
Ada Taint Checker

Peter C. Chapin

Vermont Technical College

January 20, 2009



Outline

• Background

• Theory of Operation

• Implementation

• Limitations of Current Implementation

• Future Work

• Demonstration

1



Secure Information Flow

Confidentiality. If my program reads private inputs, can a mali-

cious user deduce some of that private information by observing

the program’s public outputs?

Data Integrity. If my program reads public inputs, can a ma-

licious user modify, in a controlled way, the private information

that the program writes by manipulating those inputs?

For many programs both of these questions are issues.

Ada Taint Checker (ATC) focuses on the Data Integrity problem

by tracking “tainted” input data to see if it is ever used in the

program’s outputs.

2



Noninterference

Noninterference means

• The public outputs are not affected by changes to the private

inputs.

• The private outputs are not affected by changes to the public

inputs.

Real programs can’t usually follow this principle (why read an

input if it doesn’t affect the output in some way?).

Instead confidentiality is maintained by passing private inputs

through “obfuscation” functions. Data integrity is maintained

by passing public inputs through “sanitizing” functions.

3



General Formulation

• Let C = {S1, S2, . . . , Sn} be a set of security classes.

• Let ≤ be a partial order on C such that Si ≤ Sj means that
the data in security class Si is more sensitive than the data
in security class Sj.

• Let (C,≤) be a lattice where ⊥ is the most sensitive security
class and > is the most public class.

When two security classes combine the resulting class should be
Si ∧ Sj if confidentiality is a concern or Si ∨ Sj if data integrity is
a concern.

ATC uses only two security classes: tainted and untainted with
the obvious meaning.

4



Theory of Operation

• ATC uses a static analysis.

– No run-time overhead.

– Imprecise. ATC is conservative: intended to flag any pro-

gram with a security error, but will also flag some correct

programs.

• ATC uses dataflow analysis to analyze individual subpro-

grams.

• ATC uses a simplistic type system to handle interprocedural

issues.

5



Subprogram Classifications

ATC assigns a classification (type) to each subprogram.

• Input. An input subprogram is one which returns tainted

data regardless of the status of its arguments.

• Sanitizing. A sanitizing subprogram is one which returns

untainted data regardless of the status of its arguments.

• Passive. A passive subprogram is one which returns informa-

tion with the same tainting status as its arguments.

6



Subprogram Output Flag

In addition, ATC marks certain subprograms as “Output” sub-

programs.

• Output. An output subprogram is one for which it is an error

to send tainted data.

This flag is independent of the subprogram’s classification. It is

used after analysis is complete to generate warnings, but other-

wise plays no role in the analysis.

7



Subprogram Information Database

ATC maintains an internal database of subprogram information.

User can initialize this database using a configuration file.

Ada.Integer_Text_IO.Get: I # Input

Ada.Integer_Text_IO.Put: O # Default with Output flag

Numerics.Sin: P # Passive

Validate_File_Name: S # Sanitizing

ATC should allow wildcards here, but currently does not.

8



Default Classification

What classification should ATC use when none is provided? One

might think Input since it is the most conservative. However, for

many functions, this is clearly the wrong choice.

package Standard is

function "+"(L : Integer; R : Integer) return Integer;

end Standard;

...

A := B + C; -- Invokes Standard."+"

Side effect free, or “pure,” functions are clearly Passive.

Currently ATC uses Passive by default.

9



Dataflow Analysis

ATC builds a control flow graph (CFG) for the subprogram being
analyzed.

• I[n]. Tainted variables coming into node n.

• O[n]. Tainted variables coming out of node n.

• D[n]. Variables that are made tainted inside node n. These
are the variables that are written by Input subprograms or by
Passive subprograms with tainted inputs.

• C[n]. Variables that are sanitized inside node n. These are
the variables that are written by Sanitizing subprograms or
by Passive subprograms with untainted inputs.

10



Dataflow Equations

The dataflow equations are

I[n] =
⋃

p∈pred[n]

O[p]

O[n] = D[n] ∪ (I[n]− C[n])

The value of I for the initial node is given by the subprogram’s
input arguments (assumed tainted).

The subprogram is considered secure if the following are both
true

1 None of the subprogram’s outputs are in O for the final CFG
node (sanitizing).

2 For each node in the CFG, no input to a Output subprogram
is in the I set for that node.

11



Implementation

• ATC is itself written in Ada.

• ATC uses ASIS: the Ada Semantic Information Standard.

ASIS is a library of packages that give an analysis program

“easy” access to the syntactic and semantic information

computed by the compiler.

ASIS presents the abstract syntax tree of all compilation units

in the program.

