

Turing Machines

Vermont Technical College
Peter C. Chapin

Hilbert's Problems

● David Hilbert gave a talk at the International
Congress of Mathematicians in 1900 (Paris,
France).

● Posed several problems, all unsolved at the
time, to challenge the community.
– “Can solutions be found during the 20th century?”

● Problems chosen because Hilbert felt their
solutions would be enlightening.

Diophantine Equations

● Problem #10: Find an “effective procedure” to
determine if any given Diophantine equation
with integer coefficients has an integer solution.

● Diophantine equations are polynomials with
arbitrary number of unknowns.
– Do the equations below have integers x, y, z, and w

that satisfy them? How can you tell?

6x3 y2−2 z4=0

19 x2−3 y44 z8−13w5=0

“Effective Procedure?”

● Hilbert used the term “effective procedure”
– Today we would call it an algorithm.
– But what does that really mean?

● 1930s... much research done on the subject of
computability.
– What does it mean to say something is

computable?
– What are the limits of computability?
– What, exactly, is an algorithm?

● Must consume finite resources!

Turing Machines

● Alan Turing devised a model of computation
now called a “Turing Machine.”
– Very simple theoretical device.
– Not a real machine that you would build or use.

● Turing used his machines to reason about the
nature of computation
– ... and it's limits.

The Machine

1 0 1 1

“Tape” with each cell either blank for filled with a symbol from a
finite “tape alphabet.” The symbols 1 and 0 are sufficient, but other
alphabets are also okay. The tape is indefinitely long to the right.

Head that can
read or write
symbols (or
blanks) to the
tape. Head can
move left or right
one position at a
time.

Accept Reject

Start

1 2

(0, 0, R)

(1/b, 0, R)

(0/1/b, 1, L)

(0, 1, L)

(1/b, 1, R)

State machine that forms
the Turing machine's
“program.” Describes the
action of the machine.

How It Works

● The input is put on the tape.
● The machine is initialized:

– The head is put over the leftmost cell.
– The machine is put into the start state.

● The machine makes “moves” as follows:
– It reads the tape.
– Based on the current state and the symbol read

● It writes a symbol onto the tape.
● Moves the head.

● Execution continues until accept or reject.

Model of Imperative Languages

● Turing Machines simulate imperative languages
– Program reads/writes to tape (memory).
– Thus TM programs use mutable data.
– Memory (tape) contents control machine's

action by directing it into different states.

Church-Turing Thesis

● A Turing Machine can compute every
computable function.
– Not provable because we don't have a good

definition of “computable function.” So...
● Defn: An algorithm is that which can be

computed on a Turning Machine.
– We use a Turning machine to provide that

definition.
● Rationale: No model of computation has ever

been found that can compute more things than
a Turing machine can compute!

Amazing!

● Such a simple device...
– Yet it can simulate all other models of computation.

● How?
– Tape input is entirely general... any kind of data can

be encoded.
– Machine can read/write the tape, including arbitrary

blank space at the end.
– Has unlimited space and time available to it.

● Your laptop computer is no more powerful.
– In fact, it is less powerful!

Can It Compute Everything?

● No!
– Some problems can not be solved by a Turning

machine!
– Such problems are said to be “undecidable.” Their

solutions are beyond the reach of computers to
answer.

Post Correspondence Problem

A BB C

ABB B AC

Several infinitely high
stacks of tiles. Every
tile in a stack is the
same type.

A BB BB

ABB B B

= ABBBB

= ABBBB

Draw tiles from the stacks
and arrange to match the top
string and bottom string.

Match found!

Is there an algorithm that, given a collection of tile types, can
answer “yes” or “no” depending on if a match exists or not?

No such algorithm exists!

Halting Problem

● Given Turing machine M, encode it's program in
some suitable way, <M>.

● Put <M>, together with an input string w, onto a
Turing machine tape.

● Write a program for this other machine that
answers: “Does M halt when given w as input?”

● No such algorithm exists!

Undecidability Everywhere!

● In fact, most interesting properties of software
are undecidable.
– Can a compiler know, in general, when it has fully

optimized a piece of code?
● NO!

– Can you statically analyze a program to see if it has
some useful security property?

● Generally NO!... depending on the property.

– Can you statically analyze a program to make sure
it has no infinite loops?

● NO! You are trying to solve the halting problem!

Hilbert's 10th Problem Revisited

● We can now state Hilbert's 10th problem more
precisely.
– Let <D> be a suitable encoding of a Diophantine

equation. Can a Turning machine program be
written that accepts <D> if the equation has integer
solutions and rejects it otherwise?

