
CIS–4020 Lab

Kernel Threads

c© Copyright 2015 by Peter C. Chapin

Last Revised: September 13, 2015

1 Introduction

In this lab you will write a module that demon-
strates the producer/consumer problem and its so-
lution. Your module will create two kernel threads,
one to be a producer of data and the other to be a
consumer of that data. These threads will run period-
ically but with different periods (that you will vary).
Your module will need to use kernel semaphores and
mutex objects to keep the threads properly synchro-
nized.

In addition your module will provide a simple /proc

file that reports on the behavior of the threads. This
is needed so you can check to see if they are working
properly.

The precise data produced and consumed is entirely
artifical in this exercise. The purpose of the lab is
educational, of course, and to give you experience
with thread synchronization issues inside the kernel.
It also gives you more practice writing modules.

2 Creating Threads

Start with a skeleton module file. In the module
initialization function, create two kernel threads us-
ing the names “thread-A” and “thread-B.” Use the
macro kthread run to create the threads and start
their execution.

The two threads should loop, calling the msleep func-
tion to sleep for a specified number of milliseconds.

Start by having both of the threads sleep for 500
ms (you will experiment with changing this value
later). The threads should loop exactly 256 times.
The threads must terminate before the module that
created them can be removed. Thus it is important
to arrange a way for them to terminate gracefully or
you will be forced to reboot each time you wanted to
update the module!

Check your module to be sure it behaves as expected.
The threads should show up in the process list with
square brackets around their names. What happens
if you try to remove the module while the threads are
running?

3 Producer/Consumer

Let thread-A be the producer thread. It should use
kmalloc to allocate a page of kernel memory, fill that
page with PAGE SIZE copies of an eight bit count, and
then install a pointer to that page into a small buffer
shared with the consumer. The producer should also
increment a global counter of the number of pages it
has produced.

For our purposes the buffer can be declared as a small
array of pointers to unsigned characters. For exam-
ple:

#define BUFFER_SIZE 8

static unsigned char *buffer[BUFFER_SIZE];

static int count = 0;

1



static int next_in = 0;

static int next_out = 0;

Here next in is the index of the next available slot
in the buffer, and next out is the index of the next
item to be removed from the buffer. You will also
want to declare in the same place whatever mutex
and semaphore objects are required. Be sure those
objects are properly initialized. It is important these
things be global variables that can be shared by the
threads.

Note that every byte of the pages installed in the
buffer should be filled with the same count. The first
page produced should be filled with PAGE SIZE copies
of 0x00. The second page produced should be filled
with PAGE SIZE copies of 0x01, and so forth. Since
the producer loops 256 times, the last page produced
should be filled with PAGE SIZE copies of 0xFF.

Let thread-B be the consumer thread. It should ex-
tract a pointer from the buffer shared with the pro-
ducer, verify that the count stored on that page is cor-
rect, and then use kfree to release the page back to
the kernel. The consumer should also update global
counters of the number of verified pages it has con-
sumed and the number of error pages it has consumed
(pages that don’t verify).

Be sure that the producer and consumer use the
proper locking to ensure that they maintain mutual
exclusion when manipulating the buffer and that the
buffer neither overflows nor underflows. See the class
notes on Locking for the producer/consumer pseudo-
code.

4 Thread Monitoring

You must arrange for your module to create a /proc

file that exposes the three count values (pages pro-
duced, verified pages consumed, error pages con-
sumed). Because the amount of data to be returned
through the /proc file is small, it may be more con-
venient to not bother with the seq file API. The basic

module skeleton shows an alternative way of creating
a /proc file.

Run your module with the producer and consumer
sleeping for the same amount of time (500 ms each).
Run it again with the producer running faster (only a
250 ms sleep). Run it a third time with the consumer-
ing running faster. Observe the behavior in each case
to verify that no problems arise. Note that when the
threads end the /proc file should report that 256
pages were produced and 256 verified pages (0 error
pages) were consumed. However, while the threads
are running the number of pages consumed might be
slightly less than the number produced. Why?

Experiment with different buffer sizes also. Can you
arrange things so the producer produces all of its out-
put before the consumer processes even one item?

5 Optional

In this section I describe a few optional things to
try that might interest some of you. Unless stated
elsewhere these steps are not a required part of the
lab.

• Modify your module so the count of items in the
buffer is also shown in the /proc file. Be care-
ful! The thread that tries to read the /proc

file is different than either thread-A or thread-
B. It should acquire the mutex before looking at
the shared count variable. Will this cause any
problems for the producer or consumer? What
happens to the reading process if it hangs indef-
initely while locking that mutex (due, for exam-
ple, to an error in the program’s logic)?

• Kernel threads in Linux are similar to ordinary
threads and have independent process ID num-
bers. This means they run in a “process context”
that is different from that used by the process
that reads the /proc file.

Have both the producer and consumer threads
store their process ID numbers in separate global

2



variables (use the current pointer to look up the
process ID in the thread’s task struct). Modify
the handling of the /proc file to display these
values along with the process ID of the calling
process (obtained the same way).

• Linux has some mutex debugging features. Con-
sult the configuration of the kernel to see which,
if any, are currently activated. If necessary turn
some mutex debugging features on and rebuild
the kernel. Next modify your code to elicit the
kinds of errors the debugging features can detect
and see if they are, in fact, detected.

6 Report

Write a report for this lab following using LATEX. In-
clude highlights of your module code. Be sure to
include a description of your code that explains what
it does and how it works. Comment on the behavior
of the system in your various experiments.

3


