Compiling Linux

© Copyright 2024 by Peter Chapin

Last Revised: June 7, 2024

Contents

[L__Introduction|

2 Compiling the Kernel|

2.1 Downloading and Unpacking|

2.2 The C Library|

2.3 Configuring|

2.5.1 Making initrd)

2.5.2 Configuring GRUB|.

2.5.3 Installing on Floppy|]

8_User Mode Linux

8.1 Compiling UML)

3.2 UML Root File System|

3.3 Running UML|

4 Code Browsing Tools|

11
12
13
14

15

1 Introduction

This document describes how to compile a Linux kernel for study and devel-
opment. It contains specific instructions for compiling an experimental kernel
and for configuring various kernel debugging and code browsing tools. This
document was originally prepared to support the operating systems class at
Vermont State University. Some of the information it contains targets that au-
dience. However, much of the contents of this document would be useful to
anyone interested in studying the Linux kernel.

It is possible to run an experimental kernel on the same system as is being
used for development. However, this arrangement is not ideal since errors in
the experimental kernel may cause corruption of the development environment.
Ideally, then, one should configure two computers: a development system run-
ning a pre-built kernel and where all the programming tools execute (compilers,
editors, etc.), and a system for hacking that runs the experimental kernel but
is otherwise expendable.

This document describes both single machine and dual machine arrangements.
In the text below the target system is the system where you will ultimately run
the experimental kernel. The development system is the system where you will
do your development work. The experimental system is the system where you
will do testing. In a single machine configuration the target system and the
development system are the same, and there is no experimental system. In a
dual machine configuration the target system and the experimental system are
the same.

Additional details about how to set up and use the dual machine configuration
as two connected virtual machines are in the companion document DevBox and
HackBozx in the same location as where you found this document.

2 Compiling the Kernel

This section describes how to compile the Linux kernel. It is intended to support
individuals compiling the kernel for the first time. Note that this section assumes
you are using a recent (6.x) version of the kernel.

2.1 Downloading and Unpacking

Before compiling the kernel you will need to obtain a copy of its source code.
Your Linux distribution should come with the source code of the kernel (it’s
required by the GPL). However, because the kernel source is large and because
most users do not require it, the kernel source is not normally installed by

default. Furthermore, each distribution tends to specialize the kernel in vari-
ous ways. To build a new kernel from a particular distribution’s kernel source
package, you should consult the documentation for that distribution.

If you are interested in kernel development, or if you want to always use the
latest kernel, I recommend that you download the stock kernel source from
http://www.kernel.org/. This site is the official repository for Linux kernels.
The kernels there are generic in the sense that they haven’t been customized for
any particular Linux distribution. As a result you may need to configure the
kernel (as described below) in a non-default way before it will boot your system
cleanly.

If you are interested in keeping up with the absolute latest version of the kernel
you can check out its source code from GitHub here https://github.com/
torvalds/linux. This would allow you to do your development in your own
fork and periodically merge upstream changes into your work. It would also
allow you to share your work with a team of collaborators. However, using Git
to do these things is outside the scope of this document.

This document describes the build process specifically for kernel version 6.9.3 on
64 bit Ubuntu Linux 24.04. The commands below reflect this version number
and platform. If you are using a different version or building on a different
platform, modify the commands as appropriate. Note that you may need to
install some extra packages on your system in order to do kernel development.
This document does not describe which packages are necessary nor how to install
them. Consult the documentation for your distribution for more information. If
you are missing required packages, some commands below may not work. That
is a sign that additional packages may be necessary.

It is useful to check which version of the kernel is running on your intended
target system. You can do this with a command such as:

$ cat /proc/version

At the time of this writing, the version reported on Ubuntu Linux Server 24.04
is “Linux version 6.8.0-35-generic.” Note that the experimental kernel I am
proposing to install (6.9.3) is somewhat, but not extremely, newer than the one
running on the system already. This is a good situation. The newer kernel will
likely support all the features the current system expects, while not being so
new as to introduce incompatibilities. This is particularly important if you are
planning to run the experimental kernel on your development system (i.e., a
single-machine configuration).

The kernel source is kept in a compressed archive called a tarball. For version
6.9.3, the name of this archive is 1inux-6.9.3.tar.xz. The last component
of the version number is a release level. As 6.9 matures, it advances through
several releases.

http://www.kernel.org/
https://github.com/torvalds/linux
https://github.com/torvalds/linux

Once you download the tarball you will need to unpack it somewhere on your
development system.

$ unxz < linux-6.9.3.tar.xz | tar xf -

Unpacking the tarball will create a 1inux-6.9.3 directory beneath the current
directory. While doing kernel development it is probably best to unpack the
kernel somewhere in your home directory. That will make it easy for you to
do development under your normal user account. You will need to be root to
install the kernel on your system (e.g., in a single-machine configuration), but
you can configure and build it as an ordinary user.