ASIS allows corresponding declarations of entities used in the

program to be looked up. For example, given a procedure call

statement one can get the declaration of the procedure and ex-

amine the modes (IN, OUT, INOUT) on the parameters.

12



Computing CFG

ATC’s CFG generator walks the syntax tree of the (one) sub-

program being analyzed. Constructs the CFG as it goes.

procedure Process_While_Paths(E : Element) is

My_StatementList : Statement_List := Loop_Statements(E);

Predicate : Element := While_Condition(E);

Old_Current : Vertex_Index_Type;

begin

Add_Simple_Vertex(Predicate);

Old_Current := Current_Vertex;

for I in My_StatementList’Range loop

Process_Construct(My_StatementList(I));

end loop;

Create_Edge(CFG, Current_Vertex, Old_Current);

Current_Vertex := Old_Current;

end Process_While_Paths;

13



Computing Dataflow

Multiple passes are made of the two dataflow equations until

Changed remains false.

-- forall i . (Out[i] = D[i] U (In[i] - C[i]))

for I in Out_Vars’Range loop

Empty(Temp);

Empty(Dirty_Set);

Empty(Clean_Set);

DC(Get_Vertex(CFG, I), Dirty_Set, Clean_Set, In_Vars(I));

Temp := In_Vars(I) - Clean_Set;

Temp := Temp + Dirty_Set;

if Temp /= Out_Vars(I) then

Out_Vars(I) := Temp;

Changed := True;

end if;

end loop;

14



Computing Statement Effects

The dirty and clean sets are computed for each statement kind.

procedure Handle_Assignment is

Expr : Expression := Assignment_Expression(Vertex_Data);

Target : Expression := Assignment_Variable_Name(Vertex_Data);

Target_Name : Program_Text := Name_Image(Target);

begin

if Is_Tainted(Expr, Current_Tainted) then

Add_Element(D_Result, Target_Name);

else

Add_Element(C_Result, Target_Name);

end if;

end Handle_Assignment;

15



Computing Expression Effects

Each expression kind is explored as appropriate. Note the recur-
sive processing of subexpressions.

case Expression_Kind(E) is

-- Literals are not tainted.

when An_Integer_Literal |

A_String_Literal |

An_Enumeration_Literal =>

return False;

-- Unwind one layer of parentheses using recursion.

when A_Parenthesized_Expression =>

return Is_Tainted(Expression_Parenthesized(E), Tainted);

-- Most expressions are function calls (eg built-in operators).

when A_Function_Call =>

return Handle_Function_Call;

end case;

16



Computing Function Call Effects

case Get_Subprogram_Class(Function_Name_Image) is

when Input => return True;

when Sanitizing => return False;

when Passive =>

declare

Function_Arguments : Association_List :=

Function_Call_Parameters(E);

begin

for I in Function_Arguments’Range loop

if Is_Tainted(Function_Arguments(I), Tainted) then

return True;

end if;

end loop;

return False;

end;

end case;

17



Example

This example shows the sort of code ATC can currently handle.

while X < Y loop

Get(A); -- A is tainted.

A := F(A) + (2 * G(A));

Put(A); -- Possible error.

if A = 0 then

Get(A);

end if;

Put(A); -- Error: Might output a tainted value.

end loop;

If F and G are both sanitizing, ATC finds A untainted after the
assignment.

If G is only passive, then ATC (correctly) finds A tainted after
the assignment.

18



Limitations of Current Implementation

The current version of ATC suffers from a number of undesirable
limitations.

• Skips Declarative Region

• Analyzes Just One Subprogram

• Incomplete Support for Statements and Expressions

• Mishandles Named Parameter Associations and Default Ar-
guments

• No Support for Control Dependencies

19



Skips Declarative Region

Currently ATC ignores executable expressions in a subprogram’s

declarative region.

procedure Do_Something is

A : Integer := Read_A;

B : Integer := A + F(A);

begin

...

end Do_Something;

ATC assumes all local variables are initially untainted. Obviously

this is a significant problem with the current implementation.

20



Analyzes Just One Subprogram

Currently ATC only analyzes one subprogram. ATC should de-

duce the taint classification of each subprogram encountered and

add that information to its database for use in future analysis.

procedure Outer is

function Inner(A : Integer) return Integer is ...

-- Deduce the classification for Inner.

begin

X := Inner(Y); -- Use deduced classification here.

end Outer;

Analyzing entire packages could be done similarly.

