
Multi-Machine Parallelism
Peter Chapin

CIS-4230, Parallel Programming
Vermont State University



Shared Memory

• PROs
• High-speed access to shared data.
• Fast synchronization.
• Widely used and understood 

programming model (threads).
• Support in many languages.

• C/C++ 2011
• Java

• Support from many standards.
• POSIX threads
• OpenMP

• CONs
• Doesn’t scale.



Message Passing

• Processing elements share data by passing messages to each other.
• More general!
• It’s easy to do message passing between processes/threads on one machine.
• It’s hard to simulate shared memory across multiple machines.
• Programs written to pass messages can be used in more contexts.

• Some languages/libraries focus on message passing.
• Erlang
• Scala/Akka actors
• Ada provides both message passing (“rendezvous”) and shared memory 

(“protected object”) primitives.



Overhead

• Message passing entails more overhead than shared memory.
• … especially for messages sent over the network!

• It is essential to design a program to account for this.
• The on-node computation must swamp message passing overhead.
• Message passing must be asymptotically faster than on-node computation.

• Example: O(n) time for messages; O(n2) time to compute.
• As n grows, the message passing overhead becomes insignificant.
• Solarium: At each iteration, send the dynamics of every object to all nodes.
• Solarium: Nodes compute new dynamics of their fractions (n/m) of objects.
• Solarium: New dynamics gathered and re-broadcast for the next pass.



Granularity

• Very fine grain…
• For example, different sub-expressions execute in parallel.
• Sub-expressions should be side-effect-free (purely functional).
• Shared memory

X := (A + B) * (C + D);



Granularity

• Fine grain…
• For example, different iterations of a loop run in parallel.
• Loop iterations must be independent.
• Shared memory

for (int i = 0; i < COUNT; ++i) {
 array[i] = f(i);
}



Granularity

• Explicit threads…
• Multiple functions run in parallel, one in each thread.
• Access to shared data must be carefully synchronized.
• Shared memory

void *thread_1(void *arg)
{
 // …
}

void *thread_2(void *arg)
{
 // …
}



Granularity

• Explicit processes…
• Multiple processes run in parallel.
• Sharing data requires operating system assistance.
• Shared memory or message passing

$ process_1 &
$ process_2 &
$ process_3 | process_4



Granularity

• Clusters
• Multiple machines that are adjacent geographically and administratively.
• Dedicated network communication.
• Message passing

ASC Q cluster at Los Alamos National Laboratory

http://www.ctwatch.org/quarterly/print.php%3Fp=89.html



Granularity

• Wide area distributed computing
• Many machines are spread over a broad geographic and administrative space.
• No communication between worker nodes.
• Message passing

http://boinc.berkeley.edu/



Programming Clusters

• Low level…
• Write separate programs for nodes.
• Communication via explicit network programming.

• Very flexible… lots of work



Programming Clusters

• High level…
• Write a single program in a special programming language.
• Let the compiler distribute to cluster nodes and worry about communication.

• Open research problem



Programming Clusters

• Real-life approach…
• Write a program using a special message-passing library for communication.
• Library optimizes messages.

• Prime example:
• MPI (“Message Passing Interface”)

• http://www.mcs.anl.gov/research/projects/mpi/
• This is the approach we will study.

http://www.mcs.anl.gov/research/projects/mpi/


Hybrid Programming

• Write for a cluster and run on a single multi-core node.
1. Create a single-threaded MPI-based program.
2. Launch several copies of it on one machine to use its cores.
3. MPI library passes messages efficiently using the OS IPC mechanism.

• Write for a cluster and make the node programs multi-threaded.
1. Use MPI for inter-node communication.
2. Use thread management (POSIX threads? OpenMP?) on each node.
3. Take advantage of threading’s low overhead and multi-machine scalability.

• Write for a cluster and launch multiple copies per node.


