
Parallel Programming

Peter Chapin
CIS-4230, Vermont State University

Concurrent Programming

• Concurrent Programming
– Threads execute independent activities
– Threads often blocked (or “suspended” or “sleeping”)
– Threads do not need to execute simultaneously
– Execution on a uniprocessor makes sense
– Examples

• Threads for UI events (frequently blocked waiting for user)
• Client/Server applications (e.g., server uses one thread per client)
• Threads for background data processing (can execute while UI is blocked)

Parallel Programming

• Parallel Programming – All about speed
– Threads work on the same job
– Threads not blocked; program CPU bound (as opposed to IO bound)
– Threads must execute simultaneously to be useful
– Execution on a uniprocessor is pointless
– Examples

• Large scientific and engineering computations: supernova simulations, airflow
through a jet engine.

• Processing “big data”: queries over giant data sets.

Kernel Threads

• The OS kernel manages kernel threads
– Kernel creates them
– Kernel coordinates them

• Kernel schedules threads onto the processing elements
– Processing element: processor, core, etc.

• Processor management is hidden from the application…
– … only the kernel can schedule threads that will run simultaneously

Context Switching

• What if there are more threads than processors?
– The kernel switches between the threads so all get a chance to run
– Switching can be pre-emptive. The kernel periodically suspends a

thread and resumes another one (that was previously suspended)
• The pre-emption rate might be, for example, 100 Hz

– Switching can happen when a thread blocks
• … on I/O wait (user interface, network interface, storage media, etc.)
• … waiting for another thread (to terminate, to release a lock, etc.)

– Blocked threads do not consume any CPU time!

Most Threads Are Blocked Most of the Time

Lemuria has 16 PEs

CPU1 has 1% utilization

Top CPU users

Number of processes = 349

Uniprocesor?

• This behavior means even a single processing element is okay
– For a concurrent system, one CPU can be context-switched to all

runnable processes without any perceptible loss of performance

Parallel Programs Use Maximum CPU Time

Attempts to use all CPUs

High idle times are bad

1100% CPU!
Equivalent to 11 processors

Note: This was captured right as Sum.exe was ending

Uniprocessor?

• A single processing element would be context-switched across
the threads
– Each CPU-bound thread would be effectively slower
– No benefit!

• Parallel programs need multiple processing elements
– They should not try to use more threads than PEs

User Mode Threads

• An application library that manages threads entirely contained
in the application
– Kernel is not aware of user mode threads
– Cannot make use of multiple PEs
– If one thread blocks, it can block the entire process unless the user

mode thread library does fancy stuff with asynchronous I/O

• Only useful for concurrent programming
– Thread creation, synchronization, and context switching are faster

https://www.gnu.org/software/pth/pth-manual.html

Other Terms

• Fibers (not parallel)
– A concept from the Windows API whereby a thread is broken into

several concurrent executions.
– It allows a single kernel thread to become multiple user threads

• See CreateFiber in the Windows API

• Coroutines (not parallel)
– Two functions that yield control to each other before returning

• A feature of various programming languages: Python, Kotlin, JavaScript, C#,
Swift, Rust, C++ (to name a few)

Simple Parallel Example

• Add elements in a large array (serial version)

double sum_serial(double *array, size_t size)
{
 double sum = 0.0;

 for(size_t i = 0; i < size; ++i)
 sum += array[i];

 return sum;
}

Simple Parallel Example

• Parallel version; n elements, m threads
– Partition array into m segments…

Segment 0 Segment 1 … Segment m -1

Index: 0 Index: floor(n/m) Index: (m-1)*floor(n/m)

Each thread adds the elements in one segment.
Partial sums are combined to compute the final result.

Simple Parallel Example

• Comments
– One hopes it goes m times faster

• BUT… complete waste of effort on uniprocessor
– Solution much more complicated

• Create threads
• Divide problem (map subproblems to threads)
• Compute the solution of subproblems in parallel (reduce each subproblem to a

subsolution)
• Combine subsolutions

– Solution requires addition to be associative
• Does it require addition to be commutative? Answer: No. (Why?)
• Additions are no longer done in increasing-index order.

Alternative Formulation

• Threads add interleaved data:
– Thread #0 adds a[0], a[m], a[2m], …
– Thread #1 adds a[1], a[m + 1], a[2m + 1], …
– Thread #2 adds a[2], a[m + 2], a[2m + 2], …

• Does this require addition to be associative?
– Answer: Yes

• Does this require addition to be commutative?
– Answer: Yes (Why?)

Goals

• Writing Parallel (not Concurrent) Programs
– Make programs faster by using multiple processing elements (PEs) at

the same time
– Commonalities with concurrent programming:

• Thread management and coordination
• Problems associated with simultaneously updating shared data

– Differences with concurrent programming:
• Scaling to a huge number of PEs
• Keeping PEs busy

Why Do We Care?

• High Performance Computing (HPC)
– Large scale scientific and engineering computation

• Been using parallel systems (clusters, etc.) for years

• Multi-Core Processors
– Desktop (and portable!) systems

• Parallel processing is (relatively) new
• Applications are different than with HPC. Unclear how to best parallelize them

– Increased performance now depends on utilizing multiple PEs. Faster
processors slow in coming.

