
CIS–4020 Lab

Introduction to QNX

c© Copyright 2009 by Peter C. Chapin

Last Revised: December 2, 2009

Introduction

QNX is a commercial micro-kernel based, real time
operating system targeting the embedded market. It
can also be used as a desktop system, although the
support for it in that use is not as extensive as for sys-
tems such as Linux or Windows. In this lab you will
experiment with QNX in general and with the QNX
development tools specifically. Note that as academic
users, we have full access to QNX’s development suite
at no charge.

See the QNX web site at http://www.qnx.com for
more information.

QNX Overview

Start QNX in your virtual environment and explore
the system a little. Note especially the following
items.

1. The QNX terminal gives you a Unix-style shell
prompt. You can use this shell to issue ordinary
Unix commands and navigate an ordinary Unix
file system. Since QNX supports the POSIX
API, many Unix tools have been compiled for
it.

2. QNX comes with a version of Firefox pre-
installed.

3. The default QNX install does not come with any
SSH tools. However, there is a project on source-
forge for porting a number of open source tools
to QNX. I downloaded and preinstalled a (rel-
atively old) version of SSH for QNX from that
project.

4. Although there are no manual pages installed,
the QNX help system (accessible via the help
viewer tool) is fairly complete. It contains not
only reference information but also some good
tutorial and overview documents.

5. The QNX development environment is, essen-
tially, Eclipse with the C Development Tools
plug-in preinstalled (QNX has added some cus-
tomizations and branding). There is more on
using Eclipse in the next section.

Development Environment

The development environment runs on Windows and
cross compiles to the QNX target. If you are pro-
gramming directly on the QNX system, you will need
to instead use a plain text editor and the command
line compiler.

The development environment is based on Eclipse, a
powerful IDE framework that can be used for many
different kinds of development. In this lab you will be
using one of the more mature plug-ins: the C Devel-
opment Tools (CDT). Eclipse by itself is not a com-
piler. Instead the CDT relies on the services of a

1

conventional compiler, in this case gcc, but presents
a user interface that is much more convenient than
an ordinary text editor.

The CDT assume your project is built with a make-
file and will launch the make utility when asked to
do a build. There are two ways this makefile can be
created. The CDT can edit the makefile for you so
that all you have to do is specify which files are in
your project, etc. This option is called a “managed
makefile project.” Alternatively the CDT can let you
edit your own makefile, giving you the ability to use
the full power of the make program without any re-
strictions imposed by the environment. This option
is called a “standard makefile project.”

For this lab I recommend using standard makefile
projects. The managed projects are less suitable for
the simple projects we are using, and seem to just
add needless complications for our purposes.

Eclipse by default keeps all of its projects under a
workspace directory. You can define an “external”
project that is kept elsewhere, but for this lab using
the workspace directory is probably best. For one
thing you can make a tar ball of this directory and
copy elsewhere to backup not only your work but also
all of Eclipse’s settings (which are also stored under
the workspace directory as well).

Note also that, unlike some IDEs, Eclipse gives you
access to all of your defined projects simultaneously.
This can seem confusing at first, but it is often conve-
nient if you want to refer to another project or share
files with another project.

Proceed as follows:

1. Load Eclipse and define a standard makefile
project named “Hello.” Create a new file in this
project named “Makefile” and enter the follow-
ing text.

all: hello

hello: hello.o

gcc -g -o hello hello.o

hello.o: hello.c

gcc -g -Wall -c hello.c

It is necessary for your makefile to define a target
“all.” Eclipse will build this target by default
when it is told to build your project. This allows
you to easily build multiple programs at once if
necessary. Be sure to indent lines with the TAB
key. This is a make requirement.

2. Create hello.c and enter the following classic
program.

#include <stdio.h>

int main(void)

{

printf("Hello, World!\n");

return 0;

}

Build and run this program. TODO: It is nec-
essary to describe how to use qconn to upload
the executable to the QNX target system from
the Windows development environment. It might
also be desirable to talk about how to debug the
program via qconn.

3. Create a new project named “Message-Test.”
Copy the file qnx-msgtest.c into the workspace
folder for that project (this is the easiest way to
add the existing file to the project). Build and
test the program.

4. Create a new project named “Pulse-Test.”
Copy the files qnx-pulse-server.c and
qnx-pulse-client.c into that project. Note
that these are two separate programs; adjust
your makefile accordingly. Build and test the
programs.

1 Qnet Networking

Look up how to start Qnet in the help. Do what is
necessary to make that happen. Change the network

2

configuration of your virtual machine to use direct ac-
cess to the ethernet interface in your system (instead
of, for example, the NAT configuration). Restart
your machine and see if you can see the other sys-
tems in the lab in your /net directory. Demonstrate
the pulse client and server working over the network
(that is, use your client to send a pulse to a server on
a different machine).

Report

There is no report for this lab.

3

