
Scala Lists
Peter Chapin

Vermont State University

Create a List
val list1 = List(1, 2, 3)

1 2 3

list1

Create(?) a Second List
val list2 = list1

1 2 3

list1

list2

Cons (Prepend) an Element
val list3 = 0 :: list2

1 2 3

list1

list2

0

list3

Modifying List3 Changes List1 and List2?
list3(2) = 100

1 100 3

list1

list2

0

list3

No! Lists are Immutable
list3(2) = 100

1 2 3

list1

list2

0

list3

error: value update is not a member of List[Int]

Summary

• Because of List immutability, different List objects can share nodes
• Nobody can tell because nodes can never be modified†

• Thus, creating a “new” list after each list operation is not always expensive.
• 1 :: superLongList does not entail making a copy of superLongList.

• Functional data structures try to share representation
• You can reason as if all objects are distinct
• … without paying the price of actually making zillions of copies.
• We will see how this helps later with more complex examples.

• Immutability is the key!

† This is not entirely true; there are ways to tell

Arrays

• In Scala arrays are mutable; their elements can be modified
val array1 = Array(1, 2, 3)
val array2 = array1
array2(1) = 100

• Now array1 is Array(1, 100, 3)
• There is only one Array object; both vals reference it
• … and the object can be modified “out from underneath” one of the vals.
• This behavior is compatible with Java (Scala arrays are the same as Java

arrays).

• Mutability makes reasoning about program behavior harder.

Aren’t Vals Immutable?

• Yes! Once a val has been bound it can never refer to a different object
• … but the mutability of that object is a separate matter!
val myArray = Array(1, 2, 3)
myArray = Array(4, 5, 6) // Error! Can’t reassign a val
myArray(1) = 100 // Fine. The Arrays are mutable

• Vars can be bound to a different object
• … even if that object is immutable
var myList = List(1, 2, 3)
myList = List(4, 5, 6) // Fine. Vars can be reassigned
myList(1) = 100 // Error! Lists are immutable

• Use vals by default; vars only when necessary!

	Scala Lists
	Create a List
	Create(?) a Second List
	Cons (Prepend) an Element
	Modifying List3 Changes List1 and List2?
	No! Lists are Immutable
	Summary
	Arrays
	Aren’t Vals Immutable?

