Turing Machines

Vermont Technical College Peter C. Chapin

Hilbert's Problems

- David Hilbert gave a talk at the International Congress of Mathematicians in 1900 (Paris, France).
- Posed several problems, all unsolved at the time, to challenge the community.
 - "Can solutions be found during the 20th century?"
- Problems chosen because Hilbert felt their solutions would be enlightening.

Diophantine Equations

- Problem #10: Find an "effective procedure" to determine if any given Diophantine equation with integer coefficients has an integer solution.
- Diophantine equations are polynomials with arbitrary number of unknowns.
 - Do the equations below have integers x, y, z, and w that satisfy them? How can you tell?

$$6x + 3y^2 - 2z^4 = 0$$

$$19x^2 - 3y^4 + 4z^8 - 13w^5 = 0$$

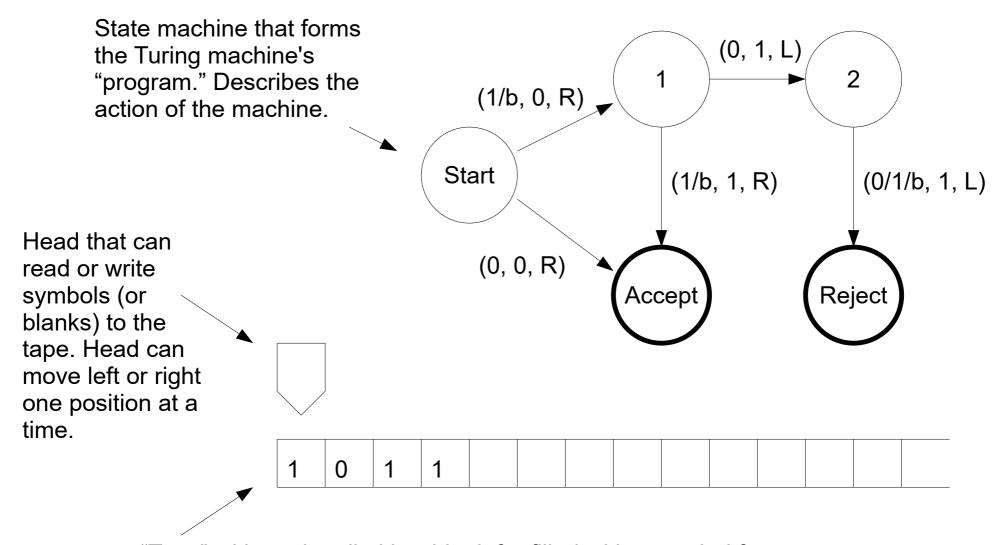
"Effective Procedure?"

- Hilbert used the term "effective procedure"
 - Today we would call it an algorithm.
 - But what does that really mean?
- 1930s... much research done on the subject of computability.
 - What does it mean to say something is computable?
 - What are the limits of computability?
 - What, exactly, is an algorithm?
- Must consume finite resources!

Turing Machines

- Alan Turing devised a model of computation now called a "Turing Machine."
 - Very simple theoretical device.
 - Not a real machine that you would build or use.
- Turing used his machines to reason about the nature of computation
 - ... and it's limits.

The Machine



"Tape" with each cell either blank for filled with a symbol from a finite "tape alphabet." The symbols 1 and 0 are sufficient, but other alphabets are also okay. The tape is *indefinitely* long to the right.

How It Works

- The input is put on the tape.
- The machine is initialized:
 - The head is put over the leftmost cell.
 - The machine is put into the start state.
- The machine makes "moves" as follows:
 - It reads the tape.
 - Based on the current state and the symbol read
 - It writes a symbol onto the tape.
 - Moves the head.
- Execution continues until accept or reject.

Model of Imperative Languages

- Turing Machines simulate imperative languages
 - Program reads/writes to tape (memory).
 - Thus TM programs use mutable data.
 - Memory (tape) contents control machine's action by directing it into different states.

Church-Turing Thesis

- A Turing Machine can compute every computable function.
 - Not provable because we don't have a good definition of "computable function." So...
- Defn: An algorithm is that which can be computed on a Turning Machine.
 - We use a Turning machine to provide that definition.
- Rationale: <u>No model of computation has ever</u> <u>been found that can compute more things than</u> <u>a Turing machine can compute!</u>

Amazing!

