
DevBox and HackBox

© Copyright 2024 by Peter Chapin

Last Revised: June 6, 2024

Contents

1 Introduction 2

2 Installing VirtualBox 2

3 Booting the Guests 4

4 Logging Into the Guests 5

5 Snapshots 6

6 Basic Testing 7

7 Kernel Modification 9

8 Phoenix 11

9 Using KGDB and KDB 11

10 Making Backups 13

11 Shutting Down 15

12 Setup Notes 15

1

1 Introduction

When doing operating system work, you ideally want to run your experimental
software on a different computer than the one you use for development. An
error in an operating system module or driver has the potential to corrupt the
entire machine; testing on your development system may lead to headaches if
such corruption occurs. Also, it is generally not possible to debug an operating
system while running the debugger tool on the same machine. Two machines
are needed so the debugger and the debugee can be properly separated.

In this document I call the development system “DevBox.” It is a full envi-
ronment with all the usual tools and conveniences. It is on DevBox where you
spend most of your time working and compiling your programs. It is on DevBox
where you run source level debuggers.

The experimental system I call “HackBox.” It is a simplified environment that
is minimally configured. The smaller, lighter configuration makes testing and
error recovery easier.

This document describes how to set up the preconfigured DevBox and HackBox
virtual machines provided for the operating systems course at Vermont State
University. I describe how to install the VirtualBox VM software, how to import
and run the DevBox and HackBox virtual machines, and how to exercise the
system to verify that it is set up properly. At the end of this document I include
some notes on how DevBox and HackBox were built. That information is for
reference only and not essential for using the systems, but may be of interest to
anyone who wants to build (or rebuild) the virtual machines.

2 Installing VirtualBox

The CIS lab machines on the Williston and Randolph campuses should already
have the VirtualBox software installed. If you are using a lab machine you can
skip this section and continue with Section 3. If you intend to run DevBox and
HackBox on your personal machine you will need to first install VirtualBox on
your system.

Important note for macOS users! The DevBox and HackBox virtual machines
provided are x86 64 guests. At the time of this writing, it is not easy to run these
guests on Mac computers based on the Apple ARM processors (Apple Silicon:
M1, M2, etc.). However, you can try installing the UTM virtualization app
from the App Store and then running DevBox and HackBox in emulation mode
rather than in virtualization mode1. The performance of the guest systems will
be significantly less, but they may still work adequately. Alternatively, you could

1TODO: Add more details about how to import the virtual machines into UTM.

2

either find an x86 64 system on which to run the virtual machines (Windows,
Linux, or an x86 64 based Mac), or you can use one of the lab machines.

DevBox and HackBox together consume significant resources. Before trying to
install them on your personal machine you should be sure you have at least 8 GiB
of memory2 and 100 GiB of free disk space. You also need to have hardware
virtualization support turned on in the BIOS of your host computer. Most
machines come with this feature turned on by default, so if you are unsure, you
can probably ignore this issue until you have an actual problem. Older machines
may require you to enter the BIOS and activate this feature. If your machine
is extremely old it may not support hardware virtualization at all. Finally,
DevBox and HackBox assume that your host has at least two cores.

If the host does not meet the requirements above it may be possible to recon-
figure the virtual machines so that they will work anyway. However, you may
have to sacrifice some features or endure suboptimal performance in that case.

If you are using a Windows machine with the Hyper-V service running, you
may run into issues running VirtualBox3. The Hyper-V service is a “type 1”
hypervisor whereas VirtualBox is a “type 2” hypervisor. These two types fun-
damentally conflict with each other. In fact, running VirtualBox on system with
Hyper-V enabled didn’t work at all until relatively recently. Modern VirtualBox
versions do work on top of Hyper-V, but performance can be very slow under
some conditions. When you launch a guest VM, look in the lower right corner
of the window. If you see a blue-gray box with a “V” then you are running
normally. If you see a green turtle, you probably have Hyper-V enabled. You
could disable Hyper-V to get better performance, but be aware that this will
disable any other virtualization system you may have installed that relies on it
(i.e., docker). My recommendation is that you don’t worry about this too much
unless you observe actual performance issues.

