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History

• The lambda calculus was developed by Alonzo Church in the 1930s.

• Church was a contemporary of Turing and was also interested in mod-
els of computation.

• Originally developed as a kind of logic. That effort was a failure.

• However, Church realized the lambda calculus could be used as a
model of computation.
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Basic Syntax

Let t be a lambda term. Let X be a countably infinite set of variable sym-
bols.

The syntax of t is as follows.

• t → x, where x ∈ X . A term can be a variable.

• t → λx.t, called lambda abstraction.

• t → (tt), called application.
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Examples

• λx.x

• λx.(λy.xy)

• (λx.(λy.xy))(λx.x)

Lambda terms are functions: λx.x is the function taking a parameter x and
returning what it is given.
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α Conversion

You can rename the bound variable (the parameter) to a lambda abstrac-
tion.

The renaming must be done uniformly over all instances of that variable in
the scope of the abstraction.

λx.(λy.xy)

Change x to z

λz.(λy.zy)

But...

λx.(λx.x)x

Becomes

λz.(λx.x)z
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β Reduction

The only computation rule.

Simply substitute a function argument into the function’s body.

(λx.(λy.xy))(λx.x)

(λy.(λx.x)y)

(λy.y)

Computation stops when no more reductions are possible.

The first expression above evaluates to the identity function.
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Church Booleans

It is not obvious how one could do anything useful with this. We need to
build up some basic values.

Let T be (λx.(λy.x))

Let F be (λx.(λy.y))

T is a function taking two arguments and returning the first.

F is a function taking two arguments and returning the second.
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Logical Operators

Let and be (λx.(λy.(xy)F))

Let or be (λx.(λy.(xT )y))

The expression “T and F” is encoded as

((λx.(λy.(xy)F))T )F

Expanding T and F yields

((λx.(λy.(xy)(λx.(λy.y))))(λx.(λy.x)))(λx.(λy.y))

Using β reduction, this expression evaluates to F .
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Church Numerals

Model natural numbers by repeated function applications.

The function that applies its first argument n times represents the number
n.

c0 = (λs.(λx.x))

c1 = (λs.(λx.(sx))

c2 = (λs.(λx.s(sx))

c3 = (λs.(λx.s(s(sx)))

It is now possible to define mathematical operations as lambda terms work-
ing on Church numerals.

They are ugly.
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Scala Syntax

Functional languages are just syntactic sugar for lambda terms.

Lambda Calculus: (λx.(λy.x))

Scala: (x) => ((y) => x)

Another example

Scala: val f = (x: Int) => x + 1

Lambda Calculus: ( f = λx.Pxc1) where P is the lambda term for addition
and c1 is the first Church numeral.

It is also possible to define lambda terms to model pairs, conditionals,
match expressions, etc.
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Recursion?

Turing completeness requires an ability to compute forever.

Won’t the β reduction process always end?

No!

(λx.(xx))(λx.(xx))

This reduces to itself; an infinite loop.

More complex terms allow for eventual termination. Recursive functions
are possible.
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Turing Complete

Lambda calculus is Turing complete.

• Simulation of β reduction on a Turing machine is obvious enough.
Store the lambda term on the tape and progressively rewrite it.

• Simulation of a Turing machine with the Lambda Calculus is less obvi-
ous. The Turing tape can be simulated using function argument values
in nested calls.

• Infinite recursive functions thus support the unbounded Turing tape.

This is provable: The Lambda Calculus is computationally complete. There
does not exist an algorithm that can’t be represented by it.
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Reality Check

• Real computers are like Turing machines. (Memory is the Turing tape,
CPU is the state machine).

• Imperative languages use the Turing machine model. (Tape is rewrit-
ten with updates as the program executes).

• Thus imperative languages are a more natural fit to the hardware.
Faster!

BUT... Clever optimization techniques allow modern functional compilers
to produce reasonably fast code.

Difference not that great in practice (today).
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Both Approaches Valuable

Functional approach good in some situations.

• Lack of mutable state makes it easier to write bug-free code.

• Mathematical basis makes reasoning about programs easier.

• Lack of mutable state makes parallelizing programs easier.

Functional languages typically “impure” to some degree to deal with I/O
(external interactions).

BUT... modern imperative languages typically have some functional fea-
tures as well.

You will see these ideas in the future!
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