they are related, giving additional facts that can be used in reasoning aboutthe speci�cation. This serves the same purpose as an abstraction function in various proofmethods for abstract data types (such as [12]). For example,represents size by size == theElems.length();tells how to extract the value of size from the value of theElems.JML also has invariants and history constraints [29]. A history constraint is used tosay how values can change between earlier and later states, such as a method's pre-stateand its post-state. This prohibits subtypes from making certain state changes, even if theyimplement more methods than are speci�ed in a given class. For example, the followinghistory constraintconstraint MAX_VALUE == old(MAX_VALUE);says that the value of MAX SIZE cannot change.JML has the ability to specify what methods a method may call, using a callableclause. This allows one to know which methods need to be looked at when overriding amethod [14], and to apply the ideas of \reuse contracts" [38].6

JML also features checkable redundancy [22, 39, 40]. In JML this is usually signaledby the keyword redundantly. For example, one can write a redundant invariant, historyconstraint, precondition or postcondition by writing invariant redundantly, constraintredundantly, requires redundantly, or ensures redundantly. Such clauses state thatthe property is believed to follow from the other properties of the speci�cation. For example,a redundant invariant should follow from other stated invariants. Another kind of checkableredundancy is an example clause [19, 22], which can be used to give concrete examples of amethod's execution. Such redundancy can be used as a rhetorical device, to bring variousproperties to the attention of the speci�cation's readers.Following Wing and Wills [46, 43], a speci�cation may be written using several casesseparated by the keyword also [20]. The semantics is that, when the precondition of a case issatis�ed, the rest of that case's speci�cation must be obeyed. Separating the speci�cationinto several cases is useful in specifying operations that may signal exceptions,a and forgiving an interpretation of behavioral subtyping [7].In JML, a subtype inherits the speci�cations of its supertype's public and protectedmembers (�elds and methods), as well as invariants and history constraints as additionalspeci�cation cases. This ensures that a subclass speci�es a behavioral subtype of its super-types.2.3 Making New Pure TypesJML comes with a suite of pure types, implemented as Java classes. At the time of thiswriting these are JMLObjectSet, JMLObjectSequence, JMLObjectMap and JMLValueSet,JMLValueSequence, JMLValueMap, JMLInteger, and a few helper classes (such as exceptionsand enumerators). These are found in the package edu.iastate.cs.jml.models, and canbe used for de�ning abstract models. Users can also create their own pure types if desired.Since these types are to be treated as purely immutable values in speci�cations, they mustpass certain conservative checks that make sure there is no possibility of observable side-e�ects from using such objects.Model classes should also be pure, since there is no way to use non-pure operations inan assertion. However, the modi�ers model and pure are orthogonal, and thus usually onewill have to list both of them when declaring a model class.3 Prospects for Veri�cationWe plan to design a veri�cation logic for Java programs that will help us:� de�ne the semantics of JML speci�cations precisely, by giving the veri�cation condi-tions for method speci�cations,� support checking for errors in Java programs (as in SRC's extended static checkerproject),� correctness proofs, and� allow other kinds of formal analysis of the properties of Java programs.There are several problems we anticipate in designing a veri�cation logic for Java pro-grams that can be used with JML. These include:7

� termination,� side-e�ects in expressions,� aliasing,� subtyping and dynamic dispatch.To deal with termination, we adapt the well-known idea of giving a separate proof oftermination, using variant functions. (We have adopted Resolve's [34] syntax for declaringvariant functions in while loops for this.)To deal with side-e�ects in expressions, we plan to restructure the code to be veri�ed intosimpler statements [3, 15]. These statements would not include any compound expressions.For example, the Java statement:v = o.f(x++);would be treated as the following, for purposes of veri�cation (assuming that x and v areboth of type int).int temp1 = x;x = x + 1;v = o.f(temp1);To deal with aliasing, we plan to require that the veri�er verify a method for eachpossible case of aliases among the names it uses. Often some of these cases can be ruledout by preconditions.To deal with subtyping and dynamic dispatch, we plan to use behavioral subtyping andsupertype abstraction [1, 5, 17, 18, 24, 25, 29, 30, 41]. Since JML forces subtypes to bebehavioral subtypes [6], this allows one to reason about Java programs using the statictypes of variables and expressions, ignoring dynamic dispatch.4 Future Work and ConclusionsOne area of future work for JML is concurrency. Our current plan is to use when clausesthat say when a method may proceed to execute, after it is called [28, 36]. This permitsthe speci�cation of when the caller is delayed to obtain a lock, for example. While syntaxfor this exists in the JML parser, our exploration of this topic is still in an early stage. Wemay also be able to expand history constraints to use temporal logic.Another fertile area for future work on JML is to synthesize the previous work of Wahls,Leavens and Baker on the use of constraint logic programming to directly execute a sig-ni�cant and practical subset of JML's assertions [42]. This prior work supports the \con-struction" of post-state values to satisfy ensures clauses, including such clauses containingquanti�ed assertions. Successful integration of these assertion execution techniques withJML would support automatic generation of Java class prototypes directly from their JMLspeci�cations.JML combines the best features of Ei�el and the Larch approaches to speci�cation.This combination, we believe, makes it more expressive than Ei�el, and more practicalthan Larch style BISLs. We look forward to precisely describing the semantics of JMLusing a veri�cation logic. 8

