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Concurrent Programming

• Concurrent Programming
– Threads execute independent activities
– Threads often blocked (or “suspended” or “sleeping”)
– Threads do not need to execute simultaneously
– Execution on a uniprocessor makes sense
– Examples

• Threads for UI events (frequently blocked waiting for user)
• Client/Server applications (e.g., server uses one thread per client)
• Threads for background data processing (can execute while UI is blocked)



Parallel Programming

• Parallel Programming – All about speed
– Threads work on the same job
– Threads not blocked; program CPU bound (as opposed to IO bound)
– Threads must execute simultaneously to be useful
– Execution on a uniprocessor is pointless
– Examples

• Large scientific and engineering computations: supernova simulations, airflow 
through a jet engine.

• Processing “big data”: queries over giant data sets.



Kernel Threads

• The OS kernel manages kernel threads
– Kernel creates them
– Kernel coordinates them

• Kernel schedules threads onto the processing elements
– Processing element: processor, core, etc.

• Processor management is hidden from the application…
– … only the kernel can schedule threads that will run simultaneously



Context Switching

• What if there are more threads than processors?
– The kernel switches between the threads so all get a chance to run
– Switching can be pre-emptive. The kernel periodically suspends a 

thread and resumes another one (that was previously suspended)
• The pre-emption rate might be, for example, 100 Hz

– Switching can happen when a thread blocks
• … on I/O wait (user interface, network interface, storage media, etc.)
• … waiting for another thread (to terminate, to release a lock, etc.)

– Blocked threads do not consume any CPU time!



Most Threads Are Blocked Most of the Time

Lemuria has 16 PEs

CPU1 has 1% utilization

Top CPU users

Number of processes = 349



Uniprocesor?

• This behavior means even a single processing element is okay
– For a concurrent system, one CPU can be context-switched to all

runnable processes without any perceptible loss of performance



Parallel Programs Use Maximum CPU Time

Attempts to use all CPUs

High idle times are bad

1100% CPU!
Equivalent to 11 processors

Note: This was captured right as Sum.exe was ending



Uniprocessor?

• A single processing element would be context-switched across 
the threads
– Each CPU-bound thread would be effectively slower
– No benefit!

• Parallel programs need multiple processing elements
– They should not try to use more threads than PEs



User Mode Threads

• An application library that manages threads entirely contained 
in the application
– Kernel is not aware of user mode threads
– Cannot make use of multiple PEs
– If one thread blocks, it can block the entire process unless the user 

mode thread library does fancy stuff with asynchronous I/O

• Only useful for concurrent programming
– Thread creation, synchronization, and context switching are faster

https://www.gnu.org/software/pth/pth-manual.html


Other Terms

• Fibers (not parallel)
– A concept from the Windows API whereby a thread is broken into

several concurrent executions.
– It allows a single kernel thread to become multiple user threads

• See CreateFiber in the Windows API

• Coroutines (not parallel)
– Two functions that yield control to each other before returning

• A feature of various programming languages: Python, Kotlin, JavaScript, C#,
Swift, Rust, C++ (to name a few)



Simple Parallel Example

• Add elements in a large array (serial version)

double sum_serial( double *array, size_t size )
{
    double sum = 0.0;

    for( size_t i = 0; i < size; ++i )
        sum += array[i];

    return sum;
}



Simple Parallel Example

• Parallel version; n elements, m threads
– Partition array into m segments…

Segment 0 Segment 1 … Segment m -1

Index: 0 Index: floor(n/m) Index: (m-1)*floor(n/m)

Each thread adds the elements in one segment.
Partial sums are combined to compute the final result.



Simple Parallel Example

• Comments
– One hopes it goes m times faster

• BUT… complete waste of effort on uniprocessor
– Solution much more complicated

• Create threads
• Divide problem (map subproblems to threads)
• Compute the solution of subproblems in parallel (reduce each subproblem to a 

subsolution)
• Combine subsolutions

– Solution requires addition to be associative
• Does it require addition to be commutative? Answer: No. (Why?)
• Additions are no longer done in increasing-index order.



Alternative Formulation

• Threads add interleaved data:
– Thread #0 adds a[0], a[m], a[2m], …
– Thread #1 adds a[1], a[m + 1], a[2m + 1], …
– Thread #2 adds a[2], a[m + 2], a[2m + 2], …

• Does this require addition to be associative?
– Answer: Yes

• Does this require addition to be commutative?
– Answer: Yes (Why?)



Goals

• Writing Parallel (not Concurrent) Programs
– Make programs faster by using multiple processing elements (PEs) at 

the same time
– Commonalities with concurrent programming:

• Thread management and coordination
• Problems associated with simultaneously updating shared data

– Differences with concurrent programming:
• Scaling to a huge number of PEs
• Keeping PEs busy



Why Do We Care?