Begin by downloading VirtualBox from http://www.virtualbox.org. Be sure
to download both the main installer for your system and the Extension Pack.
The Extension Pack adds important functionality that DevBox and HackBox
requires. The virtual machines will likely not boot in their default configuration
without the Extension Pack installed! The current versions of DevBox and
HackBox have been tested using VirtualBox version 7.0.18. They will probably
work with other versions of VirtualBox that are close to that version.

Run the VirtualBox installer. After the installer completes double click on the
Extension Pack to install that as well.

2Running on a 4 GiB machine is possible, but you must first adjust the amount of memory
allocated to the virtual machines.

3This tends to be less of a problem with recent versions of VirtualBox.

3

http://www.virtualbox.org

3 Booting the Guests

DevBox and HackBox are distributed as virtual appliances. This is a standard
file format that includes not only the virtual hard disk (compressed) but also
the virtual machine’s configuration. Once you import the virtual appliance into
VirtualBox you can boot a virtual machine by just starting it as you might start
a real computer.

The virtual appliance file format is accepted by several virtualization products.
However, DevBox, in particular, assumes it is running under VirtualBox because
it has the VirtualBox “guest additions” pre-installed.4 The guest additions are
a collection of software components that are loaded into the guest and that
streamline the operation of the system.5

You may be able to run DevBox and HackBox using some other virtualiza-
tion product such as VMware. However, you may have to do some additional
configuration before it will work well.

To import the virtual appliances into VirtualBox follow the steps below.

1. Download the file DevBox-YYYY-MM-DD.ova and similarly for HackBox.
The names of the files contain the date when that version was released.
The files also have an associated MD5 checksum that can be used to
check for download errors. It is recommended that, if possible, you verify
the checksums. Because of the large sizes of the files, errors during the
download are more likely than usual.

2. Start VirtualBox and select “Import Appliance” from the File menu. Fol-
low the prompts. This will unpack the OVA file and add the virtual ma-
chine to VirtualBox’s start menu. Repeat this for both virtual appliance
files.

In principle no further configuration is necessary since the configurations of the
virtual machines are contained in their original OVA files. However, you might
review the machine settings and tweak them if desired. Note especially the
amount of memory allocated to the virtual machines. DevBox is configured to
use 2.0 GiB of memory and HackBox is configured to use 0.5 GiB of memory.
If your host computer has less than 8 GiB of memory you may want to adjust
the configured values downward. If your host computer is well-endowed with
memory you might consider increasing the amount available to the virtual ma-
chines, particularly DevBox. A good rule of thumb is to allocate no more than
50% of your system’s physical memory to all virtual machines taken together
(that you intend to run at the same time).

4HackBox does not have the guest additions installed to simplify its kernel configuration.
5The term “guest” refers to the system running inside the virtual machine. The term

“host” refers to the system running the virtualization software.

4

After you have imported the appliances you can delete the OVA files to save disk
space. However, if you have sufficient disk space you might consider keeping the
files in case you need to reinitialize DevBox or HackBox from scratch. Having
the OVA files on hand will save you another long download.

It is perfectly reasonable to boot both DevBox and HackBox at the same time;
in fact this is often necessary for the kind of work you’ll be doing. Each virtual
machine runs in its own window. Both DevBox and HackBox have console-only
interfaces. HackBox lacks a graphical interface to simplify its configuration.
DevBox, where you will do most of your work, could benefit from a graphical
interface in principle. However, in an effort to reduce the resources required to
run these VMs, and to minimize problems with graphics driver incompatibilities,
DevBox also lacks a graphical interface. Tasks that require a GUI, such as
browsing the web, can be done on the host system.

The Linux distribution running inside both virtual machines is Ubuntu 24.04,
64 bit. Both VMs are running the server version of Ubuntu since that version
is more resource-friendly.