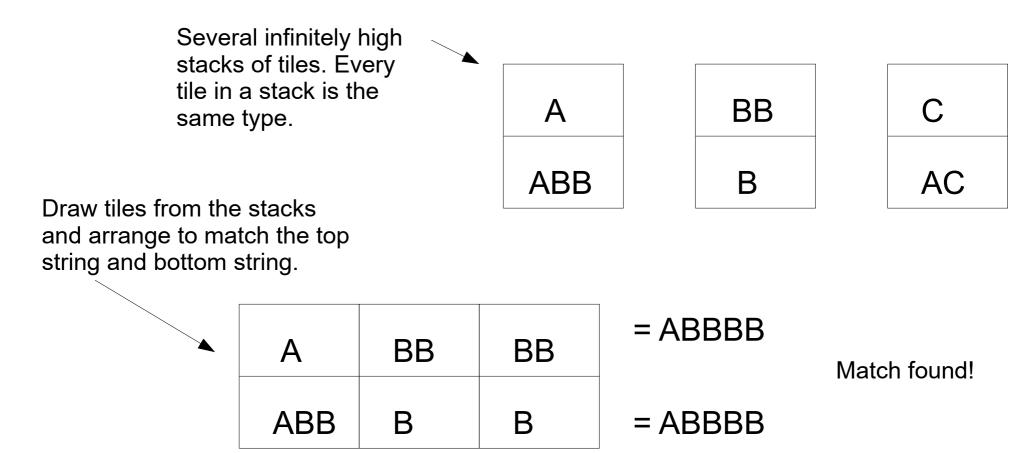
- Such a simple device...
 - Yet it can simulate all other models of computation.
- How?
 - Tape input is entirely general... any kind of data can be encoded.
 - Machine can read/write the tape, including arbitrary blank space at the end.
 - Has unlimited space and time available to it.
- Your laptop computer is no more powerful.
 - In fact, it is less powerful!

Can It Compute Everything?

No!

- Some problems can not be solved by a Turning machine!
- Such problems are said to be "undecidable." Their solutions are beyond the reach of computers to answer.

Post Correspondence Problem



Is there an algorithm that, given a collection of tile types, can answer "yes" or "no" depending on if a match exists or not?

No such algorithm exists!

Halting Problem

- Given Turing machine M, encode it's program in some suitable way, <M>.
- Put <M>, together with an input string w, onto a Turing machine tape.
- Write a program for this other machine that answers: "Does M halt when given w as input?"
- No such algorithm exists!

Undecidability Everywhere!

- In fact, most interesting properties of software are undecidable.
 - Can a compiler know, in general, when it has fully optimized a piece of code?
 - NO!
 - Can you statically analyze a program to see if it has some useful security property?
 - Generally NO!... depending on the property.
 - Can you statically analyze a program to make sure it has no infinite loops?
 - NO! You are trying to solve the halting problem!

Hilbert's 10th Problem Revisited

- We can now state Hilbert's 10th problem more precisely.
 - Let <D> be a suitable encoding of a Diophantine equation. Can a Turning machine program be written that accepts <D> if the equation has integer solutions and rejects it otherwise?
 - RESOLVED: The Matiyasevich theorem, proved in the 1970, shows that the question is undecidable.
 - No such algorithm exists.
 - Hilbert was right: resolving this problem was very enlightening.

Why Do We Care?

- A Turing Machine is the theoretical basis of all imperative programming languages.
 - The steps taken by the program are like the states of the TM.
 - The memory read/written by the program is like the TM's tape.
- Any programming language that can simulate a Turing machine is *Turing Complete*.
 - It is thus capable of computing all things computable.
- All useful PLs are Turing Complete

