OpenMP

Peter Chapin
CIS-4230, Parallel Programming
Vermont State University

OpenMP?

e Standard for parallel programming...

— Compiler extensions + run-time support library
e Supports C and Fortran
e Requires compiler support
— gcc
— clang
— Microsoft Visual C/C++

— Intel C/C++
— others...

— Programmer adds #pragmas defining parallel code

Background

e Targets scientific and engineering apps

— Large numeric computations
* Floating point intensive
* Big arrays
* Loops that process big arrays
 Manages threads
— Creates and manages a thread pool
— Coordinates threads

— Allows the programmer to take control when needed

pragma

 The #pragma directive...

— Part of standard C. Used to control compiler
* No #pragmas defined by the standard
* Unknown #pragmas are to be ignored
— Many compilers use #pragmas for
* Controlling warnings
e Controlling listings
e Controlling optimization and code generation

— OpenMP uses #pragmas to control parallelization

The Basics

Executing a for loop in parallel

— #pragma omp parallel for
for(1 = 0; 1 < SIZE; ++1) {
arrayl[1i] *= 2.0;
}
— The compiler creates a “team” of threads at
H#pragma
 Splits the loop automatically

— Each thread executes a subset of iterations in parallel.

* The team joins together at the end of the construct.

Restrictions

* How many times does this loop execute?

— for(1 = 0; 1 < SIZE; 1 = f£(1)) {
arrayl[1i] *= 2.0;

}
— OpenMP compilers can’t tell, either.

— #pragma omp parallel for requires...
* Only relational operations <, <=, >, >=

* Increment expression involves integer operators ++, --
+=, OF —=

Even More Basic

* Executing arbitrary code in parallel

— #pragma omp parallel sections

{

#pragma omp parallel section

£()7
#pragma omp parallel section
g()

J

— Only two threads are used
* On asingle core, the sections are executed serially.

More Primitive Directives

e The most basic directive...

— #pragma omp parallel

{
£)
}

— A team of threads is created.

e All threads execute the same code.

* One can use OpenMP library functions to find
distinguishing thread identifiers. This allows you to
program different activities for different threads.

Can be Combined

 Example...

— #pragma omp parallel
{

tpragma omp for

for(1 = 0; 1 < SIZE; ++i)
arrayl[i] *= 2.0;

#pragma omp sections

{
#pragma omp section
£)7
#pragma omp section

g()

pragma omp single

* Special code executed by a single thread
— #pragma omp parallel

{

fpragma omp for
for(i = 0, 1 < SIZE; ++1)
fpragma omp single
{

printf (YOne thread!\n”);
} // Barrier inserted here.
fpragma omp for
for(i = 0, 1 < SIZE; ++1)

What About Sharing?

 Take a closer look...

— #pragma omp parallel for
for(i = 0; i < SIZE; ++i) {
arrayl[i] *= 2.0;

}
— Each thread must have its own i

* Loop control variables are “private” by default.

— The threads must share array

* Other variables are shared by default.

Making Sharing Explicit

* Same as previous example...

— #pragma omp parallel for \
private (1) shared(array)
for(1 = 0; 1 < SIZE; ++1) {
arrayl[i] *= 2.0;
}
— Can use “clauses” like private and shared to

override defaults.
— Several other clauses are defined

Private Variables

* Normally undefined on entry and exit
—1int n = 0;
#pragma omp parallel sections private (n)

{

#pragma omp section

n =n+ 1; // n uninitialized!
#pragma omp section
n = 1;

J

printf(“'n = %d\n”, n); // n undefined!

First Private Variables

* |nitialized on entry
—int n = 0;
fpragma omp parallel sections \
firstprivate (n)

{

fpragma omp section

n=n+1;, // n initially zero
#pragma omp section
n=n=>2; // n initially zero

printf (“n = %d\n”, n); // n undefined!

Last Private Variables

* Well defined on exit
—int n = 0;
fpragma omp parallel sections \
lastprivate (n)

{

fpragma omp section

n = 1;
fpragma omp section
n = 2;

}
printf(“n = %d\n”, n); // n definitely 2

Synchronization, Part 1

e Barriers

— #pragma omp parallel

{
#pragma omp for
for(i = 0, 1 < SIZE; ++1)
#pragma omp barrier
#pragma omp for
for(i = 0, 1 < SIZE; ++1)
}

— Threads in a team wait at the barrier until all
arrive. First loop finishes before second loop starts

Synchronization, Part 2

e Critical sections
—1int n = 0;
#pragma omp parallel shared(n)
{

#pragma omp critical

{
n++;

}
J

— Only one thread at a time executes critical section
(all threads do eventually execute it).

Reduction

e Common use case...

— int sum = 0;
fpragma omp parallel for \
reduction (+:sum)
for(i = 0, 1 < SIZE; ++1)
sum += arrayl[i];

e Each thread in the team computes a local value for sum
* Those local values are combined using +
* Value of sum after parallel loop is the overall sum

Reduction Operators

° Only certain operators are SUppOI’tEd
e + (addition)
e * (multiplication)
e — (subtraction)
* & (bitwise AND)
e | (bitwise OR)
e ~ (bitwise XOR)
e && (logical AND)
* | | (logical OR)

Be Careful!

Can this loop be parallelized?

— #pragma omp parallel for
for(1 = 0, 1 < SIZE - 1, ++1) {
array[i] += arrayl[i + 11;

}
— Consider what happens at the team boundary

— Up to you to get this right!

* OpenMP compiler won’t help, although an advanced
compiler could conceivably produce warnings.

Alternative

* How about this loop?

— #pragma omp parallel for
for(i = 0; 1 < SIZE - 1; ++1)
array 2[1] =
array 1[1] + array 1[1 + 1];
— Notice array_1 not changed

* Immutable data easier to handle
* Does require more memory

More Complete Version

* Copy the result back in parallel

— ffpragma omp parallel
{

fpragma omp for

for(1 = 0, 1 < SIzZE - 1; ++1)
array 2[1] =

array 1[1i] + array 1[i + 1];

#pragma omp barrier

fpragma omp for

for(1 = 0, 1 < SIzZE - 1; ++1)
array 1[1] = array 2[1];