4 Logging Into the Guests

The configuration of DevBox and HackBox include a second network adapter
that connects to the host-only network (normally named “VirtualBox Host-
Only Ethernet Adapter” in VirtualBox’s network manager tool). This network
is managed entirely by VirtualBox and is not connected to the host’s physical
network interface. It is used to allow DevBox and HackBox to communicate
with each other and with the host.

By default, the host-only network is configured (by VirtualBox) to use the IP
address range 192.168.56.0/24, with the .1 address being attached to a virtual
interface in the host. DevBox is configured to use the address 192.168.56.2 on its
second Ethernet interface. HackBox is configured to use the address 192.168.56.3
on its second Ethernet interface. The first Ethernet interface on both virtual
machines is connected to the NAT network managed by VirtualBox. This allows
both virtual machines to access the Internet for updates and other purposes.

Both DevBox and HackBox are running the OpenSSH server. This allows you to
log in to the virtual machines from the host system using SSH. It is recommended
that you use SSH in this way rather than using the console. There are several
reasons for this.

1. The console provided by VirtualBox is very limited. It is difficult to scroll
back to see previous output. It is difficult to copy and paste text. It is
difficult to resize the window. It is difficult to change fonts, colors, and
other styling. The console is useful for seeing the boot process and for

5

interacting with the system when the network is not available, but it is
not a good general-purpose interface.

2. You probably already have an SSH client installed that you like and are
familiar with using.

3. Many SSH clients have built-in support for file transfers. This can be very
useful for moving files between the host and the virtual machines. Even
if your SSH client doesn’t support file transfers, you can use other tools
such as WinSCP or scp (e.g., from Cygwin or macOS) to transfer files.

A facility is configured that allows DevBox and HackBox to communicate with
each other via a serial connection (in addition to the host-only network). The
serial connection is needed for debugging the kernel on HackBox since when the
kernel is being debugged the network will be non-functional. Thus, both virtual
machines have a virtual serial port configured using a named pipe for inter-
machine communication. The format of this name depends on your host OS (the
named pipe is managed by the host). When you try to boot the machines for
the first time you might see an error about being unable to create the necessary
named pipe if the name format is incorrect for your host. On Linux and macOS
systems use a name such as /tmp/hackserial. OnWindows systems use a name
such as \\.\pipe\hackserial. See https://www.virtualbox.org/manual/

ch03.html#serialports for more information.

Note that the serial port configuration on DevBox is in “server mode” which
means DevBox is responsible for creating the named pipe so HackBox can use
it. The consequence of this is that you will need to boot DevBox before you
boot HackBox in cases where you want to use both. In fact, booting HackBox
alone may produce an error message from VirtualBox about not being able to
connect to the named pipe. This isn’t necessarily a problem depending on what
you intend to do with HackBox.

Both DevBox and HackBox has a user account named “student” with a password
of “frenchfry.” You should log in as this user. The student user can use sudo

when necessary to perform administrative tasks.

5 Snapshots

One major benefit to doing your development inside a virtual machine is that
you can use VirtualBox to snapshot your system just before attempting any kind
of dangerous or complicated operation. When you create a snapshot, VirtualBox
remembers the entire state of the system. Any change made after the snapshot is
provisional. If the system becomes corrupt, you can just restore to the snapshot
and undo all changes made since the snapshot was taken.

6

https://www.virtualbox.org/manual/ch03.html#serialports
https://www.virtualbox.org/manual/ch03.html#serialports

The undoing of changes is complete. The process does not rely on the correct
operation of the guest system. Even if the data on the (virtual) hard disk is
totally shredded, restoring to a snapshot will reset every detail of the system
back to the state it had when the snapshot was taken.

With this protection in place you are free to experiment without concern of
causing irreparable damage. For example, if you want to try building and in-
stalling a new version of the C library. . . go ahead! Take a snapshot first, and
if the result is a major disaster you can just roll back to where you started and
try again. In the worst case scenario you could delete your virtual machine and
re-import it from the original OVA file. Of course this rolls back all changes
you ever made to the system, but the base configuration will be fully restored.