• High Performance Computing (HPC)
– Large scale scientific and engineering computation

• Been using parallel systems (clusters, etc.) for years

• Multi-Core Processors
– Desktop (and portable!) systems

• Parallel processing is (relatively) new
• Applications are different than with HPC. Unclear how to best parallelize them

– Increased performance now depends on utilizing multiple PEs. Faster 
processors slow in coming.



The Free Lunch is Over

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software (gotw.ca)

http://www.gotw.ca/publications/concurrency-ddj.htm


Shared Memory Parallelism

• Shared Memory Parallelism
– Everything I’ve talked about so far
– All PEs read/write a common memory

• Easy to understand; hard to program
• Fast
• Doesn’t scale well (100 PEs max?)

– Symmetric Multi-Processors (SMP) and multi-core machines



Multi-Machine Parallelism

• Multi-Machine Parallelism (Clusters, Cloud)
– Machines do not have a common memory

• Inter-machine communication slow (e.g., network)
• Programming model difficult; data synchronization easier
• Scales well (10,000+ PEs feasible)

– All modern super computers are designed like this



Fastest Machine on Earth

• As of November 2023: “Frontier”
– Oak Ridge National Laboratory, USA
– Peak performance 1,680 PetaFLOPS (1.68 x 1018 FLOPS†)
– Almost 8,700,000 PEs.
– Power consumption: 22.7 MW (yes, megawatts)
– http://www.top500.org/

† FLOPS = “Floating Point Operations per Second”

http://www.top500.org/


ExaFLOP Machines!

• ExaFLOP machines!
– In 2010 it was estimated such a 

machine could be built by 2020.
• 1018 floating point operations per 

second!
• That’s one billion floating point 

operations per nanosecond!

– The limiting factor was: power
• 2010 estimate: 2 GW. The power 

produced by Hoover Dam!
• Today: Frontier uses 22.7 MW, or 100x 

less. You can thank your phone!



Communication vs Computation

• BIG Problem → Many subproblems
– Subproblems largely independent

• Lots of computation in each subproblem
• Minimal communication between subproblems
• Good for implementation on cluster

– Subproblems tightly coupled
• Lots of communication between subproblems
• Good for shared memory
• Hard to apply a huge number of PEs.



Best of Both Worlds?

Node 1 Node 2 Node 3 Node 4

BIG problem

4 subproblems

2 subsubproblems per node

Multi-Machine Parallelism

Shared Memory Parallelism



VTSU Cluster

Node
1

Node
4

Node
2

Node
3

1Gbps Switchlemuria

VTSU LAN

Private Network

8 PEs each
(quad-core w/
hyper threads)

16 PEs
(2 processors:
quad-core w/
hyper threads)



General Purpose Graphics Processing Unit (GPGPU)

• Commodity Graphics Cards
– Do lots of computation in parallel.
– NVIDIA (and others) allows general-purpose programs to be executed 

on the graphics card.
• CUDA (NVIDIA specific)
• OpenCL (Vendor independent)
• OpenACC (Vendor independent)

– It is not suitable for all programs but is very fast when it works.
– VTSU cluster nodes have NVIDIA CUDA graphics cards.



Course Organization

• Lectures on Zoom
• Class Materials on Web Site

– http://lemuria.cis.vermontstate.edu/~pchapin/cis-4230/
– First assignment already posted!
– Homework submitted electronically on Canvas

• Programming with GCC on the Lemuria cluster
– Programming in plain C. Use of C++ allowed

• Grade book on Canvas

http://lemuria.cis.vermontstate.edu/%7Epchapin/cis-4230/


Why C?

• C is very low level
– Hard to use (correctly)
– Thread management is complicated

• There are other languages/frameworks/libraries
– Program at a higher level
– Easier, more robust

• C is more educational!
– See how things work. Gain a deeper understanding



A Story

• This happened:
– Scala has a parallel collections library where methods run in parallel.

• Very easy to use. Just change an import.

– I saw on a Scala forum: “I wrote this small program using parallel 
collections, and it’s slower than the serial version. Why?”

– The program tried to add 1000 integers using a parallel vector.
– The answer: “The overhead of thread management far overshadows 

any benefit of parallelism with such a small collection.”
– The OP would have known that if they had taken this course!



Why Not Julia?

• Julia is an interesting programming language
– Focuses on scientific/engineering applications
– Also: data science, ML, statistics
– Competes with MATLAB, Python, R

• Easy syntax (like Python), fast (like C)
• But…

– … Julia is a niche language right now
– … unclear where it will go

https://julialang.org/


Don’t forget to have fun!
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