– RESOLVED: The Matiyasevich theorem, proved in
the 1970, shows that the question is undecidable.

– No such algorithm exists.
– Hilbert was right: resolving this problem was very

enlightening.

Why Do We Care?

● A Turing Machine is the theoretical basis of all
imperative programming languages.
– The steps taken by the program are like the states

of the TM.
– The memory read/written by the program is like the

TM's tape.
● Any programming language that can simulate a

Turing machine is Turing Complete.
– It is thus capable of computing all things

computable.
● All useful PLs are Turing Complete

Non-Deterministic TMs

● So far we’ve covered deterministic TMs
– Only one choice in state diagram for a given

tape symbol. (Note: no choice is understood
to mean a transition to REJECT).

● A non-deterministic TM allows multiple
transitions from a state for the same tape
symbol.

The Machine

1 1 0 1

Accept Reject

Start

1 2

(0, 0, R)

(1/b, 0, R)

(0/1/b, 1, L)

(0, 1, L)

(1/b, 1, R)

(1, 0, R)

When a choice is possible,
the machine splits with each
branch taking a different choice.
All branches make the next
move in parallel, etc.

Execution halts when one branch
reaches ACCEPT or all branches
reach REJECT.

More Powerful?

● Clearly a ND Turing Machine can do everything
a deterministic one can do.

– It doesn’t even have to use its non-determinism
● Can a deterministic TM do everything a ND

Turning Machine can do?
– Yes!
– The proof shows how a deterministic machine

can simulate the action of the ND TM. It takes
advantage of the indefinite tape size to
simulate the states and tapes of all branches.

Running Time?

● A TM can execute in polynomial time any
algorithm a “normal” computer can execute in
polynomial time.

– But typically with a higher degree polynomial
since tape (memory) access is O(n).

● However, a ND TM can make an exponentially
large number of branches

– Consider a two-way choice at each step in all
branches: 2, 4, 8, 16, etc.

– All branches run in parallel

Running Time

● In n steps, a ND TM can create (e. g., 2n)
branches, each of which could run a polynomial
time algorithm, all in parallel.

● A deterministic TM would need O(2n) time to
simulate this.

Polynomial Time Checkers

● A polynomial time checker is an algorithm that
can verify a solution to a problem in polynomial
time.

● Imagine enumerating all potential solutions and
then using such a checker to find one that is an
actual solution.

– If there were exponentially many such potential
solutions, a deterministic TM would require
exponential time to do this.

– A ND TM could do this in polynomial time.

P vs NP

● P
– The class (set) of problems which a

deterministic TM can solve in polynomial time.
● NP

– The class (set) of problems which a ND TM can
solve in polynomial time.

● Clearly
– … since a ND TM can just use whatever

algorithm works for the deterministic machine.

P⊆NP

Hamiltonian Path
Starting at a given vertex is there
a path that visits every other vertex
exactly once? (Yes… green path:
1, 4, 5, 2, 3, 6)

1

4

3

2

2

5 6
This graph has multiple Hamiltonian Paths:
1, 2, 3, 6, 5, 4 and 1, 4, 5, 6, 3, 2. In fact,
1, 2, 3, 6, 5, 4, 1 is a Hamiltonian Cycle.

Hamiltonian Path

● There is a polynomial time checker:
– Walk the path in O(V) time and…

● Check off each vertex that is encountered
● Verify that no vertex is encountered twice

● One algorithm for finding the Hamiltonian path:
– Enumerate all permutations of vertexes: O(n!)
– Execute the checker for each permutation
– Halt when the a valid path is found.

ND TM Approach

● The non-deterministic TM can do this quickly:
– Create a separate branch for each possible

permutation of vertexes
– Run the checker on all permutations at once
– Halt if any of the branches accept
– This is polynomial time!

● Thus Hamiltonian Path is in NP
– But is it in P also? Can you think of a way to

solve this problem on a deterministic machine
that will run in polynomial time?

3SAT

● Another example: 3SAT
– Consider a finite set of boolean variables, x1, x2,

…, xn.

– Let E be a boolean expression which is a
conjunction of disjunctions. Every disjoint
involves at most 3 variables.

–

– The problem is to find values for the boolean
variables that satisfy (“SAT”) the expression (i.
e., make it True)

3SAT Verifier

● There is an obvious polynomial time verifier:
– Given a proposed solution, substitute the values

into the expression and evaluate it.
● Thus we have this algorithm for solving 3SAT:

– Enumerate all possible sets of values for the
variables: O(2n)

– Run the verifier on each potential solution until
one is found that works (if any).