It is likely you will take snapshots of HackBox frequently during your work. This
is because HackBox will be running experimental kernels and kernel modules
and is thus subject to random, spectacular failures. In contrast, DevBox should
remain fairly stable since it only runs software blessed by Ubuntu and well
established third party products. Because of HackBox’s minimal configuration,
snapshots of HackBox should be small and quick to make. This is a nice side
effect of using two machines in this way.

6 Basic Testing

It is nice after installing DevBox and HackBox to do some simple operations to
verify that they are working for you in a useful way. Keep in mind that none
of the steps described in this section are necessary for DevBox or HackBox to
work. They are only intended to give you an opportunity to exercise the two
systems.

1. Boot DevBox. Use an SSH client of your choice on your host to connect
to DevBox at address 192.168.56.2. Log in as the user student.

2. Boot HackBox. Use an SSH client of your choice on your host to connect
to HackBox at address 192.168.56.3. Log in as the user student.

3. Check that you have network connectivity between the two systems. For
example, on DevBox issue the command:

$ ping hackbox

Run the corresponding command on HackBox to ping DevBox. This en-
sures the two systems can communicate with each other over the host-only
network.

Both systems also have a second network interface defined that connects
via a network address translator (NAT) to the host’s physical network
interface. This gives both machines access to the Internet for updates and
other purposes.

7

4. On DevBox issue the command:

$ ssh hackbox

This should connect to the ssh server on HackBox over the internal network
and allow you to log in (again) as student. You can use the scp command
to transfer files between the two systems.

Once you’ve demonstrated that ssh is working you can log out.

5. Optional! On DevBox issue the command:

$ minicom

Both HackBox and DevBox also have virtual serial ports defined. Those
ports (/dev/ttyS0 in both cases) have been connected together by Virtu-
alBox. HackBox is running an agetty process on its ttyS0 serial port to
support logins.

Minicom is a simple terminal program for Linux that can be used to
interact with serial ports. After starting Minicom you should be able to
hit Enter and see a login prompt from HackBox. Try logging in to verify
that this works.

When you are done experimenting with this, log out of HackBox and then
type CTRL+A followed by X in Minicom to exit Minicom.

6. Check that you are using the correct kernel on HackBox by issuing the
command (on HackBox’s console):

$ cat /proc/version

This command reads a file in the “magic” proc file system that, in this
case, reports information about the kernel version you are using. It should
say 6.9.3. This is the experimental kernel we will be working with.

7. On DevBox use the file manager to browse

/home/student/linux-6.9.3

This is the source code for the experimental kernel. You will become
familiar with its organization in the future, but a quick look now is a good
first step toward that goal.

8. On DevBox in a terminal window change to

/home/student/linux-6.9.3

and issue the command make menuconfig to view the kernel configuration
menu. The configuration you are looking at is the configuration used the
last time the kernel was compiled. It represents the current configuration

8

of the experimental kernel running on HackBox.6 Look around to see
what kinds of options are available. If you change anything, do not save
your changes. If you save any changes you will end up doing a full kernel
rebuild the next time you try to compile it. That takes a very long time.

Once you exit the configuration menu, look at the file .config and the
file

include/generated/autoconf.h

to see the results of the configuration process (these files were created
previously when the experimental kernel was prepared for HackBox). The
.config file is used by the kernel build system to control which source
files need to be compiled and how. The autoconf.h header is included
into source files that need to distinguish between various configuration
options.

7 Kernel Modification

In this section you will make a trivial modification to the kernel by editing the
kernel source and rebuilding the kernel on DevBox, transferring the new kernel
to HackBox, and then rebooting HackBox to test your change. You will also
back out these changes so that when you are done with this section there will
be no lingering effect on either system.

1. In the VirtualBox console with HackBox in an “Off” state, select the
HackBox virtual machine and take a snapshot of its current state.

2. On DevBox edit the file init/version.c7 and change the value of linux proc banner

to include some distinctive text. For example, you might add something
like “experimental” to the existing banner. This will change the contents
of /proc/version once the modified kernel is running. I recommend that
you first create a backup copy of the original file using a command such
as:

$ cp version.c version.c.orig

This makes it easy to restore the original file later.

