
CIS–4020 Lab

QNX Serial Device Driver

c© Copyright 2008 by Peter C. Chapin

Last Revised: November 2, 2008

Introduction

In this lab you will write a QNX device driver for the
serial port in your machine. Because QNX is based
on a microkernel, your driver can be written as an
ordinary user-mode process. This simplifies its con-
struction considerably as compared to the case with
drivers for monolithic kernels like Linux. In addition
to interacting with the hardware you will also need
to provide support for applications that wish to read
the port using the standard POSIX functions. To do
this you will need to use the QNX resource manager
framework.

See the QNX web site at http://www.qnx.com for
more information about QNX and about the specific
techniques and functions you will need for this lab
(QNX has the system documentation on-line). You
can also read the QNX documentation using the help
version in your QNX session.

Serial Driver: Part 1

Please refer to the datasheet on the 16550 UART for
detailed technical information about the serial port
hardware in PC class machines. The COM1 port is
located at a base address of 0x3F8 and IRQ an value
of 4. The COM2 port is located at a base address
of 0x2F8 and an IRQ value of 3. You can hard code
these values into your program. You only need to
support one serial port; you can choose which one.

Also, in the interest of time, you only need to support
reading characters from the port. Extending your
driver to allow writing as well would obviously be
highly desirable in the real world. However, doing so
is not as trivial as you might think, and it doesn’t
add enough educational value to this lab to be worth
doing here.

The sample program qnx-interrupt.c, taken
largely from the QNX documentation, demonstrates
the basics of interacting with a hardware device that
generates interrupts. You will absolutely want to en-
able the use of interrupts on the device; polling the
hardware is unacceptable in a multitasking system.
In the hardware control thread configure the port to
use 9600 baud, no parity, eight data bits, and one
stop bit. In general it is better to accept this infor-
mation from the command line and allow the user to
specify the serial parameters, but for now you can
hard code these parameters into your program.

Your first program should simply print the characters
that it receives. To test your program follow the steps
below.

1. Terminate the QNX serial port driver. This is
straight forward because the driver is a user-
mode process.

2. Restart the QNX serial port driver on only one
serial port—the port you are not using for your
driver. Be sure the QNX driver is using the same
line parameters (baud rate, etc) as your driver
and be sure that it is not using flow control. You
will need to review the documentation for the

1



QNX driver to find out precisely what options
you should use.

3. Connect the two serial ports on your machine
together using a null modem.

4. Copy a text file to the name representing the
QNX driver and observe what characters your
driver receives.

Initially you can ignore flow control. If you find
there are problems doing that (lost characters) you
should implement RTS/CTS flow control in your
driver (don’t forget to restart the QNX driver with
RTS/CTS flow control enabled and be sure the null
modem has RTS and CTS crossed over).

Serial Driver: Part 2

Integrate the material in the sample program
qnx-manager.c into your program. This material
provides a skeleton for a simple resource manager
that supports reading and writing to a resource by
multiple processes1. You can leave the write han-
dling alone for now, but you should implement sup-
port for the read message. Note that the resource
manager code executes in a different thread from the
hardware control thread. Initially pass only a single
character at a time to the reader regardless of how
many characters are requested. You will need to use
POSIX thread synchronization primitives (condition
variable) to coordinate the threads.

You should now be able to use the standard POSIX
cat utility to read the name associated with your
driver and extract characters from the serial port.

Serial Driver: Part 3

Modify the producer-consumer code you developed
for an earlier lab to implement a generous buffer be-

1It might make more sense to allow only a single process
at a time to read the port, but that involves extra work with
handling open and close messages.

tween the hardware control thread and the resource
manager thread. Unlike in the earlier lab the con-
sumer in this lab will want to remove more than one
item at a time. Modify your earlier code accordingly.
If you have implemented flow control, you will want
to trigger changes in the flow control lines based on
the state of the buffer. For example, hold off the re-
mote side of the connection when the buffer is 3/4 full
and restart the remote side of the connection when
the buffer drains to 1/4 full.

Report

Write a report that describes your program and the
test results you obtained. If you did not complete all
the steps above, comment on how far you got and on
what you would do next to continue the project if you
had more time. Turn in your report and a commented
listing of your software. As always lab partners can
turn in the same listing but should write separate
reports.

2


