
Formal Languages

Peter C. Chapin
Computer Information Systems

Spring 2020

Mathematical Alphabets

Let A be a finite set of symbols.

Examples

• A = {0, 1}

• A = {a, b, c, . . . , z}

• A = {0x00, . . . ,0xFF}

We will leave the symbols formally uninterpreted, but the suggested mean-
ings are clear.

1

Strings

Let a string be a finite sequence of symbols from some alphabet A .

We use w1, w2, etc to represent strings.

Examples

• w1 = 0110111001, where A = {0, 1}

• w2 = abbacabccbbca, where A = {a, b, c, . . . , z}

If A is the alphabet of byte values from 0x00 to 0xFF, then a file is a string
over A .

2

A∗

Let ε represent the empty string. That is: the string with no symbols.

Let A∗ be the set of all strings over A , including ε.

Examples, if A = {0, 1}

• 0 ∈ A∗

• 100100111010101110 ∈ A∗

• ε ∈ A∗

There is also A+ def
= A∗ − {ε}

Note that A∗ is an infinite set. (Proof?)
3

Definition of a Language

Defn: A language is a subset of A∗.

Examples, if A = {0, 1}

• L1 = {0, 00, 11010001011}

• L2 = {ε}

• L3 = /0

• L4 = A∗

Question: Is w1 = 110100 in L1? What about L4? How can you tell?
4

Infinite Languages

We are mostly interested in languages with infinitely many strings. How
can one specify such a language?

Use set builder notation (also called set comprehensions).

Let N0(w) be the number of zero bits in w. Similarly let N1(w) be the number
of one bits.

Let L = {w |N0(w) = N1(w)}

Here L is the set of strings with the same number of zero and one bits.

Is 001011 in L? How can you tell? Notice that the obvious algorithm termi-
nates because w must be finite.

5

General Set Builder Notation

We can use English statements to define very complex languages.

Examples

• L1 = {w |w is a JPEG file}

• L2 = {w |w is a valid HTML document}

• L3 = {w |w is a syntactically correct C program}

The problem is that it is unclear precisely what strings are in each lan-
guage.

It is also unclear how one could recognize such strings.
6

Chomsky Hierarchy

A progression of formal languages of increasing complexity and expres-
siveness.

Type Name Recognizer
3 Regular Deterministic Finite Automaton
2 Context Free Pushdown Automaton
1 Context Sensitive Linear Bounded Automaton
0 Unrestricted Turing Machine

A recognizer is a machine that can determine if a given string is in a given
language.

For example any regular language can be recognized by a suitable DFA.

7

DFA

Finite set of states; special “accept” state; transition from each state for
each element of the alphabet.

S
0

S
1

S
2

S
3

1 1 0
0

1

Machine above recognizes the regular expression 10*11*0

Examples: w1 = 1000000011110, w2 = 110, w3 = 1011111111110
Regular Languages↔ Regular Expressions↔ DFA

8

Non-Regular Languages

DFAs can’t accept arbitrary nested structures (no ability to count)

begin

begin

begin

X := ((((((Y + Z))))));

end;

end;

end;

Thus no regular expression can match such structures.

Need to move up the Chomsky Hierarchy!

9

Context Free Languages

Context free languages (CFLs) have an elegant, mathematically precise
way to specify them.

• CFLs are good enough to describe the syntax of useful programming
languages.

• CFLs have nice mathematical properties.

• Writing a program that recognizes a CFL is well understood.

Most real programming languages are approximately context free.

10

Context Free Grammar

Let G = (T,N, S,R) where

• T is a set of terminal symbols (the alphabet A we talked about earlier).

• N is a set of non-terminal symbols such that T ∩ N = /0

• S is a start symbol with S ∈ N

• R is a set of production rules of the form N → (T ∪ N)∗

Starting with S make substitutions according to R until a string of only ter-
minals is generated. That string is in the language defined by the grammar
G.

11

Example: Language “Half-n-Half”

Let T = {0, 1}
N = {S,X ,Y} Where S is the start symbol
R = (S→ X),

(S→ Y),
(X → 0X1),
(Y → 1Y 0),
(X → ε),
(Y → ε)

Here is a derivation of the string 0011. . .

Start with S
S (now use S→ X)
X (now use X → 0X1)

0X1 (now use X → 0X1)
00X11 (now use X → ε)
0011 (finished; no non-terminals to expand)

12

Half-n-Half

Which strings are in Half-n-Half? How can you tell?

w1 = ε

w2 = 10

w3 = 101

w4 = 00000000001111111111

w5 = 1

w6 = 110011

Can you show derivations for the strings that are in Half-n-Half?

13

Are All Languages Context Free?

Not all languages are context free.

The language L = {w |N0(w) = N1(w)} can’t be generated by a CFG.

This is provable!

However, many useful languages are context free.

14

Who Cares?

Let A = { ‘(’, ‘)’, ‘+’, ‘=’, if, else, ID, NUM }

Let w1 = “ID = ID + NUM”
Let w2 = “ID = ID + if (NUM + ID) ID”
Let w3 = “ID ID (+ NUM) (”

Are these strings in a particular language?

15

Lexical Analysis

Compiler first breaks program into “tokens” (also “terminals”)

int main(void)

{

printf("Hello, World!\n");

return 0;

}

int ID (void) { ID (STRING) ; return NUM ; }

Is that a string in the language “C”?

16

Parsing

• The token stream is sent to a parser. If parser accepts string, it is
syntacticly valid C.

• C is not a regular language! You can’t write a regular expression that
matches all valid C programs.

• Since C’s grammar is (almost) context free, building a parser for C is a
solved problem.

• Subject for a compiler design course.

17