2.2 The C Library

The application interface to the kernel is by way of the C library. In theory,
when the kernel is updated, the C library needs to be rebuilt so that it can take
into account any changes in kernel-specific data structures provided by the new
kernel. Applications that link to the C library statically (that is not using the
dynamic shared library) would also need to be recompiled.

In addition, some header files from the kernel source are usually also in /usr/include
where applications that need them (for example, applications making direct sys-
tem calls) can access them. Again, in theory, when the kernel is updated those
header files also need to be updated as well.

A Linux distribution installs a version of the C library and kernel headers that
correspond to the installed kernel. When you update your kernel using the
distribution’s normal update system, these things are also updated if necessary.
When you manually update your kernel, however, you might have to update
these things yourself.

That said, changes in the kernel that necessitate rebuilding the C library are
relatively rare. If the kernel you are installing is not too different from the
one you are already using, you can probably get away without these additional
complications.

Some distributions use symbolic links from /usr/include into the kernel source
tree. In that case, they will install the kernel headers under /usr/src for the
installed kernel even if they do not install the full kernel source. In a case like
this you can change the symbolic links in /usr/include to point at the new
headers; however you should in theory also rebuild the C library and statically
linked applications if you do this.

If this sounds complicated and unreliable you aren’t the only person who thinks
that. There have been discussions among the kernel developers about how to
“fix” this situation, but at the time of this writing I'm not sure how those
discussions have concluded.

2.3 Configuring

Before you compile the kernel you should configure it. This involves selecting
which features you want enabled in your kernel and which features should be
compiled as modules that can be loaded later. The configuration process creates
two files: .config in the root of the kernel source tree and autoconf.h in
include/generatedE The file .config gives the make utility access to your
desired configuration. Make uses this information to control which files are
compiled and how. The file autoconf.h is included into the various kernel
source files (and also in external modules) and gives the C compiler access to
your desired configuration. Programmers can use #ifdef/#endif directives in
the C source to selectively compile different code depending on the configuration
options chosen.

Your Linux distribution has most likely already created a kernel configuration
that is compatible with the software environment of that distribution. For
example the start-up scripts may depend on certain features being enabled in the
kernel. Using that configuration as a starting point allows you to configure your
new kernel to match the existing configuration as closely as possible resulting
in a minimum of problems.

To create a configuration based on some currently running kernel, you will need
to first obtain a copy of the configuration file for the that kernel. Depending on
how the running kernel was configured a compressed version of that file might be
in /proc/config.gz. My Ubuntu 24.04 distribution stores a copy of the current
configuration in /boot/config-6.8.0-35-generic where 35 is the current (at
the time of this writing) release number of the Ubuntu-flavored kernel. You
can read the file /proc/version to find the exact version of the running kernel.
That information might be useful for determining which configuration file is the
most appropriate if there is more than one.

Copy the existing configuration file to the root of your new kernel source tree
under the name .config. Then run the command make oldconfig to update
that configuration for use with the new kernel. For example, if you are building
a new kernel for your development system:

$ cp /boot/config-6.8.0-35-generic .config
$ make oldconfig

If you are building a kernel to run on an experimental system you should create
a .config that is suitable for that system. Thus, instead of copying the existing
configuration of the development system, you should, in theory, instead take it
from the experimental system. In practice, if you are using the same Linux
distribution on both the development and experimental system, it is reasonable

IThe autoconf.h file is created as part of the build process. It does not exist until you
actually compile the kernel for the first time.

to use the configuration file from the development system as the basis for your
configuration.

There are two kinds of issues that will be reported by the make oldconfig
command. First, configuration options in the existing kernel that are not in
the new kernel (because they have been removed or renamed, or because the
existing kernel has been extended by the distribution) produce warnings when
they can’t be mapped into the new configuration.

Second, configuration options in the new kernel that are not in the existing
kernel (because they are new) will prompt you to choose between ‘Y’ (meaning
compile the feature into the kernel), ‘N’ (meaning don’t compile the feature),
or in some cases ‘M’ (meaning compile the feature as a module). You can just
hit ‘enter’ to accept the default in most cases[?]

Next, you may need to make a manual adjustment to the .config file with
respect to the list of trusted keys known to the kernel. Linux has a facility
that allows modules to be digitally signed with signatures that are checked
by the kernel when each module is loaded. During the kernel build process, a
public/private key pair is automatically generated by the kernel for this purpose
(although you can provide your own if desired). Internally, the kernel keeps a
list of public keys known to it on a “key ring.”

In addition to the generated (or provided) public key mentioned above, it is
also possible to provide a list of other public keys as X.509 certificates in a
PEM-formatted file. These keys are built into the kernel image during the build
process. For our purposes, we don’t need to provide such a file, but you’ll need
to adjust the configuration to say so. Search the .config file for the following
configuration parameters:

CONFIG_SYSTEM_TRUSTED_KEYS CONFIG_SYSTEM_REVOCATION_KEYS

Set their values to the empty string (there may be non-existent files mentioned
by default). The values for these parameters are leftovers from the kernel con-
figuration you copied and thus reflect values being used by your existing kernel’s
distributor.

