

The C Programming Language

CIS-4020
Vermont State University

Peter Chapin

Design Goals

● C was designed as a systems language.
● Low level control of machine resources.

– Direct access to memory.
– Manipulation of raw bytes in a type-unsafe manner.
– Bit manipulation.
– Low overhead.

● "If you don't write it, it doesn't happen."

● Designed to replace assembly language when
writing operating systems.
– ... or device drivers, or other "systems" application (virtual

machines, memory managers, etc).

Applications?

● C is not really an applications language.
● Too low level.

– Does not provide many (any) convenience services.
● Too unsafe.

– Easy to modify out of bounds memory unintentionally.
● Creates security problems (buffer overflow bugs).
● A large number of security vulnerabilities in software are a direct

result of C's lack of safety.
– Easy to treat objects of one type as another type.

● Useful for certain specialized situations.
● Generally an error in normal applications.

Review?

● These slides are intended to illustrate the
features of C we need for operating systems.
● I do not bore you with details of if and while!
● Topics:

– Pointer arithmetic and arrays. Pointers to void.
– Pointers to functions.
– Typedef.
– Bit manipulation.
– Structure layout.
– Unions.
– Macros and conditional compilation.

Pointer Arithmetic

● Consider:
● int array[1024];
int *p = array;

++p; // Points at next element.
p[0] = 1; // Really *(p + 0) = 1;
p[-1] = 1; // Really *(p – 1) = 1;
if (p – array > 1) { ... }

Exotic Pointer Arthimetic

● Consider:
● int array[1024];
char *p = (char *)array;

++p; // Points at next byte.
*p = 1; // Modifies one byte.
*(int *)p = 1; // Modifies an int.

● The last assignment causes a value to be placed
into the array that overlaps two array elements.
– Might fail on some systems due to alignment problems.

Pointers to void

● General pointer that can point at anything.
● Used to hold pointers of any type.
● Requires a cast before it can be used.
● struct example object;
void *thing = &object;
...
struct example *p =
 (struct example *)thing
p->member = 1;

Uses of void *

● Kernel uses void * to give third parties a way of
storing custom data in kernel data structures.
● struct kernel_internal {
 ...
 void *private;
};

● Kernel passes a pointer to kernel_internal to a
module.
– Module can allocate custom data structure of any type

and store its address in private member.
– Module can later access that member to get back the

custom data.

Pointers to Functions

● Functions have addresses as well.
● int (*pf)(int, char *);
int function(int x, char *p);
pf = function;
pf(1, "Hello");

● The variable pf can be made to point at any
function with the right type signature.

● The name of a function without an argument list is a
pointer to that function.

● Dereferencing a pointer to function is implicit.

Function Pointers in the Kernel

● The kernel uses pointers to functions widely.
● struct operations {
 int (*read)(void *buffer, int n);
 int (*write)(void *buffer, int n);
};
...
struct kernel_internal {
 struct operations *ops;
};
...
struct kernel_internal *p;
...
p->ops->read(buffer, 1024);

Typedef

● Introduce an alias for an existing type.
● typedef int counter_t;
counter_t n = 0;

● The counter_t type is just a new name for int.
– Can be mixed with int freely.

– The _t part of the name is just a convention.

● Used for two purposes.
● Give a simple name to a complex type.
● Centralize a type definition to a single place (in a

header file).

Typedef in the Kernel

● The kernel uses many typedef names.
● Some kernel specific
● Some shared with applications.

● Examples
● pid_t

– Type for representing process ID numbers
● uid_t

– Type for representing user ID numbers
● loff_t

– Type for representing offsets in potentially large files
("long offset type")

Bit Manipulation

● C has many bit manipulation operators.
● x & y (bitwise AND)

● x | y (bitwise OR)

● x ^ y (bitwise XOR)

● ~x (bitwise complement)

● x << y (bitwise left shift)

● x >> y (bitwise right shift)

● Very fast
● Typically compile to single machine instructions.

Flags and Masking

● Common use of bitwise operators:
● Store independent flag values in a single int.
● #define RED 0x00000001
#define GREEN 0x00000002
#define BLUE 0x00000004

int flags = RED|BLUE;
...
if (flags & GREEN) { ... }
...
flags ^= RED;

Structure Layout

● Consider:
● struct example {
 char x;
 int y;
 char *z;
};

● C standard requires:
– First member be at offset zero (&example_object can

be cast to a pointer to char and used to access x).

– Members layed out in order of declaration (offset of y is
greater than offset of x, etc).

– However, the compiler is allowed to include padding.

Unions

● Similar to a structure.
● union example {
 float value;
 char raw[4];
};

● Members overlap in memory. Only one value can
be stored at a time.
– example_object.value = 3.14F;
example_object.raw[1] ^= 0x08;

– Toggles one bit of the floating point representation.
– Also used to save memory.

Preprocessor

● Lines begining with # are preprocessor
directives.
● Technically they are handled before the compiler

processes the source file.
– Many compilers process the preprocessed source right

behind the preprocessor (so only a single pass is
needed).

● #include, #define, #if, etc.
– Treat your program as a text file.

● Technically the preprocessor knows (next to) nothing about C.
● C preprocessor sometimes used for other purposes.

Object-Like Macros

● Preprocessor symbols that are simple names.
● #define MAX_BUFFER_SIZE 1024

– Give a name to a raw number.
● Better documentation; easier to read and understand.
● Easier to change.

● #define LOOP while (1)
– Hide arbitrary text inside the macro.
– LOOP {
 x = f(y); // Or whatever...
}

Function-Like Macros

● Preprocessor symbols that look like functions.
● #define max(x, y) \
 ((x > y) ? (x) : (y))
– Inline expanded (low overhead).
– Can expand to code fragments (that by themselves

would not compile).
– Tricky...

● biggest = max(a++, b);
● biggest = ((a++ > b) ? (a++) : (b))

– Oops! Might increment a twice. Probably not intended.

Conditional Compilation

● Compiler selectively skips material depending
on other preprocessor symbols.
● #define DEBUG
...
#ifdef DEBUG
 printk("Debugging output...\n");
#endif

● #define CONFIG_SMP
...
#ifdef CONFIG_SMP
 // Do SMP special stuff here.
#endif

Kernel Configuration

● Configuration Tool...
● Creates header with many #define values like
CONFIG_SMP, etc.

● Kernel code uses #if / #endif directives to
selectively compile different code depend on
configuration.
– C source really many programs in one
– A different program for each combination of configuration

settings.
● Suppose there are 50 CONFIG macros... 250 different kernel

configurations!
● Do you think they are all tested?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

