
Compiler Design

Peter Chapin
Vermont State University



Why Study Compilers?

• Somebody has to write them. Why not you?
• Know your tools!

– Compilers are fundamental. The more you know about them, the 
more effectively you can use them.

• Domain Specific Languages
– Compiler technology is useful in surprising ways.

• Processing complex configuration and command languages.
• Transforming complex file formats.



The Pipeline

Front End
(analyzes source 

language)

Back End
(generates object 

language)Source Language Object Language

Intermediate Language
(IL, also called IR)



Language Levels

• Source Language
– Usually high-level, abstract.
– e.g., C, Java, etc.

• Object Language
– Usually low-level, concrete.
– e.g., Machine language, assembly language, C?

• Intermediate Language
– Easy for the front end to produce, easy for the back end to consume



Front End

• The front end knows the source language
–  Change the front end to compile different source languages. As long 

as they all generate the same IL, they can use a common back end.
– gcc. The “GNU Compiler Collection”

• C, C++, Objective-C, Fortran, Java, Ada, Go
• All use the same code generator/back end (in theory).

– Open Watcom
• C, C++, FORTRAN
• All use the same code generator/back end (in theory).



Multiple Front Ends

C

C++

Fortran

Augusta?

Common IL
… to the Back End!



Front End Pipeline

Scanner 
(Lexical 

Analyzer)
Parser Semantic 

Analyzer
IL Generator 
& Optimizer

So
ur

ce
 L

an
gu

ag
e

In
te

rm
ed

ia
te

 L
an

gu
ag

e

To
ke

n 
St

re
am

Pa
rs

e 
Tr

ee
Ab

st
ra

ct
 S

yn
ta

x 
Tr

ee

Au
gm

en
te

d 
Tr

ee

Symbol Table



Lexical Analysis

• Consider the declaration “int x = 2*a + 1;”
– Tokens:

• INT, IDENTIFIER, EQUALS, NUMERIC_LITERAL, TIMES, 
IDENTIFIER, PLUS, NUMERIC_LITERAL, SEMICOLON

• The IDENTIFIER tokens have attributes containing the text “x” and “a”
• The NUMERIC_LITERAL tokens have attributes containing the text “2” and “1”

– All tokens have attributes specifying their position in the source file
• … so that good error messages can be produced later

– Comments and whitespace not in the token stream (typically)



Parsing

a = (b + c) * d;

=

a *

+

b

d

c

Abstract SyntaxConcrete Syntax

assignment 
expression

a multiplicative 
expression

additive 
expression d

b c

Parse Tree

=

*

+



Semantic Analysis

• Does the program make sense?
– Type checking… a big part of semantic analysis in statically typed 

languages
– All other rules of the language

• Implicit type conversions
• Restrictions on operators
• Rules about how constructs can be ordered and placed, etc.

• Some semantic rules can be enforced during parsing. Some 
syntactic requirements are left for semantic analysis



Back End

• The back end knows the object language
–  Change the back end to target different systems. 16- and 32-bit they 

all accept the same IL, they can use a common front end.
– gcc

• Supports multiple targets by providing a separate back end for each. All 
source languages work on all targets (in theory).

– Open Watcom
• Targets 16- and 32-bit x86 processors, Alpha (not maintained), MIPS (not 

maintained), x86_64 under development… using multiple back ends.



Multiple Back Ends

x86

ARM

JVM/CLR

C

Common IL
… from the Front End!



Back End Pipeline

Target 
Specific IL 
Optimizer

Object 
Language 
Generator

Object 
Language 
Optimizer

In
te

rm
ed

ia
te

 L
an

gu
ag

e

O
bj

ec
t L

an
gu

ag
e



Implementation Language

• Common to write compilers in the language they compile
– Compiler writers are experts in their language… want to use it too!
– Easier to get help from the community; language users can contribute
– Compiler can compile itself; no dependency on another product

• … but it is not necessary!
–  The first compiler for a language obviously can’t be in that language!
– Some languages are more suitable for compiler construction than others
– Community and cultural reasons may dictate the choice of implementation 

language (e.g., the Open Watcom Fortran compiler is written in C).



