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Hilbert's Problems

● David Hilbert gave a talk at the  International 
Congress of Mathematicians in 1900 (Paris, 
France).

● Posed several problems, all unsolved at the 
time, to challenge the community.
– “Can solutions be found during the 20th century?”

● Problems chosen because Hilbert felt their 
solutions would be enlightening.



  

Diophantine Equations

● Problem #10: Find an “effective procedure” to 
determine if any given Diophantine equation 
with integer coefficients has an integer solution.

● Diophantine equations are polynomials with 
arbitrary number of unknowns.
– Do the equations below have integers x, y, z, and w 

that satisfy them? How can you tell?

6x3 y2−2 z4=0

19 x2−3 y44 z8−13w5=0



  

“Effective Procedure?”

● Hilbert used the term “effective procedure”
– Today we would call it an algorithm.
– But what does that really mean?

● 1930s... much research done on the subject of 
computability.
– What does it mean to say something is 

computable?
– What are the limits of computability?
– What, exactly, is an algorithm?

● Must consume finite resources!



  

Turing Machines

● Alan Turing devised a model of computation 
now called a “Turing Machine.”
– Very simple theoretical device.
– Not a real machine that you would build or use.

● Turing used his machines to reason about the 
nature of computation
– ... and it's limits.



  

The Machine

1 0 1 1

“Tape” with each cell either blank for filled with a symbol from a
finite “tape alphabet.” The symbols 1 and 0 are sufficient, but other
alphabets are also okay. The tape is indefinitely long to the right.

Head that can
read or write
symbols (or
blanks) to the
tape. Head can
move left or right
one position at a
time.

Accept Reject

Start

1 2

(0, 0, R)

(1/b, 0, R)

(0/1/b, 1, L)

(0, 1, L)

(1/b, 1, R)

State machine that forms
the Turing machine's
“program.” Describes the
action of the machine.



  

How It Works

● The input is put on the tape.
● The machine is initialized:

– The head is put over the leftmost cell.
– The machine is put into the start state.

● The machine makes “moves” as follows:
– It reads the tape.
– Based on the current state and the symbol read

● It writes a symbol onto the tape.
● Moves the head.

● Execution continues until accept or reject.



  

Model of Imperative Languages

● Turing Machines simulate imperative languages
– Program reads/writes to tape (memory).
– Thus TM programs use mutable data.
– Memory (tape) contents control machine's 

action by directing it into different states.



  

Church-Turing Thesis

● A Turing Machine can compute every 
computable function.
– Not provable because we don't have a good 

definition of “computable function.” So...
● Defn: An algorithm is that which can be 

computed on a Turning Machine.
– We use a Turning machine to provide that 

definition.
● Rationale: No model of computation has ever 

been found that can compute more things than 
a Turing machine can compute!



  

Amazing!

● Such a simple device...
– Yet it can simulate all other models of computation.

● How?
– Tape input is entirely general... any kind of data can 

be encoded.
– Machine can read/write the tape, including arbitrary 

blank space at the end.
– Has unlimited space and time available to it.

● Your laptop computer is no more powerful.
– In fact, it is less powerful!



  

Can It Compute Everything?

● No!
– Some problems can not be solved by a Turning 

machine!
– Such problems are said to be “undecidable.” Their 

solutions are beyond the reach of computers to 
answer.



  

Post Correspondence Problem

A BB C

ABB B AC

Several infinitely high
stacks of tiles. Every
tile in a stack is the
same type.

A BB BB

ABB B B

= ABBBB

= ABBBB

Draw tiles from the stacks
and arrange to match the top
string and bottom string.

Match found!

Is there an algorithm that, given a collection of tile types, can
answer “yes” or “no” depending on if a match exists or not?

No such algorithm exists!



  

Halting Problem

● Given Turing machine M, encode it's program in 
some suitable way, <M>.

● Put <M>, together with an input string w, onto a 
Turing machine tape.

● Write a program for this other machine that 
answers: “Does M halt when given w as input?”

● No such algorithm exists!



  

Undecidability Everywhere!

● In fact, most interesting properties of software 
are undecidable.
– Can a compiler know, in general, when it has fully 

optimized a piece of code?
● NO!

– Can you statically analyze a program to see if it has 
some useful security property?

● Generally NO!... depending on the property.

– Can you statically analyze a program to make sure 
it has no infinite loops?

● NO! You are trying to solve the halting problem!



  

Hilbert's 10th Problem Revisited

● We can now state Hilbert's 10th problem more 
precisely.
– Let <D> be a suitable encoding of a Diophantine 

equation. Can a Turning machine program be 
written that accepts <D> if the equation has integer 
solutions and rejects it otherwise?