AcknowledgementsThanks to Rustan Leino and Peter M�uller for many discussions about the semantics ofsuch speci�cations and veri�cation issues relating to Java. For comments on JML we thankPeter, Jianbing Chen, Anand Ganapathy, Sevtap Oltes, Gary Daugherty, Karl Hoech, JimPotts, and Tammy Scherbring.References[1] Pierre America. Inheritance and subtyping in a parallel object-oriented language. InJean Bezivin et al., editors, ECOOP '87, European Conference on Object-OrientedProgramming, Paris, France, pages 234{242, New York, N.Y., June 1987. Springer-Verlag. Lecture Notes in Computer Science, Volume 276.[2] Ken Arnold and James Gosling. The Java Programming Language. The Java Series.Addison-Wesley, Reading, MA, second edition, 1998.[3] J. W. De Bakker, J. W. Klop, and J.-J. Ch. Meyer. Correctness of programs withfunction procedures. In D. Kozen, editor, Logics of Programs, number 131 in LectureNotes in Computer Science, pages 94{112. Springer-Verlag, New York, N.Y., 1982.[4] Alex Borgida, John Mylopoulos, and Rayomnd Reiter. On the frame problem in pro-cedure speci�cations. IEEE Transactions on Software Engineering, 21(10):785{798,October 1995.[5] Krishna Kishore Dhara. Behavioral subtyping in object-oriented languages. Tech-nical Report TR97-09, Department of Computer Science, Iowa State University, 226Atanaso� Hall, Ames IA 50011-1040, May 1997. The author's Ph.D. dissertation.[6] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping throughspeci�cation inheritance. In Proceedings of the 18th International Conference on Soft-ware Engineering, Berlin, Germany, pages 258{267. IEEE Computer Society Press,March 1996.[7] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping throughspeci�cation inheritance. Technical Report 95-20c, Department of Computer Science,Iowa State University, Ames, Iowa, 50011, December 1997. Also in Proceedings ofthe 18th International Conference on Software Engineering, Berlin, Germany, 1996,pp. 258{267. Available by anonymous ftp from ftp.cs.iastate.edu, and by e-mail fromalmanac@cs.iastate.edu.[8] Kate Finney. Mathematical notation in formal speci�cation: Too di�cult for themasses? IEEE Transactions on Software Engineering, 22(2):158{159, February 1996.[9] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. The JavaSeries. Addison-Wesley, Reading, MA, 1996.[10] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M.Wing. Larch: Languages and Tools for Formal Speci�cation. Springer-Verlag, NewYork, N.Y., 1993. 9

[11] I. Hayes, editor. Speci�cation Case Studies. International Series in Computer Science.Prentice-Hall, Inc., second edition, 1993.[12] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,1(4):271{281, 1972.[13] Cli� B. Jones. Systematic Software Development Using VDM. International Series inComputer Science. Prentice Hall, Englewood Cli�s, N.J., second edition, 1990.[14] Gregor Kiczales and John Lamping. Issues in the design and documentation of classlibraries. ACM SIGPLAN Notices, 27(10):435{451, October 1992. OOPSLA '92 Pro-ceedings, Andreas Paepcke (editor).[15] H. Langmaack. Aspects of programs with �nite modes. In M. Karpinski, editor, Foun-dations of Computation Theory, number 158 in Lecture Notes in Computer Science,pages 241{254. Springer-Verlag, New York, N.Y., 1983.[16] K. Lano and H. Haughton, editors. Object-Oriented Speci�cation Case Studies. TheObject-Oriented Series. Prentice Hall, New York, N.Y., 1994.[17] Gary T. Leavens. Modular veri�cation of object-oriented programs with subtypes.Technical Report 90-09, Department of Computer Science, Iowa State University,Ames, Iowa, 50011, July 1990. Available by anonymous ftp from ftp.cs.iastate.edu,and by e-mail from almanac@cs.iastate.edu.[18] Gary T. Leavens. Modular speci�cation and veri�cation of object-oriented programs.IEEE Software, 8(4):72{80, July 1991.[19] Gary T. Leavens. An overview of Larch/C++: Behavioral speci�cations for C++modules. In Haim Kilov and William Harvey, editors, Speci�cation of Behavioral Se-mantics in Object-Oriented Information Modeling, chapter 8, pages 121{142. KluwerAcademic Publishers, Boston, 1996. An extended version is TR #96-01d, Departmentof Computer Science, Iowa State University, Ames, Iowa, 50011.[20] Gary T. Leavens. Larch/C++ Reference Manual. Version 5.14. Available inftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz or on the World Wide Web at theURL http://www.cs.iastate.edu/~leavens/larchc++.html, October 1997.[21] Gary T. Leavens. Larch frequently asked questions. Version 1.89. Available inhttp://www.cs.iastate.edu/~leavens/larch-faq.html, January 1998.[22] Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition techniquefor more expressive speci�cations. Technical Report 97-19, Iowa State University, De-partment of Computer Science, September 1997.[23] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: Abehavioral interface speci�cation language for Java. Technical Report 98-06a, IowaState University, Department of Computer Science, July 1998.[24] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programsthat use subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP '90Proceedings, volume 25(10) of ACM SIGPLAN Notices, pages 212{223. ACM, October1990. 10

