
CIS–4020 Lab

Fork Watcher

© Copyright 2024 by Peter Chapin

Last Revised: September 22, 2024

1 Introduction

In this lab you will modify the kernel so that each
time a new process is created, information about that
operation is gathered and stored in a circular buffer
inside the kernel. As with the previous lab you will
write a module that provides a /proc file interface
to this information. You will also write an ordinary
user mode application that formats the raw data in
the /proc file in a more user friendly way.

To prepare for this lab you should look over the fol-
lowing materials.

� The clone manual page in section 2 of the Linux
manual.

� The kernel source for kernel clone and copy -

process.

� The manual page for the getpwuid function.

� The error code definitions in

– include/asm-generic/errno-base.h

– include/asm-generic/errno.h

2 Gathering Data

The first step is to instrument the kernel so that it
collects “interesting” data about each fork operation
that occurs. Since all of the process creation system
calls ultimately call kernel clone it is sufficient to

add your instrumentation there (or perhaps in func-
tions called by kernel clone such as copy process).
The information you should gather includes

� The clone flags passed to kernel clone.

� The user ID (UID) associated of the calling pro-
cess.

� The process ID (PID) associated with the calling
process.

� The PID of the new process.

� The name of the command associated with the
calling process.

� The return value of the clone operation.

Because Linux supports multiple namespaces and
since kernel clone can, under certain conditions,
create a new process in a new namespace you might
want to also output information about the names-
pace of the calling process and the namespace of the
new process. However, this is not required in a first
version of this lab (you can assume that only a single
namespace is being used).

Define a structure (say, struct fork info) that can
hold the necessary information. This definition needs
to be shared between your modified kernel and the
module that implements the /proc file so you will
want to put it in a header file (say, fork info.h).
Store this new header file in the same location as the
other kernel headers under include/linux.

1



2.1 Circular Buffer

You will also need to define a circular buffer to hold
the fork information records. This buffer is an array
(you decide how large) with two pointers or index
variables that define the next available slot and the
next slot from which a record should be extracted.
As the buffer fills, these pointers should wrap around
and reuse the space. If the next in pointer catches
up with the next out pointer, old data should be
overwritten. In this way the buffer will only hold
information about that last n forks, where n is the
size of the buffer.

Note that because multiple threads can call
kernel clone at the same time, it is possible that
multiple threads will be accessing the buffer simul-
taneously (also the module might be accessing the
buffer as well). To ensure normal functioning in this
case, you should provide appropriate locking as de-
scribed in class.

Notice that the circular buffer is an example of
the producer/consumer problem where the kernel
code “produces” fork records and the module “con-
sumes” them. However, unlike the classic pro-
ducer/consumer problem, we don’t want to block the
kernel if the buffer fills. In that case the old records
should be overwritten. We also don’t want to block
the module if the buffer is empty so that any attempt
to read the fork records will not hang forever waiting
for more. These changes simplify the locking strategy
required.

Be aware that the kernel is designed to work with
very limited stack space. Once inside the kernel you
are using the kernel stack (not the stack of the appli-
cation) and you must be careful not to overflow that
stack. Avoid declaring “large” variables as local to
any function. We may not have any problems with
this, but again you should consider it.

3 Module

As with Lab #2 you will need to write a module
that outputs the fork information records through a

/proc file. Use the same seq file API as you did
in the previous lab. Since the application that reads
the /proc file might take a long time to do it, there
is a possibility that the fork information buffer could
get new records added to it during the seq file it-
eration. Again we will try to ignore this issue in this
lab, but you should be aware of it in case there are
problems related to it. Fully correct handling of this
is potentially difficult and some compromises may be
necessary.

4 Formatting Program

You are allowed to output raw numbers in a user un-
friendly format to the /proc file. However, for this
lab you are also asked to write a user mode applica-
tion that read the /proc file in the usual way and re-
formats those numbers nicely. Your program should
do (at least) the following

� Break out the clone flags into symbolic names.

� Convert UID values into actual user names (use
the C library function getpwuid).

� Convert return values into proper symbolic
names. You can consult the clone manual page
for a list of possible error returns and cross refer-
ence that list with the numbers in the appropri-
ate errno.h files (see the list in the Introduction
section).

5 Report

Write a report for this lab following the lab report
template provided by your instructor. Include a list-
ing of your module code, your user mode application,
and a summary of any other source files you added
or changed in an appendix. Be sure to include a de-
scription of your code that explains what it does and
how it works.

2


