
An Introduction to Scala

Peter Chapin

Vermont State University

Scala in a Single Slide

• The official website is https://www.scala-lang.org.

– Links to tutorials, documentation, information on downloading and
installing.

– Characteristics:

• Functional/OO hybrid language

• Targets the JVM. Easily mixes with Java.

• Very rich with many interesting features from a PL theory perspective.

• Practical. Active community. Relatively good tool support.

https://www.scala-lang.org/

Scala is Not…

• Scala is not…

– … a dynamic language.

• But Scala has type inference, so type annotations can often be eliminated.

• But Scala supports “scripting” applications without explicit compilation.

– … a logic language.

• But Scala’s flexible syntax and a suitable library can simulate logic programs.

– … a systems or embedded language.

• Scala’s dependence on the JVM disqualifies it from many systems and
embedded applications.

Traditionally, Scala Targets the JVM

• Good

– Can interoperate with Java (relatively) easily.

– Can access a huge collection of Java libraries.

– Can (sometimes) take advantage of advanced Java technologies.

– Can be deployed (almost) anywhere Java can.

• Bad

– Tied to the Java ecosystem

– Suffers disadvantages of any JVM-based language

Scala.js

• Scala.js compiles Scala to JavaScript

– Allows web application front-end programming to be done in Scala.

– Allows Node.js back-end programming to be done in Scala.

• Why?

– More powerful type system

• Certainly more than JavaScript, but also more than TypeScript

– More coherent integration of OOP and functional programming

• Website: https://www.scala-js.org/

https://www.scala-js.org/

Scala Native

• Scala Native is a Scala compiler that uses an LLVM backend to
generate native code.

– Does not depend on the JVM.

– Does not suffer from JVM-related disadvantages.

– Contains extensions for low-level hardware access and C interfacing.

• Scala Native makes Scala suitable for systems programming.

– BUT… it is still immature.

• Website: https://scala-native.org/en/stable/

https://scala-native.org/en/stable/

Scala.NET?

• Scala.NET was an attempt to bring Scala to the Common
Language Runtime (CLR) and .NET platform.

• It is now a dead project.

• Why?

– Technical complications integrating Scala’s type system onto the CLR.

– Lack of interest in .NET in the Scala community (at the time).

– Redirection of resources to Scala3, Scala.js, and Scala Native.

Language Categories

• Imperative (also Object Oriented)
– Program is a sequence of commands (imperatives)

– Each command modifies the state of memory

• Functional
– Program is a large expression that is evaluated

– All data is immutable (no state modified or side effects created during
evaluation)

• Logic
– Program is a set of rules that describe the solution

– Program “execution” finds a result that obeys all the rules

Scala is Imperative
def sieve(max: Int): Array[Boolean] = {

 // Create and initialize the array.

 val flags = new Array[Boolean](max)

 for (i <- 0 until max) flags(i) = true

 // Zero and one are not prime.

 flags(0) = false

 flags(1) = false

 // Sieve off the non-primes.

 for (i <- 2 until max) {

 if (flags(i)) {

 for (j <- 2*i until max by i) flags(j) = false

 }

 }

 // Return the result.

 flags

 }

Scala is Object Oriented
// Abstract superclass describes all animals.

abstract class Animal {

 def weight: Double

}

// Subclass representing cats. Overrides abstract methods.

class Cat(w: Double) extends Animal {

 if (w < 0.0) throw new BadWeightException

 override def weight = w

}

// Method to compute the total weight of all animals in a list.

def totalWeight(zoo: List[Animal]) =

 zoo.map(_.weight).foldLeft(0.0)(_ + _)

// Send a list of Cats to the totalWeight method.

val catFarm = List(new Cat(8.5), new Cat(5.2), new Cat(523.0))

val catWeight = totalWeight(catFarm)

Scala is Functional
// Return the total size of all files in the specified folder.

def folderSize(folderName: String) = {

 // Java libraries are usable from Scala.

 val folder = new java.io.File(folderName)

 // Process list of files using “higher order” methods.

 val fileLengths =

 folder.listFiles filter { _.isFile } map { _.length }

 // Collapse the resulting array of file lengths into a single value.

 fileLengths.foldLeft(0L)(_ + _)

}

Scala Integrates OO and FP
// Class extends the type “function taking String returning Int”

class NameConverter extends String => Int {

 // Method to use when an instance is “called” as a function.

 def apply(s: String) = { … }

 // Some other method.

 def configure(base: Int) = { … }

}

val converter = new NameConverter

converter.configure(16) // It’s an object!

val result = converter(“Peter”) // It’s a function!

// Method taking a function of type String => Int as a parameter.

def workWith(operation: String => Int) = { … }

// Can pass a NameConverter; it’s a subtype of String => Int

workWith(converter)

Domain Specific Languages

• A language designed for use in a specific application domain
(by “domain experts”)
– Gnuplot

– PIC

– MATLAB/Octave

– LabView

– TeX

– Macro languages of various kinds

– Many others…

http://www.gnuplot.info/
http://en.wikipedia.org/wiki/Pic_language
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/
http://sine.ni.com/np/app/flex/p/ap/global/lang/en/pg/1/docid/nav-77/
http://en.wikibooks.org/wiki/TeX

External vs Internal DSLs

• External

– DSL creator writes a program that processes the new language

– DSL processor can be in any language

– DSL processor uses compiler techniques

– Example: Gnuplot is written in C

• Internal

– DSL creator extends a “host” language to add new syntax for the DSL

– DSL users can drop to the host language at any time

http://www.gnuplot.info/

Scala and DSLs

• Scala has features to support internal DSLs

– Flexible syntax. You can (with limitations) add:

• New keywords

• New operators

• New control structures

• Enables “DSL-oriented programming”

– Don’t write a program to solve your problem…

– Create a DSL that makes the problem easy to solve

• … and then easily solve it with your DSL

Example DSL: ScalaTest

import org.scalatest.FlatSpec

import org.scalatest.matchers.ShouldMatchers

class StackSpec extends FlatSpec with ShouldMatchers {

 “A Stack” should “pop values in last-in-first-out order” in {

 val stack = new Stack[Int]

 stack.push(1)

 stack.push(2)

 stack.pop() should equal (2)

 stack.pop() should equal (1)

 }

 it should “throw NoSuchElementException if an empty stack is popped” in {

 val emptyStack = new Stack[String]

 evaluating { emptyStack.pop() } should produce [NoSuchElementException]

 }

}

This is Scala

From: http://www.scalatest.org

http://www.scalatest.org/

Example DSL: Parser Combinators

def inclusion_credential: Parser[RTInclusionCredential] =

 role_definition ~ “<-” ~ role_definition ^^

 { case target ~ “<-” ~ source =>

 RTInclusionCredential(target, source) }

def role_definition: Parser[(String, String)] =

 entity ~ “.” ~ role_identifier ^^

 { case entityName ~ “.” ~ roleName =>

 (entityName, roleName) }

def entity: Parser[String] =

 ident

def role_identifier: Parser[String] =

 ident

This is Scala

Can parse strings like “A.r <- B.s”

Example DSL: Telnet State Machine

override val transitions: Seq[Transition] =

 (data, IAC) -> cmd ::

 (data, 0) -> data ::

 (data, 10) -> data ::

 (data, 13) -> data + eatLine + echo ("") ::

 (data, {_:Event=>true}) -> data + eatChar + echo ("") ::

 (cmd, IAC) -> data ::

 (cmd, Seq(WILL, WONT, DO, DONT)) -> neg + push ::

 (neg, {_:Event=>last==SM(DO)}) -> data + mode(true) + pop ::

 (neg, {_:Event=>last==SM(DONT)}) -> data + mode(false) + pop ::

 (neg, AnyEvent) -> data + echo("interesting sequence...") + pop ::

 (cmd, SB) -> subneg ::

 (""".*""".r, CR) -> data ::

 Nil

This is Scala

Posted on the Scala User’s mailing list. See also: http://blog.razie.com/search/label/dsl

http://blog.razie.com/search/label/dsl

Static vs Dynamic

• Static Languages

– Perform many program checks at compile time (before the program
runs)

• e.g., Static type checking

– Generally require all code references to be resolved ahead of time

– Generally do not allow programs to execute data

• For example, read a string from the user containing program text and then
execute that code.

Static vs Dynamic (continued)

• Dynamic Languages

– Postpone many language checks until run time

• e.g., Dynamic type checking

– Can easily load code at run time

– Often allow the execution of code stored in data objects

Static vs Dynamic (continued)

• Static Languages…

– Fast. Since the compiler does checks, they need not be done while the
program runs

– Robust. The compiler finds many errors.

– Less flexible. The program can’t as easily adapt to new conditions once
compiled.

– Less interactive. It is difficult to modify the program code while it runs.

• Dynamic Languages…

– The opposite!

Python is Dynamic

def sum(x, y): return x + y

z = sum(1, 2) # Computes 3

z = sum(1.0, 2.0) # Computes 3.0

z = sum(“Hello”, “World”) # Computes “HelloWorld”

z = sum(“Hello”, 2) # Run time error

This is Python

The last line throws a TypeError exception…

“TypeError: Can’t convert ‘int’ object to str implicitly”

Scala is Static

def sum(x: Int, y: Int) = x + y

z1 = sum(1, 2) // Computes 3

z2 = sum(1.0, 2.0) // Compile time error

z3 = sum(“Hello”, “World”) // Compile time error

z4 = sum(“Hello”, 2) // Compile time error

This is Scala

You can use a type class to generalize sum over all numeric types

def sum[A](x: A, y: A)(implicit n: Numeric[A]) = n.plus(x, y)

z1 = sum(1, 2) // Computes 3

z2 = sum(1.0, 2.0) // Computes 3.0

z3 = sum(“Hello”, “World”) // Compile time error (not numeric)

z4 = sum(“Hello”, 2) // Compile time error

	Slide 1: An Introduction to Scala
	Slide 2: Scala in a Single Slide
	Slide 3: Scala is Not…
	Slide 4: Traditionally, Scala Targets the JVM
	Slide 5: Scala.js
	Slide 6: Scala Native
	Slide 7: Scala.NET?
	Slide 8: Language Categories
	Slide 9: Scala is Imperative
	Slide 10: Scala is Object Oriented
	Slide 11: Scala is Functional
	Slide 12: Scala Integrates OO and FP
	Slide 13: Domain Specific Languages
	Slide 14: External vs Internal DSLs
	Slide 15: Scala and DSLs
	Slide 16: Example DSL: ScalaTest
	Slide 17: Example DSL: Parser Combinators
	Slide 18: Example DSL: Telnet State Machine
	Slide 19: Static vs Dynamic
	Slide 20: Static vs Dynamic (continued)
	Slide 21: Static vs Dynamic (continued)
	Slide 22: Python is Dynamic
	Slide 23: Scala is Static