3. Issue the command make at the root of the kernel source tree to build a
new kernel reflecting your changes. This should not take too long because
the kernel has already been built and make should realize that most of

6For full details about how to compile Linux, see my companion document Compiling
Linux in the same location where you found this document.

7Relative paths are relative to the root of the kernel source tree unless context indicates
otherwise.

9

the object files are up-to-date (however, it can take several minutes to do
this). If make appears to be recompiling everything something is wrong
(possibly you accidentally saved changes when looking at the configuration
earlier). In that case just cancel the build and don’t worry about this step
to save time. You will need to suffer the full build eventually, however,
but it might take hours depending on your hardware.

4. Using scp, transfer the new image to HackBox:

$ scp arch/x86/boot/bzImage root@hackbox:/boot/vmlinuz-6.9.3

This replaces the boot experimental kernel on HackBox with the version
you just compiled containing your changed banner. Its good practice to
make a backup copy of vmlinuz-6.9.3 first.

5. Reboot HackBox into the experimental kernel and verify that /proc/version
has changed as expected. You do not need to update the grub configura-
tion in this case since you are overwriting the experimental kernel with a
new version. You can use the command on HackBox to reboot HackBox
immediately:

$ sudo shutdown -r now

The -r option means “reboot.”

When you are done with the steps above you can shut down DevBox and Hack-
Box using a command such as:

$ sudo shutdown -h now

Here the -h option means “halt.” After the system shuts down you can restore
to the snapshot to undo any changes made during this session and put the
system back into its initial state. You may find it useful to do this after each
experiment.8

You should also restore the file version.c in the source code to its original form.
This step isn’t strictly necessary in this case since this is a minor, inconsequential
change. However, in the future you may be making non-trivial changes to the
kernel source, and you’ll want an easy way to back them out when you are done
(or if they cause extreme difficulties).

Although you will be recompiling the kernel in some labs, most of the program-
ming you’ll be doing will actually be in the form of external kernel modules.
These are modules that are not part of the normal distribution and that are
always loaded dynamically. Details about how to do this will be provided in the
appropriate lab.

8Avoid storing anything of importance on HackBox. Use DevBox for all files you wish to
keep, and even then back them up regularly by transferring important files elsewhere.

10

8 Phoenix

This section needs to be reviewed and updated!

In addition to Linux, we may also experiment with an operating system written
by a team of Vermont Technical College students for their 2008/2009 senior
project. That system is called Phoenix. Using Phoenix does not require Hack-
Box at all. Instead, it runs inside a virtualization product called Bochs running
inside the DevBox VM. Yes, this amounts to a nested virtual machine, but
unlike the situation with Hyper-V described earlier Bochs is an ordinary user
process and doesn’t introduce the same complications of trying to use a type 1
and type 2 hypervisor at the same time.

If you wish to try Phoenix to see if it works for you, follow the steps below.

1. On DevBox change to the Projects/Phoenix directory and do:

$ git pull

to get the most recent version of Phoenix from GitHub.

2. Type:

$ source useOW.sh

to configure the environment of your terminal to make the Open Watcom
C/C++ compilers available. Phoenix is built with Open Watcom. You
might want to change the title on the terminal to reflect this, so you
don’t forget (use the “Terminal → Set Title” menu item on the terminal
program).

3. Use the makeandrun.sh script in the top level Phoenix folder. That script
creates a Phoenix boot disk image containing the system and several
sample programs, and then launches Phoenix using the Bochs simulator.
Bochs has been configured with debugging features turned on so when it
starts it will produce a command prompt. Type “continue” to begin the
simulation without interruption.

When Phoenix boots you will be prompted with a menu of programs on
the boot disk. Select one of them to see Phoenix in action. You can power
off the Bochs simulation (upper right corner of the Bochs window) when
you are done. There is no shutdown procedure for Phoenix.