● 3SAT is in NP

SAT

● 3SAT is a special case of the satisfiability
problem (SAT).

– In SAT, the number of disjoints in each
disjunction can be any number, not just 3.

– It is clear that SAT is also in NP.

Polynomial Time Reduction

● Let…
– … P1 and P2 be two different problems (e. g., P1

might be SAT and P2 might be 3SAT).
– … X be an instance of P1 and Y be an instance

of P2.
● If there is an algorithm that runs in polynomial

time that can convert X to Y…
– … we say that P1 can be reduced to P2.

Polynomial Time Reduction

● If …
– … P1 can be reduced to P2

– … and there is a polynomial time solver for P2

– … then there is a polynomial time solver for P1

● For each instance of P1 ...
– … reduce it (quickly) to an instance of P2

– … solve the P2 instance (quickly)
● Note: It is also important to transform the

solution of the P2 instance back to a solution of
the P1 instance “quickly.”

SAT vs 3SAT

● SAT can be reduced to 3SAT
– Proof: … elided … (see any textbook on

computational complexity)
– This means you can transform a more general

SAT instance into a more restricted 3SAT
instance.

● So what??

NP-Complete

● It turns out that: any problem in NP can be
reduced to SAT!

– Wow, really?
– Yes!
– Proof: … elided … (Cook’s Theorem)

● Thus
– 3SAT is also NP-Complete
– Because any problem in NP can be reduced to

3SAT by first reducing it to SAT and then
reducing the SAT instance to 3SAT.

Reduction of Hamiltonian Cycle

● Let’s convert an instance of Hamiltonian Cycle
to SAT…

– Assign a boolean variable to every edge.
● The variable is True if that edge is part of the

cycle; False otherwise.

– At each vertex there must be exactly two edges
that are part of the cycle. No more no less.

● The cycle must enter the vertex and exit it.
● The cycle must only enter/exit once.

Reduction of Hamiltonian Cycle

X1 X2

X3 X4

etc...X 1∧X 2∧(¬X 3)∧(¬X 4)

Combine expressions for each configuration
Using OR. Form a similar expression for
Each vertex and combine all those with AND.
Use boolean algebra to reformulate into
CNF. The result is a SAT instance.

Reduction of Hamiltonian Cycle

● Suppose you had an efficient 3SAT solver…
– You can now solve Hamiltonian Cycle efficiently
– Reduce your Hamiltonian Cycle instance to SAT
– Reduce your SAT instance to 3SAT
– Use your efficient SAT solver

P = NP?

● Armed with an efficient 3SAT solver you can…
– … efficiently solve EVERY problem in NP
– In that case, P = NP. The two complexity

classes are the same.
● The same is true for any NP-complete problem.

– If you can find an efficient solver for even one of
them (and there are many)…

– … you can efficiently solve them all!

Hamiltonian Cycle

● Hamiltonian Cycle is in NP
– It is also NP-complete

● To prove this you must find a way of reducing
instances of a known NP-complete problem to
instances of Hamiltonian Cycle.

– SAT to 3SAT
– 3SAT to VC (Vertex Cover)
– VC to HC (Hamiltonian Cycle)

Is Every Problem NP-Complete?

● No!
– It can be shown that if P != NP there must be

some problems that are in NP but that are not
NP-complete

– Those problems can be reduced to any NP-
complete problem, of course, but no NP-
complete problem can be reduced to them
(since that would make them NP-complete
also)

P != NP

● Although not known for sure, this is the
expected reality

– Thus there are some problems (the NP-
complete ones) for which no efficient solution
is possible.

– There are also problems in NP that are not NP-
complete but for which no efficient solution is
possible, but it’s less clear which they are.

– For any given problem that isn’t NP-complete,
maybe we are not smart enough to find a fast
way to solve it. That is, maybe the problem is
really in P.

Unfortunately...

● Many problems of interest are NP-complete
– There are dozens of known NP-compete

problems
– Mostly all have been proved NP-complete by

finding a reduction from a previously known
NP-complete problem

– Except for SAT. The proof of SAT’s NP-
completeness was done from first principles
(and is based on Turning Machines)

Software Engineering?

● What’s a software engineer to make of this?
– Give up? Of course not!

● Note…
– In some applications n is small so exponential

time isn’t actually a problem.
– Often there are approximation algorithms that

solve these problems correctly in most cases
or to a good approximation in most cases.

– When up against an NP-complete problem,
don’t expect to find a fast way to always solve
it! Know your limits.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