– RESOLVED: The Matiyasevich theorem, proved in 
the 1970, shows that the question is undecidable.

– No such algorithm exists.
– Hilbert was right: resolving this problem was very 

enlightening.



  

Why Do We Care?

● A Turing Machine is the theoretical basis of all 
imperative programming languages.
– The steps taken by the program are like the states 

of the TM.
– The memory read/written by the program is like the 

TM's tape.
● Any programming language that can simulate a 

Turing machine is Turing Complete.
– It is thus capable of computing all things 

computable.
● All useful PLs are Turing Complete



  

Non-Deterministic TMs

● So far we’ve covered deterministic TMs
– Only one choice in state diagram for a given 

tape symbol. (Note: no choice is understood 
to mean a transition to REJECT).

● A non-deterministic TM allows multiple 
transitions from a state for the same tape 
symbol.



  

The Machine

1 1 0 1

Accept Reject

Start

1 2

(0, 0, R)

(1/b, 0, R)

(0/1/b, 1, L)

(0, 1, L)

(1/b, 1, R)

(1, 0, R)

When a choice is possible,
the machine splits with each
branch taking a different choice.
All branches make the next
move in parallel, etc.

Execution halts when one branch
reaches ACCEPT or all branches
reach REJECT.



  

More Powerful?

● Clearly a ND Turing Machine can do everything 
a deterministic one can do.

– It doesn’t even have to use its non-determinism
● Can a deterministic TM do everything a ND 

Turning Machine can do?
– Yes!
– The proof shows how a deterministic machine 

can simulate the action of the ND TM. It takes 
advantage of the indefinite tape size to 
simulate the states and tapes of all branches.



  

Running Time?

● A TM can execute in polynomial time any 
algorithm a “normal” computer can execute in 
polynomial time.

– But typically with a higher degree polynomial 
since tape (memory) access is O(n).

● However, a ND TM can make an exponentially 
large number of branches

– Consider a two-way choice at each step in all 
branches: 2, 4, 8, 16, etc.

– All branches run in parallel



  

Running Time

● In n steps, a ND TM can create (e. g., 2n) 
branches, each of which could run a polynomial 
time algorithm, all in parallel.

● A deterministic TM would need O(2n) time to 
simulate this.



  

Polynomial Time Checkers

● A polynomial time checker is an algorithm that 
can verify a solution to a problem in polynomial 
time.

● Imagine enumerating all potential solutions and 
then using such a checker to find one that is an 
actual solution.

– If there were exponentially many such potential 
solutions, a deterministic TM would require 
exponential time to do this.

– A ND TM could do this in polynomial time.



  

P vs NP

● P
– The class (set) of problems which a 

deterministic TM can solve in polynomial time.
● NP

– The class (set) of problems which a ND TM can 
solve in polynomial time.

● Clearly 
– … since a ND TM can just use whatever 

algorithm works for the deterministic machine.

P⊆NP



  

Hamiltonian Path
Starting at a given vertex is there
a path that visits every other vertex
exactly once? (Yes… green path:
1, 4, 5, 2, 3, 6)

1

4

3

2

2

5 6
This graph has multiple Hamiltonian Paths:
1, 2, 3, 6, 5, 4 and 1, 4, 5, 6, 3, 2. In fact,
1, 2, 3, 6, 5, 4, 1 is a Hamiltonian Cycle.



  

Hamiltonian Path

● There is a polynomial time checker:
– Walk the path in O(V) time and…

● Check off each vertex that is encountered
● Verify that no vertex is encountered twice

● One algorithm for finding the Hamiltonian path:
– Enumerate all permutations of vertexes: O(n!)
– Execute the checker for each permutation
– Halt when the a valid path is found.



  

ND TM Approach

● The non-deterministic TM can do this quickly:
– Create a separate branch for each possible 

permutation of vertexes
– Run the checker on all permutations at once
– Halt if any of the branches accept
– This is polynomial time!

● Thus Hamiltonian Path is in NP
– But is it in P also? Can you think of a way to 

solve this problem on a deterministic machine 
that will run in polynomial time?



  

3SAT

● Another example: 3SAT
– Consider a finite set of boolean variables, x1, x2, 

…, xn.

– Let E be a boolean expression which is a 
conjunction of disjunctions. Every disjoint 
involves at most 3 variables.

–

– The problem is to find values for the boolean 
variables that satisfy (“SAT”) the expression (i. 
e., make it True)



  

3SAT Verifier

● There is an obvious polynomial time verifier:
– Given a proposed solution, substitute the values 

into the expression and evaluate it.
● Thus we have this algorithm for solving 3SAT:

– Enumerate all possible sets of values for the 
variables: O(2n)

– Run the verifier on each potential solution until 
one is found that works (if any).