Non-Deterministic TMs

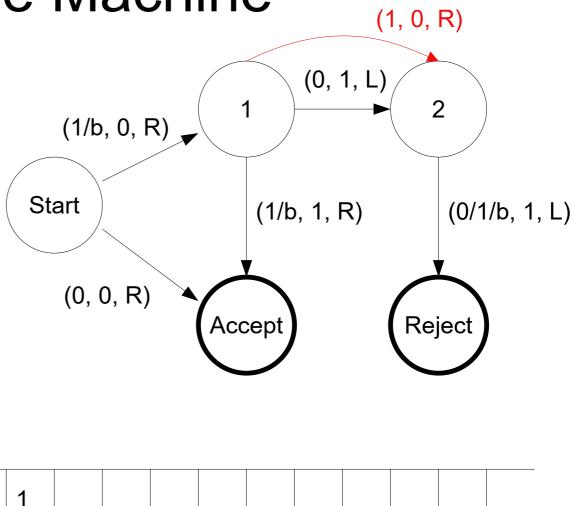
- So far we've covered deterministic TMs
 - Only one choice in state diagram for a given tape symbol. (Note: no choice is understood to mean a transition to REJECT).
- A non-deterministic TM allows multiple transitions from a state for the same tape symbol.

The Machine

When a choice is possible, the machine splits with each branch taking a different choice. All branches make the next move in parallel, etc.

Execution halts when one branch reaches ACCEPT or **all** branches reach REJECT.

0



More Powerful?

- Clearly a ND Turing Machine can do everything a deterministic one can do.
 - It doesn't even have to use its non-determinism
- Can a deterministic TM do everything a ND Turning Machine can do?
 - Yes!
 - The proof shows how a deterministic machine can simulate the action of the ND TM. It takes advantage of the indefinite tape size to simulate the states and tapes of all branches.

Running Time?

- A TM can execute in polynomial time any algorithm a "normal" computer can execute in polynomial time.
 - But typically with a higher degree polynomial since tape (memory) access is O(n).
- However, a ND TM can make an exponentially large number of branches
 - Consider a two-way choice at each step in all branches: 2, 4, 8, 16, etc.
 - All branches run in parallel

Running Time

- In n steps, a ND TM can create (e. g., 2ⁿ)
 branches, each of which could run a polynomial time algorithm, all in parallel.
- A deterministic TM would need $O(2^n)$ time to simulate this.

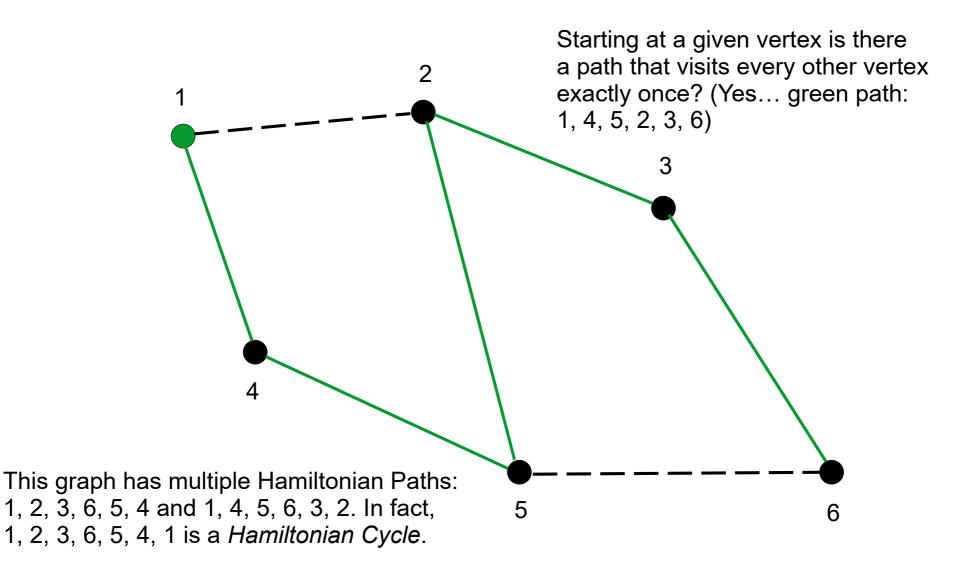
Polynomial Time Checkers

- A polynomial time checker is an algorithm that can verify a solution to a problem in polynomial time.
- Imagine enumerating all potential solutions and then using such a checker to find one that is an actual solution.
 - If there were exponentially many such potential solutions, a deterministic TM would require exponential time to do this.
 - A ND TM could do this in polynomial time.

