
CIS–4020 Lab

Distributed Mutual Exclusion

c© Copyright 2008 by Peter C. Chapin

Last Revised: December 2, 2008

Introduction

In this lab you will write a program that illustrates
Lamport’s distributed mutual exclusion algorithm.
Your program will participate in a network with those
of your peers to control access to a single hypothet-
ical resource. You should use C++ for your imple-
mentation language. C++ supports standard library
component (STL vectors) that can be extended in
size dynamically with a minimum of fuss.

1 Outline

Your program should dynamically allocate the array
needed in Lamport’s algorithm. As new nodes send
you messages, the array should be expanded to incor-
porate them. You can assume that the nodes in the
network are number in order from 0 to N-1. You will
be assigned a node number in lab; your program must
know what it is (use a command line argument).

Your program should use on thread to listen to in-
coming UDP packets on port 99991. When a packet
arrives this thread needs to access the array, the clock
value, and perhaps send a reply message. Also, for
each message received this thread needs to notice if
a previous resource request can now be acted on. If
so, it should start up a “resource-use” thread that
“uses” the resource in some way. I suggest printing
a message on the console.

1On the Windows machines in the lab it may be necessary
to configure the firewall to allow external access to this port.

Messages must use an agreed upon format if every-
one’s program is to interoperate properly. The con-
tent of each message should be as follows:

type:timestamp:source_node

Where type is the message type (one of REQUEST,
REPLY, RELEASE), timestamp is the message
timestamp as an integer, and source node is the
node ID of the sending node as an integer. No addi-
tional characters should be in the messages; in par-
ticular they should not be terminated with a carriage
return, line feed, or null character.

Meanwhile the program should use another thread
to interact with the user, allowing the user to manu-
ally request and release the resource. When the user
requests the resource, this thread should access the
array and the clock value, and broadcast a request
message. When the user releases the resource, this
thread should terminate the resource-use thread, ac-
cess the array and the clock value, and broadcast a
release message.

Be sure you use mutual exclusion as necessary to pro-
tect the shared resources.

2 Report

Turn in a commented listing of your software. There
is no other report.

1


