
Solarium

A solar system simulator

Peter Chapin

N-Body Problem

N interacting objects N(N-1)/2 edges $O(N^2)$ interactions

Solarium

- Simulates movement of solar system objects
 - Considers mutual gravitational interaction
 - Supports many (thousands) of objects
 - Planets
 - Asteroids
 - Comets
 - Bowling balls
- Each object represented by a "dynamics"
 - Position (x, y, z components)
 - Velocity (x, y, z components)

Time

- Time is divided into "time steps"
- For each time step...
 - For each object...
 - New position based on old position and old velocity
 - New velocity based on old velocity and current acceleration
 - Acceleration is calculated by...
 - Computing total force on an object due to gravitational attraction of all other objects $(O(N^2))$
 - *F* = *ma* so *a* = *F*/*m*
- Repeat for multiple time steps
 - If a time step is one hour, there are 8766 time steps per simulated year

Inaccurate

- In real life time is continuous
 - Velocity changes smoothly over a time step
- In our simulation velocity is constant during a time step
 - ... makes an abrupt change at the end of the time step
- We can increase accuracy by making shorter time steps
 - Particularly important when velocity changes rapidly
 - ... such as during a close approaches between two objects
- Small time steps greatly increase computation time
 - Trade off between computation time and accuracy!

Ideally...

- We should understand what accuracy we need...
 - ... and then compute no harder than necessary

More Issues

- What we are doing is essentially numerical integration
 - Many algorithms for this are known
- Advanced integration methods use past history to estimate the future
 - ... can give reasonable accuracy with courser time steps
 - ... but require more computation to make the estimates
- Ideally we would use a numerical integration method that optimizes computation time while respecting desired accuracy
 - This is a subject for a future version of the program

Still More Issues

- Our algorithm, "All Pairs," is O(N²)
- Better algorithms exist for solving the N-body problem!
 - Barnes Hut runs in O(N log(N)) time
 - A huge improvement!
 - ... but is not 100% accurate
 - This adds another wrinkle to the accuracy vs computation time trade off
- A serious computation would...
 - Use the best algorithms available
 - Compute an answer <u>as inaccurately</u> (i. e., as quickly) as possible
- We are interested in parallel programming so these points are minor