P vs NP

- P
- The class (set) of problems which a deterministic TM can solve in polynomial time.
- NP
- The class (set) of problems which a ND TM can solve in polynomial time.
- Clearly $P \subseteq NP$
 - since a ND TM can just use whatever algorithm works for the deterministic machine.

Hamiltonian Path



Hamiltonian Path

- There is a polynomial time checker:
 - Walk the path in O(V) time and...
 - Check off each vertex that is encountered
 - Verify that no vertex is encountered twice
- One algorithm for finding the Hamiltonian path:
 - Enumerate all permutations of vertexes: O(n!)
 - Execute the checker for each permutation
 - Halt when the a valid path is found.

ND TM Approach

- The non-deterministic TM can do this quickly:
 - Create a separate branch for each possible permutation of vertexes
 - Run the checker on all permutations at once
 - Halt if any of the branches accept
 - This is polynomial time!
- Thus Hamiltonian Path is in NP
 - But <u>is it in P also?</u> Can you think of a way to solve this problem on a deterministic machine that will run in polynomial time?

3SAT

- Another example: 3SAT
 - Consider a finite set of boolean variables, x₁, x₂,
 ..., X_n.
 - Let E be a boolean expression which is a conjunction of disjunctions. Every disjoint involves at most 3 variables.
 - $E = (X_1 \lor (\neg X_3) \lor X_4) \land ((\neg X_2) \lor X_3 \lor (\neg X_4)) \land (X_1 \lor X_3 \lor (\neg X_4))$
 - The problem is to find values for the boolean variables that satisfy ("SAT") the expression (i. e., make it True)

3SAT Verifier

- There is an obvious polynomial time verifier:
 - Given a proposed solution, substitute the values into the expression and evaluate it.
- Thus we have this algorithm for solving 3SAT:
 - Enumerate all possible sets of values for the variables: $O(2^n)$
 - Run the verifier on each potential solution until one is found that works (if any).
- 3SAT is in NP

SAT

- 3SAT is a special case of the satisfiability problem (SAT).
 - In SAT, the number of disjoints in each disjunction can be any number, not just 3.
 - It is clear that SAT is also in NP.

Polynomial Time Reduction

- Let...
 - P₁ and P₂ be two different problems (e. g., P₁ might be SAT and P₂ might be 3SAT).
 - X be an instance of P₁ and Y be an instance of P₂.
- If there is an algorithm that runs in polynomial time that can convert X to Y...
 - ... we say that P₁ can be *reduced* to P₂.

Polynomial Time Reduction

- If ...
 - ... P₁ can be reduced to P₂
 - ... and there is a polynomial time solver for P₂
 - ... then there is a polynomial time solver for P₁
- For each instance of P₁ ...
 - ... reduce it (quickly) to an instance of P₂
 - ... solve the P₂ instance (quickly)
- Note: It is also important to transform the solution of the P₂ instance back to a solution of the P₁ instance "quickly."

SAT vs 3SAT

- SAT can be reduced to 3SAT
 - Proof: ... elided ... (see any textbook on computational complexity)
 - This means you can transform a more general SAT instance into a more restricted 3SAT instance.
- So what??