The Free Lunch is Over

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software (gotw.ca)

http://www.gotw.ca/publications/concurrency-ddj.htm

Shared Memory Parallelism

• Shared Memory Parallelism
– Everything I’ve talked about so far
– All PEs read/write a common memory

• Easy to understand; hard to program
• Fast
• Doesn’t scale well (100 PEs max?)

– Symmetric Multi-Processors (SMP) and multi-core machines

Multi-Machine Parallelism

• Multi-Machine Parallelism (Clusters, Cloud)
– Machines do not have a common memory

• Inter-machine communication slow (e.g., network)
• Programming model difficult; data synchronization easier
• Scales well (10,000+ PEs feasible)

– All modern super computers are designed like this

Fastest Machine on Earth

• As of November 2023: “Frontier”
– Oak Ridge National Laboratory, USA
– Peak performance 1,680 PetaFLOPS (1.68 x 1018 FLOPS†)
– Almost 8,700,000 PEs.
– Power consumption: 22.7 MW (yes, megawatts)
– http://www.top500.org/

† FLOPS = “Floating Point Operations per Second”

http://www.top500.org/

ExaFLOP Machines!

• ExaFLOP machines!
– In 2010 it was estimated such a

machine could be built by 2020.
• 1018 floating point operations per

second!
• That’s one billion floating point

operations per nanosecond!

– The limiting factor was: power
• 2010 estimate: 2 GW. The power

produced by Hoover Dam!
• Today: Frontier uses 22.7 MW, or 100x

less. You can thank your phone!

Communication vs Computation

• BIG Problem → Many subproblems
– Subproblems largely independent

• Lots of computation in each subproblem
• Minimal communication between subproblems
• Good for implementation on cluster

– Subproblems tightly coupled
• Lots of communication between subproblems
• Good for shared memory
• Hard to apply a huge number of PEs.

Best of Both Worlds?

Node 1 Node 2 Node 3 Node 4

BIG problem

4 subproblems

2 subsubproblems per node

Multi-Machine Parallelism

Shared Memory Parallelism

VTSU Cluster

Node
1

Node
4

Node
2

Node
3

1Gbps Switchlemuria

VTSU LAN

Private Network

8 PEs each
(quad-core w/
hyper threads)

16 PEs
(2 processors:
quad-core w/
hyper threads)

General Purpose Graphics Processing Unit (GPGPU)

• Commodity Graphics Cards
– Do lots of computation in parallel.
– NVIDIA (and others) allows general-purpose programs to be executed

on the graphics card.
• CUDA (NVIDIA specific)
• OpenCL (Vendor independent)
• OpenACC (Vendor independent)

– It is not suitable for all programs but is very fast when it works.
– VTSU cluster nodes have NVIDIA CUDA graphics cards.

Course Organization

• Lectures on Zoom
• Class Materials on Web Site

– http://lemuria.cis.vermontstate.edu/~pchapin/cis-4230/
– First assignment already posted!
– Homework submitted electronically on Canvas

• Programming with GCC on the Lemuria cluster
– Programming in plain C. Use of C++ allowed

• Grade book on Canvas

http://lemuria.cis.vermontstate.edu/%7Epchapin/cis-4230/

Why C?

• C is very low level
– Hard to use (correctly)
– Thread management is complicated

• There are other languages/frameworks/libraries
– Program at a higher level
– Easier, more robust

• C is more educational!
– See how things work. Gain a deeper understanding

A Story

• This happened:
– Scala has a parallel collections library where methods run in parallel.

• Very easy to use. Just change an import.

– I saw on a Scala forum: “I wrote this small program using parallel
collections, and it’s slower than the serial version. Why?”

– The program tried to add 1000 integers using a parallel vector.
– The answer: “The overhead of thread management far overshadows

any benefit of parallelism with such a small collection.”
– The OP would have known that if they had taken this course!

Why Not Julia?

• Julia is an interesting programming language
– Focuses on scientific/engineering applications
– Also: data science, ML, statistics
– Competes with MATLAB, Python, R

• Easy syntax (like Python), fast (like C)
• But…

– … Julia is a niche language right now
– … unclear where it will go

https://julialang.org/

Don’t forget to have fun!

	Parallel Programming
	Concurrent Programming
	Parallel Programming
	Kernel Threads
	Context Switching
	Most Threads Are Blocked Most of the Time
	Uniprocesor?
	Parallel Programs Use Maximum CPU Time
	Uniprocessor?
	User Mode Threads
	Other Terms
	Simple Parallel Example
	Simple Parallel Example
	Simple Parallel Example
	Alternative Formulation
	Goals
	Why Do We Care?
	The Free Lunch is Over
	Shared Memory Parallelism
	Multi-Machine Parallelism
	Fastest Machine on Earth
	ExaFLOP Machines!
	Communication vs Computation
	Best of Both Worlds?
	VTSU Cluster
	General Purpose Graphics Processing Unit (GPGPU)
	Course Organization
	Why C?
	A Story
	Why Not Julia?
	Slide Number 31