9 Using KGDB and KDB

KGDB is a kernel debugger that allows you to connect gdb running on DevBox
to the kernel running on HackBox. Using this tool is a bit intricate. Here I
outline the basic procedure. See other resources for additional information.

11

When you want to use the debugging tools you must log into HackBox by
way of a serial terminal. Do not use SSH and do not use the console. While
the HackBox kernel is being debugged the network will not function normally.
Furthermore, the debugger on DevBox has no way to transmit data over the
console; it needs to use an old style serial port.

I recommend taking a snapshot of HackBox before your debugging session in
case you accidentally trash HackBox during the session!

On DevBox use the command:

$ minicom

This command starts the terminal program. It has been preconfigured to con-
nect to /dev/ttyS0 which is attached to HackBox’s serial port of the same name
by way of a host-level named pipe. You can hit the Enter key to get a login
prompt from HackBox. Log in as the user student.

When you are ready to debug, you must first activate KGDB on HackBox. Use
a command such as:

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

This informs the KGDB “over console” driver that it should use ttyS0 for com-
munication. Without this step KGDB will effectively be turned off even if it
has been compiled into the kernel. Note that this command must be executed
at a root shell (using sudo won’t work). You can, however, get a root shell by
using the command sudo bash.

There are three ways to break into the kernel.

1. If the kernel takes an exception it will stop and wait for the debugger to
attach.

2. You can issue a SysRq-g sequence in the terminal program.

3. You can echo the letter ‘g’ into the file /proc/sysrq-trigger.

The second option can be done from Minicom by typing Ctrl+Afg. Use the
following command to execute the third option:

echo g > /proc/sysrq-trigger

After breaking into the kernel you should see a KDB prompt on your terminal.
At this point the kernel on HackBox is frozen awaiting your debugging pleasure.
You could enter KDB commands, but it is generally more interesting to use gdb.

On DevBox in a separate command window, go into the top level of the Linux
source tree and use the command:

12

$ gdb ./vmlinux

This runs the debugger against the previously compiled kernel image. The
debugger will use the image for symbolic information. Note that you must use
the uncompressed kernel image and not vmlinuz.

Connect the debugger to the ttyS0 serial port with the following commands:

(gdb) set serial baud 115200

(gdb) target remote /dev/ttyS0

You can now use gdb debugging commands to debug the HackBox kernel. Note
that you will see some “junk” appearing on the previously opened terminal.
They are remote debugging protocol packets; you can ignore them.

To return to normal operation first exit gdb with the command:

(gdb) quit

You will see a message about terminating the remote process. You can say ‘yes’
here (it doesn’t actually terminate the HackBox kernel). Then, back in the
terminal window type:

$3#33

You won’t be able to see the text as you type it. This sequence is a debugging
protocol packet that tells KDB to return to the prompt. You can then resume
normal operation of HackBox by issuing the go command at the KDB prompt.

After shutting down HackBox, consider restoring to the snapshot you made
earlier to ensure the system is in a consistent (non-destroyed) state.

10 Making Backups

Most recovery operations such as restoring to a snapshot or re-importing the
original OVA file will entail the loss of some or all of your work. Thus, I strongly
recommend that you back up your work often. This can be done by using a
special backup script. To use it simply execute backup at a command prompt.

It is extremely important to understand that The backup script only backs up
the files in the cis-4020 folder. This means the backup archives are relatively
small, but it also means that any files you put elsewhere on the system will not be
backed up. I therefor strongly recommend that you store all course materials in

13

student@devbox:~$ backup

1) None

2) cis-4020

=> 2

Creating backup file for cis-4020...

Done

Transfer to lemuria? [y/n] y

Username: pchapin

Password:

backup-cis-4020-2024-06-19.tar.gz 100% 38KB 38.3KB/s 00:00

Transfer successful. Removing ~/backup-cis-4020-2024-06-19.tar.gz

student@devbox:~$

Figure 1: Sample Backup Session

the cis-4020 folder. Be aware that configuration changes you make, for example
to the desktop on DevBox, are not backed up.