[25] Gary T. Leavens and William E. Weihl. Speci�cation and veri�cation of object-orientedprograms using supertype abstraction. Acta Informatica, 32(8):705{778, November1995.[26] K. Rustan M. Leino. A myth in the modular speci�cation of programs. Techni-cal Report KRML 63, Digital Equipment Corporation, Systems Research Center, 130Lytton Avenue Palo Alto, CA 94301, November 1995. Obtain from the author, atrustan@pa.dec.com.[27] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, CaliforniaInstitute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.[28] Richard Allen Lerner. Specifying objects of concurrent systems. Ph.D. Thesis CMU-CS-91-131, School of Computer Science, Carnegie Mellon University, May 1991.[29] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM Trans-actions on Programming Languages and Systems, 16(6):1811{1841, November 1994.[30] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,N.Y., 1988.[31] Bertrand Meyer. Applying \design by contract". Computer, 25(10):40{51, October1992.[32] Bertrand Meyer. Ei�el: The Language. Object-Oriented Series. Prentice Hall, NewYork, N.Y., 1992.[33] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,N.Y., second edition, 1997.[34] William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H. Zweben. PartI: The RESOLVE framework and discipline | a research synopsis. ACM SIGSOFTSoftware Engineering Notes, 19(4):23{28, Oct 1994.[35] Arnd Poetzsch-He�ter. Speci�cation and veri�cation of object-oriented programs. Ha-bilitation thesis, Technical University of Munich, January 1997.[36] Gowri Sivaprasad. Larch/CORBA: Specifying the behavior of CORBA-IDL interfaces.Technical Report 95-27a, Department of Computer Science, Iowa State University,Ames, Iowa, 50011, December 1995.[37] J. Michael Spivey. The Z Notation: A Reference Manual. International Series inComputer Science. Prentice-Hall, New York, N.Y., second edition, 1992.[38] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D'Hondt. Reuse contracts: Man-aging the evolution of reusable assets. In OOPSLA '96 Conference on Object-OrientedProgramming Systems, Languagges and Applications, pages 268{285. ACM Press, Oc-tober 1996. ACM SIGPLAN Notices, Volume 31, Number 10.[39] Yang Meng Tan. Interface language for supporting programming styles. ACM SIG-PLAN Notices, 29(8):74{83, August 1994. Proceedings of the Workshop on InterfaceDe�nition Languages. 11

[40] Yang Meng Tan. Formal Speci�cation Techniques for Engineering Modular C Programs,volume 1 of Kluwer International Series in Software Engineering. Kluwer AcademicPublishers, Boston, 1995.[41] Mark Utting and Ken Robinson. Modular reasoning in an object-oriented re�nementcalculus. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, Mathematicsof Program Construction, Second International Conference, Oxford, U.K., June/July,volume 669 of Lecture Notes in Computer Science, pages 344{367. Springer-Verlag,New York, N.Y., 1992.[42] TimWahls, Gary T. Leavens, and Albert L. Baker. Executing formal speci�cations withconstraint programming. Technical Report 97-12a, Department of Computer Science,Iowa State University, 226 Atanaso� Hall, Ames, Iowa 50011, August 1998. Availableby anonymous ftp from ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.[43] Alan Wills. Re�nement in Fresco. In Lano and Houghton [16], chapter 9, pages 184{201.[44] Jeannette M.Wing. Writing Larch interface language speci�cations. ACMTransactionson Programming Languages and Systems, 9(1):1{24, January 1987.[45] Jeannette M. Wing. A speci�er's introduction to formal methods. Computer, 23(9):8{24, September 1990.[46] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical Re-port TR-299, Massachusetts Institute of Technology, Laboratory for Computer Science,1983.

12
View publication statsView publication stats

https://www.researchgate.net/publication/2512358