● 3SAT is in NP



  

SAT

● 3SAT is a special case of the satisfiability 
problem (SAT).

– In SAT, the number of disjoints in each 
disjunction can be any number, not just 3.

– It is clear that SAT is also in NP.



  

Polynomial Time Reduction

● Let…
– … P1 and P2 be two different problems (e. g., P1 

might be SAT and P2 might be 3SAT).
– … X be an instance of P1 and Y be an instance 

of P2.
● If there is an algorithm that runs in polynomial 

time that can convert X to Y…
– … we say that P1 can be reduced to P2.



  

Polynomial Time Reduction

● If …
– … P1 can be reduced to P2

– … and there is a polynomial time solver for P2

– … then there is a polynomial time solver for P1

● For each instance of P1 ...
– … reduce it (quickly) to an instance of P2

– … solve the P2 instance (quickly)
● Note: It is also important to transform the 

solution of the P2 instance back to a solution of 
the P1 instance “quickly.”



  

SAT vs 3SAT

● SAT can be reduced to 3SAT
– Proof: … elided … (see any textbook on 

computational complexity)
– This means you can transform a more general 

SAT instance into a more restricted 3SAT 
instance.

● So what??



  

NP-Complete

● It turns out that: any problem in NP can be 
reduced to SAT!

– Wow, really?
– Yes!
– Proof: … elided … (Cook’s Theorem)

● Thus
– 3SAT is also NP-Complete
– Because any problem in NP can be reduced to 

3SAT by first reducing it to SAT and then 
reducing the SAT instance to 3SAT.



  

Reduction of Hamiltonian Cycle

● Let’s convert an instance of Hamiltonian Cycle 
to SAT…

– Assign a boolean variable to every edge.
● The variable is True if that edge is part of the 

cycle; False otherwise.

– At each vertex there must be exactly two edges 
that are part of the cycle. No more no less.

● The cycle must enter the vertex and exit it.
● The cycle must only enter/exit once.



  

Reduction of Hamiltonian Cycle

X1 X2

X3 X4

etc...X 1∧X 2∧(¬X 3)∧(¬X 4)

Combine expressions for each configuration
Using OR. Form a similar expression for
Each vertex and combine all those with AND.
Use boolean algebra to reformulate into
CNF. The result is a SAT instance. 



  

Reduction of Hamiltonian Cycle

● Suppose you had an efficient 3SAT solver…
– You can now solve Hamiltonian Cycle efficiently
– Reduce your Hamiltonian Cycle instance to SAT
– Reduce your SAT instance to 3SAT
– Use your efficient SAT solver



  

P = NP?

● Armed with an efficient 3SAT solver you can…
– … efficiently solve EVERY problem in NP
– In that case, P = NP. The two complexity 

classes are the same.
● The same is true for any NP-complete problem.

– If you can find an efficient solver for even one of 
them (and there are many)…

– … you can efficiently solve them all!



  

Hamiltonian Cycle

● Hamiltonian Cycle is in NP
– It is also NP-complete

● To prove this you must find a way of reducing 
instances of a known NP-complete problem to 
instances of Hamiltonian Cycle.

– SAT to 3SAT
– 3SAT to VC (Vertex Cover)
– VC to HC (Hamiltonian Cycle)



  

Is Every Problem NP-Complete?

● No!
– It can be shown that if P != NP there must be 

some problems that are in NP but that are not 
NP-complete

– Those problems can be reduced to any NP-
complete problem, of course, but no NP-
complete problem can be reduced to them 
(since that would make them NP-complete 
also)



  

P != NP

● Although not known for sure, this is the 
expected reality

– Thus there are some problems (the NP-
complete ones) for which no efficient solution 
is possible.

– There are also problems in NP that are not NP-
complete but for which no efficient solution is 
possible, but it’s less clear which they are.

– For any given problem that isn’t NP-complete, 
maybe we are not smart enough to find a fast 
way to solve it. That is, maybe the problem is 
really in P.



  

Unfortunately...

● Many problems of interest are NP-complete
– There are dozens of known NP-compete 

problems
– Mostly all have been proved NP-complete by 

finding a reduction from a previously known 
NP-complete problem

– Except for SAT. The proof of SAT’s NP-
completeness was done from first principles 
(and is based on Turning Machines)



  

Software Engineering?

● What’s a software engineer to make of this?
– Give up? Of course not!

● Note…
– In some applications n is small so exponential 

time isn’t actually a problem.
– Often there are approximation algorithms that 

solve these problems correctly in most cases 
or to a good approximation in most cases.

– When up against an NP-complete problem, 
don’t expect to find a fast way to always solve 
it! Know your limits.
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