
Lock-Free Programming
Peter Chapin

CIS-4230, Parallel Programming
Vermont State University

Suppose…

• You wanted to track the number of times each word occurs in a
large document (or large set of documents)
• Create some binary search tree (e.g., RedBlack Tree)
• For each word, if the word is not already mentioned as a key in the tree,

add it with a count of one. Otherwise, increment the count associated
with the word.

• Later in the program, this information is accessed. Using the word
as a key, look up its associated count.
• insert(word_tree, “Hello”);
• int count = lookup(word_tree, “Hello”); // e.g., 42

Why?

• The use of a tree data structure offers an advantage in terms of
efficiency (log time) for insert and lookup operations.
• Imagine the program does extensive processing on the word count

information, presumably with other data.
• Thus, the program uses parallel threads.

• Is it okay for multiple threads to build the tree?
• Is it okay for multiple threads to read the tree?

Multiple Reads

• It is generally not an issue for multiple threads to read a data
structure in parallel
• No data is (usually) modified, so there is no interference between threads.

• Except…
• Some data structures are modified by reads!
• Caching
• Restructuring during reads

• This isn’t common, however.
• For example, RedBlack Trees don’t usually cache or restructure

themselves during reads.

Our (Hypothetical) Application

• If our application spends more time reading the tree than building
it (which is typical)…
• … We don’t have to worry about it!
• Read in parallel from multiple threads.
• Build the tree in one thread (e.g., while reading the input files)

Building the Tree

• But what if we want to build the tree in parallel, too?
• For example, we have a huge number of files to process
• We have multiple threads reading different subsets of those files…
• … and inserting/incrementing word counts in parallel.

• If we do nothing, we’ll have race conditions.
• Two threads read a count (e.g., 41)
• Both threads increment the count to 42.
• Both threads write back 42.
• But wait! The count should have been 43!

• Also, structural problems when adding and adjusting nodes

One Solution: Mutual Exclusion

• We could use a mutex object associated with the tree.
• Each thread locks the mutex before trying to insert.
• If the mutex is already locked (by an earlier thread), the new thread is

suspended until the mutex is unlocked (by the earlier thread).
• Thus, each thread has mutually exclusive access to the shared structure.

• This works and is relatively easy to implement and understand.
• Unfortunately, it also reduces concurrency and parallelism!
• But… do we care??

Issues with Locks

• Locks have some problems.
• Overhead. If a thread suspends, the OS is involved (for kernel threads).

There is significant overhead going into the OS and letting the OS
schedule some other thread. If the time the lock is held is short, this
overhead can be significant.
• Deadlock. If two (or more) locks are involved, the threads can try to lock

both and end up suspended, waiting for each other.
• Thread 1 locks A
• Thread 2 locks B
• Thread 1 locks B *suspends*
• Thread 2 locks A *suspends*

Lock-Free?

• Is it possible to create a mutex-like lock without using an actual
lock?

• When a thread waits, it spins in a loop (“busy waiting”).
• This is normally bad but can be okay if the waiting time is short.

int flag = 0; // A value of 1 means locked.

while(flag == 1) /* Wait */ ;
flag = 1;

// Mutually exclusive access?

flag = 0; Sometimes called a spinlock

Global variable

Each thread executes

Problem #1

• An optimizing compiler will likely enregister the value of flag in
the while condition. It will then test the register repeatedly without
looking at changes to the in-memory variable.

volatile int flag = 0; // A value of 1 means locked.

while(flag == 1) /* Wait */ ;
flag = 1;

// Mutually exclusive access?

flag = 0;

• Tell the compiler this value
can change for reasons outside
its control (e.g., in a different
thread). So, reload it from memory
whenever it is needed.

Problem #2

• The solution with volatile isn’t good enough.
1. Suppose two threads are spinning with flag == 1.
2. A third thread sets flag to 0.
3. Both threads see the change simultaneously and exit the while loop.
4. Both threads set flag to 1.
5. Both threads are now in the “mutually exclusive” region, aka the critical

section.

• There is still a race condition.
• The solution is surprisingly hard to get right (see Peterson’s

Algorithm)

Compare and Swap

• This really needs assistance from the hardware.
• We need an operation that can’t be interrupted by another processor.
• A special machine cycle is usually required, which only hardware can do.

• Read. Get a value from memory.
• Write. Put a value into memory.
• Read-Modify-Write. Get a value, change it (e.g., increment), and put the result back.
• Compare-and-Swap. If a value hasn’t changed, exchange it with a new value.

• Read/Write alone allows another processor to get in the middle.
• The last two options above need special instructions or processor modes.

• Compare-and-Swap is a powerful primitive and popular.

C-Like Pseudo-Code

int compare_and_swap(int *reg, int oldval, int newval)
{
 ATOMIC();
 int old_reg_val = *reg;
 if (old_reg_val == oldval)
 *reg = newval;
 END_ATOMIC();
 return old_reg_val;
}

Source: Wikipedia

On the CPU, this entire function is a single, atomic instruction.

Return old value, which might be unexpected
(if another thread changed it before we did this)

https://en.wikipedia.org/wiki/Compare-and-swap

CMPXCHG (x86_64)

• The “compare and exchange” instruction does this on x86_64
architecture. Other architectures may call it something different.

• Compares eax with [dest]. If they are equal, [dest] is loaded
with ecx. Otherwise, eax is loaded with [dest].
• The lock prefix is needed for multiprocessor systems.

mov eax, expected_value ; Load the expected value into EAX
mov ecx, new_value ; Load the new value to be exchanged into ECX
lock cmpxchg [dest], ecx ; Atomically compare [dest] with EAX

