
Immutability

Peter Chapin
Vermont State University

What is Immutability?

• A data object is immutable if, once initialized, it can not be
changed.

• What’s good about immutability?
– Immutable objects can’t change unexpectedly.

• Easier to reason about your program.
• Fewer bugs.

– Certain optimizations are easier.
– Easier to use objects in a concurrent or parallel program

• No need for locking since no thread can change any object.

Immutability and FP

• In a purely functional language, all data objects are immutable
– This gives functional programming a unique flavor.
– Enables the advantages.

• But:
– No variables (no “destructive update”)
– No loops (can’t update loop control expression)
– No in-place modifications. Changes are done by creating new objects

instead.

Scala…

• … Is an object-oriented (and imperative) functional hybrid.
– Supports variables and mutable objects in the usual sense
– BUT… you are encouraged to create and use immutable objects and

immutable references (vals) whenever you can

Just a Label

• A val is just a label attached to a value
– Once bound, that label cannot be used (in the same scope) to refer to a

different value.
• Some languages (F#, Rust) do allow rebinding of names.

• Compare
– (x + y) / (x – y)
– val numerator = x + y
val denominator = x – y
numerator / denominator

• Use val by default! Use immutability by default!

Visualization

“Jill”

val name = “Jill”

name

Binding between the val and the object to which it refers can’t be changed

Mutable References

var name = “Jill”
name = “Peter”

“Jill”
name

“Jill”
name

“Peter”

GARBAGE

Object Mutability

• Objects can be mutable or immutable
– Strings are immutable

• Methods that appear to change a string really return a new
string with the changed value.

• References to original string still see original value.

val name = “Jill”
val upperCaseName = name.toUpperCase

println(name) // Prints “Jill”
println(upperCaseName) // prints “JILL”

Arrays are Mutable

• Each array element can be modified in-place
– Note: val below always refers to same array!
– Note: individual String objects not modified!

val names = Array(“alice”, “bob”, “carol”)
names(0) = “dave”
for (name <- names) println(name)
 // Prints “dave”, “bob”, “carol”

Here’s the Picture
BEFORE AFTER

names names

alice

bob

carol carol

bob

alice

dave

	Immutability
	What is Immutability?
	Immutability and FP
	Scala…
	Just a Label
	Visualization
	Mutable References
	Object Mutability
	Arrays are Mutable
	Here’s the Picture

