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Why Study Compilers?

• Somebody has to write them. Why not you?
• Know your tools!

– Compilers are fundamental. The more you know about them, the 
more effectively you can use them.

• Domain Specific Languages
– Compiler technology is useful in surprising ways.

• Processing complex configuration and command languages.
• Transforming complex file formats.



The Pipeline

Front End
(analyzes source 

language)

Back End
(generates object 

language)Source Language Object Language

Intermediate Language
(IL, also called IR)



Language Levels

• Source Language
– Usually high-level, abstract.
– e.g., C, Java, etc.

• Object Language
– Usually low-level, concrete.
– e.g., Machine language, assembly language, C?

• Intermediate Language
– Easy for the front end to produce, easy for the back end to consume



Front End

• The front end knows the source language
–  Change the front end to compile different source languages. As long 

as they all generate the same IL, they can use a common back end.
– gcc. The “GNU Compiler Collection”

• C, C++, Objective-C, Fortran, Java, Ada, Go
• All use the same code generator/back end (in theory).

– Open Watcom
• C, C++, FORTRAN
• All use the same code generator/back end (in theory).



Multiple Front Ends

C

C++

Fortran

Augusta?

Common IL
… to the Back End!



Front End Pipeline

Scanner 
(Lexical 

Analyzer)
Parser Semantic 

Analyzer
IL Generator 
& Optimizer
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Lexical Analysis

• Consider the declaration “int x = 2*a + 1;”
– Tokens:

• INT, IDENTIFIER, EQUALS, NUMERIC_LITERAL, TIMES, 
IDENTIFIER, PLUS, NUMERIC_LITERAL, SEMICOLON

• The IDENTIFIER tokens have attributes containing the text “x” and “a”
• The NUMERIC_LITERAL tokens have attributes containing the text “2” and “1”

– All tokens have attributes specifying their position in the source file
• … so that good error messages can be produced later

– Comments and whitespace not in the token stream (typically)



Parsing

a = (b + c) * d;
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Semantic Analysis

• Does the program make sense?
– Type checking… a big part of semantic analysis in statically typed 

languages
– All other rules of the language

• Implicit type conversions
• Restrictions on operators
• Rules about how constructs can be ordered and placed, etc.

• Some semantic rules can be enforced during parsing. Some 
syntactic requirements are left for semantic analysis



Back End

• The back end knows the object language
–  Change the back end to target different systems. 16- and 32-bit they 

all accept the same IL, they can use a common front end.
– gcc

• Supports multiple targets by providing a separate back end for each. All 
source languages work on all targets (in theory).

– Open Watcom
• Targets 16- and 32-bit x86 processors, Alpha (not maintained), MIPS (not 

maintained), x86_64 under development… using multiple back ends.



Multiple Back Ends

x86

ARM

JVM/CLR

C

Common IL
… from the Front End!



Back End Pipeline

Target 
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Object 
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Implementation Language

• Common to write compilers in the language they compile
– Compiler writers are experts in their language… want to use it too!
– Easier to get help from the community; language users can contribute
– Compiler can compile itself; no dependency on another product

• … but it is not necessary!
–  The first compiler for a language obviously can’t be in that language!
– Some languages are more suitable for compiler construction than others
– Community and cultural reasons may dictate the choice of implementation 

language (e.g., the Open Watcom Fortran compiler is written in C).



Course Organization

• The classic compiler pipeline suggests…
– Starting with scanners and working our way from left to right in the 

previous diagrams!
– The book does this also

• I think all compiler texts do.

• I’m going to do something slightly different…
– Build a simplistic system from start to finish
– Go back and enhance it to add features exploring other aspects of 

compiler design.



Write a Compiler?

• Yes!
– It is traditional for students to write a small compiler for a simple 

language in a course like this.
– The difference is that we’ll explore the whole pipeline early and study 

parts in more depth as we need them (and as time allows).
– We’ll use Scala as our implementation language
– We’ll use LLVM as our back end



Augusta

• Augusta is a simplified subset of the Ada programming 
language
– Suitable for education: difficult features of Ada are deleted.
– Defined for several levels. August L1 has a C-like feature set

• AGC (pronounced “Agency”)
– The Augusta compiler. Currently in an embryonic state.
– See: https://github.com/pchapin/augusta. 

https://github.com/pchapin/augusta


Scala?

• We will use Scala as our implementation language
– Scala is a good language for compiler construction (in my opinion).
– Scala targets the JVM, so our compiler will run anywhere Java runs
– Scala is a good language to know (resume fodder)

• I will assume no prior experience with Scala



Back End Options 1

• Interpreter
– No code generation at all. AGC analyzes the program and also 

executes it by interpreting the source code.

• C
– AGC outputs a C program that does the same as the input Augusta 

program. Use a normal C compiler to generate executable code.
– This allows users to write Augusta programs for any platform that has 

a C compiler (i.e., everywhere)



Back End Options 2

• JVM
– AGC outputs class files containing Java byte codes that run on the 

JVM.
– Since the JVM is fairly high-level, AGC might be able to use Java byte 

code as its IL and dispense with all the usual back-end stages.
– Potentially would allow Augusta programs to call Java libraries
– For ease of implementation, AGC could output JVM assembly 

language and then use a JVM assembler to generate the class files



Back End Options 3

• LLVM (Low-Level Virtual Machine)
– LLVM is at a lower level than the JVM. However, it is still easier to 

manage than real hardware (the LLVM machine has infinitely many 
registers, removing the register allocation problem).

– Very advanced LLVM tools can do state-of-the-art optimizations
– Potentially interact with code generated by other LLVM targeting 

compilers such as Clang (C), Clang++ (C++), and others
– Might be more appropriate for a “systems” language like Augusta.
– Allows us to explore classic code generation issues

https://llvm.org/


Back End Options 4

• Real Hardware (x86_64?)
– This is the most realistic option.
– To simplify implementation, AGC could output x86_64 assembly 

language and then use an assembler to generate the object files.
– Allows us to consider all aspects of code generation, including 

register allocation
– CONS: It’s hard work! Also, by definition, it is very target-specific.



My Background

• What do I know?
– Been involved in the standardization of C++; talked extensively with 

real-world compiler writers
– Been part of the Open Watcom project, working on C/C++ compilers 

and libraries
– Created a compiler to convert an enhanced dialect of nesC into pure 

nesC for my PhD work at UVM.
– Modified the Scala compiler to add novel type-checking and code-

generating facilities as a research project while at UVM



Let’s get started!
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