21



No Whole Program Analysis

ATC could first explore all packages in the main procedure’s

context clause (recursively), using the approach mentioned pre-

viously, and then analyze the main procedure.

with Ada.Text_IO;

with Numerics.Extended_Integer;

with Crypto.Hashes;

-- Analyze all subprograms in these packages.

procedure Main is

begin

-- Analyze Main using information collected previously.

end Main;

22



Incomplete Support for Statements

Currently ATC only understands a subset of Ada control flow

constructs. Here is an example of an unsupported construct

loop

...

exit when X < Y;

...

end loop;

The CFG generator doesn’t know how to handle the exit state-

ment and will raise an exception if it sees one.

23



Incomplete Support for Expressions

Currently ATC only understands a subset of Ada expression con-
structs. Examples of expression kinds not supported include

• Record field selection

• Array and record aggregates

• Attribute expressions

• Short circuit expressions

• Type conversions

This list is not exhaustive. Function Is Tainted will raise an
exception if it encounters a form it doesn’t recognize.

24



Mishandles Named Parameter Associations

Currently ATC gets confused when seeing named parameter as-

sociations in an “unnatural” order. It also ignores default argu-

ments.

procedure P(A : Integer; B : Integer; C : Integer := 0);

...

P(B => 2, A => 1);

ASIS-for-GNAT does not implement “normalized” parameter as-

sociation lists, which would make dealing with this trivial.

ATC could untangle the associations manually, but currently

does not do so.

25



No Support for Control Dependencies

Currently ATC ignores taintedness added due to control depen-

dencies.

if X < Y then

A := 1;

else

A := 2;

end if;

If the expression X < Y has a tainted value, the user can control

which assignment takes place. Thus A becomes tainted.

All variables written under the control of a tainted predicate

should be marked tainted regardless of the expressions that are

used to write those variables.

26



Future Work

Ada is a rich language. Full taint checking would be involved.

• Dispatching Calls, Subprogram Access

• Exceptions

• Tainted Types

• Access Types

• Generic Units

• Tasking

27



Dispatching Calls

procedure Do_Something_With(Object : in T’Class) is

begin

Operate_On(Object);

end Do_Something_With;

If Operate On is dispatching, the precise procedure Operate On calls

depends on Object’s runtime type and is not known to the com-

piler (or ASIS).

ATC could require all corresponding dispatching subprograms

have the same taint classification.

28



Subprogram Access

type Error_Handler_Type is

access procedure(Message : String);

Current_Handler : Error_Handler_Type := Logger’Access;

...

Current_Handler("Bad thing happened");

As with dispatching calls, the precise subprogram invoked can

only be known at runtime.

ATC could require the programmer to annotate type declarations

with taint classification information and then enforce consistency

of usage (in effect, extend the Ada type system).

29



Exceptions

begin

Get(A); -- A is tainted.

Do_Something;

A := Clean(A); -- A is not tainted.

Do_Something_Else;

exception

when Constraint_Error =>

Put(A); -- Is A tainted?

end;

Exceptions complicate control flow.

ATC could assume that if A is tainted anywhere in the block, it

is tainted in the exception handlers.

30



Tainted Types

A : Integer := Read_A;

subtype Restricted_Type is Integer range 0..A;

X : Restricted_Type := 10;

Subtypes can have dynamic ranges and thus can use potentially

tainted values in their definitions.

Ada inserts run-time checks to ensure that values are in bounds.

However, a malicious user could force an inappropriate range and

thus force (or prevent) exceptions under certain cases.

ATC could define a notion of a “tainted type” and then take any

values of that type as unconditionally tainted.

31



Access Types

type Integer_Ptr is access Integer;

P1 : Integer_Ptr := new Integer’(1);

P2 : Integer_Ptr := P1;

...

P1.all := Read_Value; -- Now P2.all is tainted.

Access types are Ada’s pointers. They bring issues of aliasing

and corresponding alias analysis.

Ada 95 allows pointers to point at explicitly declared variables.

However such usage requires special syntax (both on the decla-

ration of the pointer and of the target object).

32



Generic Units

generic

with procedure Error_Handler(Message : String);

type Restricted_Type is range <>;

package Whatever is

...

end Whatever;

Unlike dispatching calls, generics are handled at compile time.

ATC could attempt to analyze each instantiation separately. Al-

ternatively ATC could require the programmer to annotate the

generic formal parameters with taint classification information

and then enforce that usage when the generic unit is instanti-

ated.

33



Tasking

entry Meeting(Data : in Integer; Result : out Integer);

...

accept Meeting(Data : in Integer; Result : out Integer) do

Local_Storage := Data;

Result := Temporary_Result;

end Meeting;

Concurrency always adds complications.

It may be possible to assign taint classifications to entry/accept

pairs.

However, Ada 95’s tasking model is reasonably rich. Many issues

to consider.

34



Demonstration!

35



Questions

?

36