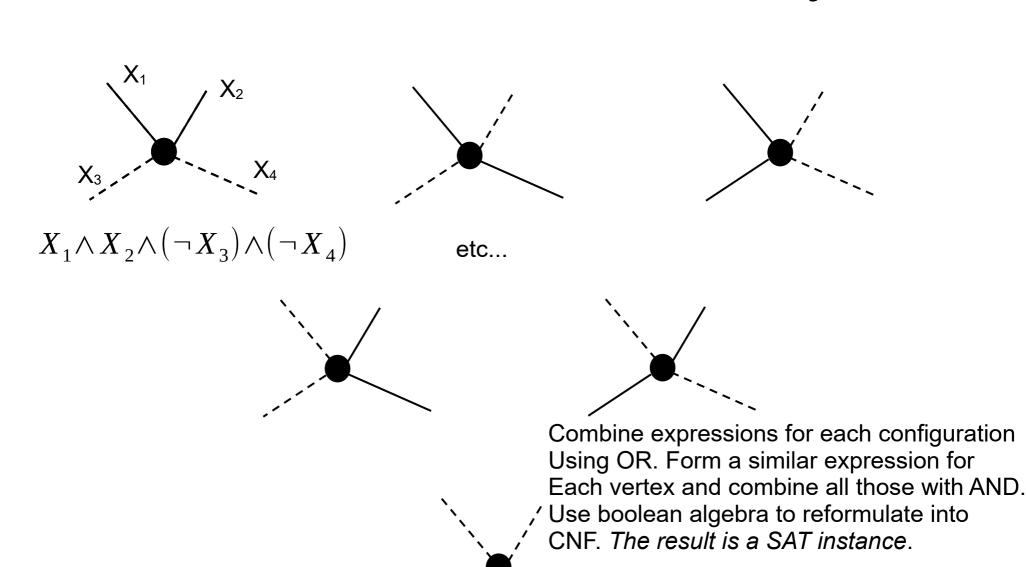
NP-Complete

- It turns out that: <u>any</u> problem in NP can be reduced to SAT!
 - Wow, really?
 - Yes!
 - Proof: ... elided ... (Cook's Theorem)
- Thus
 - 3SAT is also NP-Complete
 - Because any problem in NP can be reduced to 3SAT by first reducing it to SAT and then reducing the SAT instance to 3SAT.

Reduction of Hamiltonian Cycle

- Let's convert an instance of Hamiltonian Cycle to SAT...
 - Assign a boolean variable to every edge.
 - The variable is True if that edge is part of the cycle; False otherwise.
 - At each vertex there must be exactly two edges that are part of the cycle. No more no less.
 - The cycle must enter the vertex and exit it.
 - The cycle must only enter/exit once.

Reduction of Hamiltonian Cycle



Reduction of Hamiltonian Cycle

- Suppose you had an efficient 3SAT solver...
 - You can now solve Hamiltonian Cycle efficiently
 - Reduce your Hamiltonian Cycle instance to SAT
 - Reduce your SAT instance to 3SAT
 - Use your efficient SAT solver

P = NP?

- Armed with an efficient 3SAT solver you can...
 - ... efficiently solve EVERY problem in NP
 - In that case, P = NP. The two complexity classes are the same.
- The same is true for any NP-complete problem.
 - If you can find an efficient solver for even one of them (and there are many)...
 - ... you can efficiently solve them all!

Hamiltonian Cycle

- Hamiltonian Cycle is in NP
 - It is also NP-complete
- To prove this you must find a way of reducing instances of a known NP-complete problem to instances of Hamiltonian Cycle.
 - SAT to 3SAT
 - 3SAT to VC (Vertex Cover)
 - VC to HC (Hamiltonian Cycle)

Is Every Problem NP-Complete?

No!

- It can be shown that if P != NP there must be some problems that are in NP but that are not NP-complete
- Those problems can be reduced to any NPcomplete problem, of course, but no NPcomplete problem can be reduced to them (since that would make them NP-complete also)

P != NP

- Although not known for sure, this is the expected reality
 - Thus there are some problems (the NPcomplete ones) for which no efficient solution is possible.
 - There are also problems in NP that are not NPcomplete but for which no efficient solution is possible, but it's less clear which they are.
 - For any given problem that isn't NP-complete, maybe we are not smart enough to find a fast way to solve it. That is, maybe the problem is really in P.

Unfortunately...

- Many problems of interest are NP-complete
 - There are dozens of known NP-compete problems
 - Mostly all have been proved NP-complete by finding a reduction from a previously known NP-complete problem
 - Except for SAT. The proof of SAT's NPcompleteness was done from first principles (and is based on Turning Machines)

Software Engineering?

- What's a software engineer to make of this?
 - Give up? Of course not!
- Note...
 - In some applications n is small so exponential time isn't actually a problem.
 - Often there are approximation algorithms that solve these problems correctly in most cases or to a good approximation in most cases.
 - When up against an NP-complete problem, don't expect to find a fast way to always solve it! Know your limits.