Course Organization

• The classic compiler pipeline suggests…
– Starting with scanners and working our way from left to right in the 

previous diagrams!
– The book does this also

• I think all compiler texts do.

• I’m going to do something slightly different…
– Build a simplistic system from start to finish
– Go back and enhance it to add features exploring other aspects of 

compiler design.



Write a Compiler?

• Yes!
– It is traditional for students to write a small compiler for a simple 

language in a course like this.
– The difference is that we’ll explore the whole pipeline early and study 

parts in more depth as we need them (and as time allows).
– We’ll use Scala as our implementation language
– We’ll use LLVM as our back end



Augusta

• Augusta is a simplified subset of the Ada programming 
language
– Suitable for education: difficult features of Ada are deleted.
– Defined for several levels. August L1 has a C-like feature set

• AGC (pronounced “Agency”)
– The Augusta compiler. Currently in an embryonic state.
– See: https://github.com/pchapin/augusta. 

https://github.com/pchapin/augusta


Scala?

• We will use Scala as our implementation language
– Scala is a good language for compiler construction (in my opinion).
– Scala targets the JVM, so our compiler will run anywhere Java runs
– Scala is a good language to know (resume fodder)

• I will assume no prior experience with Scala



Back End Options 1

• Interpreter
– No code generation at all. AGC analyzes the program and also 

executes it by interpreting the source code.

• C
– AGC outputs a C program that does the same as the input Augusta 

program. Use a normal C compiler to generate executable code.
– This allows users to write Augusta programs for any platform that has 

a C compiler (i.e., everywhere)



Back End Options 2

• JVM
– AGC outputs class files containing Java byte codes that run on the 

JVM.
– Since the JVM is fairly high-level, AGC might be able to use Java byte 

code as its IL and dispense with all the usual back-end stages.
– Potentially would allow Augusta programs to call Java libraries
– For ease of implementation, AGC could output JVM assembly 

language and then use a JVM assembler to generate the class files



Back End Options 3

• LLVM (Low-Level Virtual Machine)
– LLVM is at a lower level than the JVM. However, it is still easier to 

manage than real hardware (the LLVM machine has infinitely many 
registers, removing the register allocation problem).

– Very advanced LLVM tools can do state-of-the-art optimizations
– Potentially interact with code generated by other LLVM targeting 

compilers such as Clang (C), Clang++ (C++), and others
– Might be more appropriate for a “systems” language like Augusta.
– Allows us to explore classic code generation issues

https://llvm.org/


Back End Options 4

• Real Hardware (x86_64?)
– This is the most realistic option.
– To simplify implementation, AGC could output x86_64 assembly 

language and then use an assembler to generate the object files.
– Allows us to consider all aspects of code generation, including 

register allocation
– CONS: It’s hard work! Also, by definition, it is very target-specific.



My Background

• What do I know?
– Been involved in the standardization of C++; talked extensively with 

real-world compiler writers
– Been part of the Open Watcom project, working on C/C++ compilers 

and libraries
– Created a compiler to convert an enhanced dialect of nesC into pure 

nesC for my PhD work at UVM.
– Modified the Scala compiler to add novel type-checking and code-

generating facilities as a research project while at UVM



Let’s get started!


	Compiler Design
	Why Study Compilers?
	The Pipeline
	Language Levels
	Front End
	Multiple Front Ends
	Front End Pipeline
	Lexical Analysis
	Parsing
	Semantic Analysis
	Back End
	Multiple Back Ends
	Back End Pipeline
	Implementation Language
	Course Organization
	Write a Compiler?
	Augusta
	Scala?
	Back End Options 1
	Back End Options 2
	Back End Options 3
	Back End Options 4
	My Background
	Slide Number 24