Once the backup script has created the archive it will ask you if you want
to transfer that archive to Lemuria. Assuming you have an account on that
system you can use Lemuria as a repository of backups. If you do not transfer
the backup file, the script will leave it in student’s home directory where you can
transfer it some other way (for example as an email attachment using webmail).

You should definitely transfer the backup archives off the virtual machine. The
point of the backups are to save your work in case the VM is destroyed. Keeping
the backup archives on the VM won’t help you if you lose the state of the VM
itself.

Figure 1 shows a sample backup session. Text entered by the user is show in an
italic font.

Another, more elegant way to transfer a course directory to another host is to
use the rsync program. This program only copies files that have changed and is
thus often faster than transferring an entire archive (even a compressed archive).
The rsync program will add and remove files and directories on the target as
necessary and, in archive mode, it even copies file permissions and date/time
information. First move to student’s home directory. Then do

$ rsync -vaz --delete \

cis-4020 username@lemuria.cis.vermontstate.edu:

The --delete option tells rsync to remove files on the target that are not in
the source. The -z option specifies compressed mode; this is particularly useful
if you are on a low speed network connection since it will reduce the amount of
network traffic required. See the rsync manual page for more information.

14

Note that the rsync command above uses ssh as the underlying transport. Thus,
you will be prompted for your password, yet your password will not appear on
the network unencrypted. Note also that the rsync command above will create
(or update) a cis-4020 directory beneath your home directory on the remote
host.

11 Shutting Down

When you are finished using the virtual machines do not just close the Vir-
tualBox window! Closing VirtualBox is equivalent to pulling the power plug
on a real machine. Instead, you should shut down the guest operating system
properly. As the root user, issue the command:

shutdown -h now

Alternatively you can suspend the virtual machine. On the VirtualBox menu
(not inside the guest) do “Machine → Close. . . ” In the dialog box that appears
select “Save the machine state.” The next time you start the virtual machine
it will resume from the saved state. This is usually quicker than booting the
system from scratch.

12 Setup Notes

This section contains some notes on how DevBox and HackBox were initially
configured. They are intended to be helpful to anyone who wants to build the
systems from scratch rather than downloading the preconfigured systems. If you
are only interested in using DevBox and HackBox, you can ignore this section.

Here is a list of packages that need to be installed in DevBox to build the kernel,
assuming a Ubuntu 24.04 system:

1. gcc

2. make

3. gdb

4. flex

5. bison

6. libncurses-dev

7. libssl-dev

15

8. libelf-dev

These additional packages are needed for a more full-featured experience:

1. minicom

2. cscope

3. universal-ctags

4. emacs-nox

Note that the emacs-nox package is the version of Emacs that runs in a terminal.
However, it will also install the postfix mail transport agent as a dependency.
During the installation of postfix, you will be asked what kind of mail configu-
ration you want. Choose “Local only” to create a configuration that will only
deliver mail to users on DevBox and not attempt to use the network. This can
be changed later, if desired.

To complete the installation of Emacs, it is recommended to crate a suitable
.emacs file. It would also be reasonable to create a suitable .vimrc file for those
who prefer to use Vim.

It is convenient to allow the root user to use SSH to log in and copy files. To do
this it is first necessary to set a password for root since Ubuntu, by default, has
a locked root account (it relies on the administrative user using sudo to raise
privilege when necessary). On both DevBox and HackBox, use the following
command:

$ sudo passwd root

Then edit the file /etc/ssh/sshd config and change the line:

PermitRootLogin prohibit-password

to

PermitRootLogin yes

Finally, restart the SSH server with the command:

systemctl restart ssh

Normally root access via SSH is disallowed for security reasons. However, in
a virtual machine environment it is often convenient to have this capability,
and the security concerns area greatly reduced by the isolated nature of the
environment.

16

	Introduction
	Installing VirtualBox
	Booting the Guests
	Logging Into the Guests
	Snapshots
	Basic Testing
	Kernel Modification
	Phoenix
	Using KGDB and KDB
	Making Backups
	Shutting Down
	Setup Notes