After the initial configuration process is complete you can use:
$ make menuconfig
OR

$ make gconfig

2You can also select ‘?’ to get help information about an option.

to further refine the configuration. You can also use these commands to change
the configuration later if desired. Note that make menuconfig requires that you
have the curses terminal handling library available and make gconfig requires
that you be running a graphical desktop with the appropriate GTK+ graphical
libraries available. TODO: Is make gconfig still even supported? It seems to
require an old version of the GTK+ libraries.

Warning! If you modify the configuration with either of the commands above
you will need to do a full kernel rebuild. This takes a long time so if you aren’t
prepared to do that be careful not to accidentally change anything when just
reading the configuration.

If you are building a kernel for experimentation purposes you may want to enable
some debugging features in the kernel configuration. I invite you to explore the
options under the “Kernel hacking” heading. Even if you decide to not activate
any debugging features at this time it would be good for you to be aware of the
possibilities in case you want to try them later.

Note that debugging features, and the checks they imply, will impact the per-
formance of your kernel in terms of both space and time. This is why many
of them are off by default. In fact, some checks are so expensive that I do not
recommend using them in a kernel built for general use (although they may be
acceptable on the experimental system). Consult the help information on each
option for more information.

If you wish to debug your kernel using a source level debugger you will want
a kernel debugging option turned on. To find this option, look under “Kernel
hacking”, then under “Compile-time checks and compiler options”, and finally
under “Debug information”. Full debugging information is the default in the
Ubuntu 24.04 configuration. However, be aware that this option greatly increases
the amount of disk space required to build the kernel since every object file
produced by the compiler contains debugging symbolsEI

This option is appropriate if you are creating a User Mode Linux kernel (see
Section 3]) or if you plan to use a kernel debugger (such as KGDB) or a tool to
analyze kernel crash dumps. If you do not plan to use a source level debugger
you can save a lot of disk space by setting the “Debug information” option to
“Disable”.

If you are building a kernel for use on an experimental system, and you wish
to debug it remotely using KGDB, you will want to enable KGDB support in
the kernel configuration in the “Generic Kernel Debugging Instruments” sub-
menu beneath “Kernel hacking” (this is also the default in the Ubuntu 24.04
configuration). I say more about setting up and using KGDB in the companion
document DevBox and HackBox.

3Several gigabytes of disk space are required for a full build using debugging.

2.4 Building

To actually build the kernel and all of its supporting modules do:
$ make

A kernel build takes a long time. There is a lot of code. Note that this will
compile most drivers (as modules) even though your system will likely never
use them. Nevertheless, you may find some drivers useful, especially in an
experimental context, so it doesn’t hurt to build them all.

The build process may require various libraries that you do not have installed
on your system initially. If the build fails, look at the reason and then try to
install the necessary package(s) to satisfy any missing requirements. Run the
make command again to restart the build. It will pick up where it left off. You
may need to do this several times. However, once you have all the necessary
libraries installed, future builds should go more smoothly.

2.5 Installing

You do not need to be root to configure and compile the kernel. If you unpack
the kernel source in an area where you have read/write permission, you should
be able to build it as an ordinary user. However, you do need to be root to copy
the new kernel to a place where it can be used to boot a machine.

Once the kernel has been built you should first copy the various compiled mod-
ules to the proper directory under /1ib/modules so that the running kernel can
find them. This is accomplished by doing:

make INSTALL_MOD_STRIP=1 modules_install

The INSTALL_MOD_STRIP option removes debugging information from the
modules as they are installed. This greatly reduces the amount of disk space
used by the module library and by the initial RAM disk (described below).
In low memory systems saving memory can be essential since the full module
library, with debugging information included, is very large. You may be moti-
vated to configure your experimental system with a minimal amount of memory
since it won’t be used for any “real” work. As a result, without stripping the
modules, it is likely that the initial RAM disk will be too large for a minimally
configured system to use.

One disadvantage of stripping debugging information from the modules is, obvi-
ously, you won’t be able to step into those modules or set break points in them
when debugging the kernel. This might be an issue if you are trying to use the

debugger to study the operation of the kernel. However, if you are mostly inter-
ested in debugging your own kernel modifications or kernel modules, removing
debugging information from the distributed modules will probably not cause
you any issues.

Another aspect of stripping debugging information is the effect it has on module
signatures. Normally, the debugging information is covered by the signature.
Thus, the signature is invalidated or removed (TODO: Which is it?) if the de-
bugging information is stripped afterward. However, the make command above
strips debugging information first, before making the signatures, so you end
up with signed, stripped modules as desired. TODO: The file command uses
the phrase “with debug_info” as opposed to “stripped.” In fact, it seems to use
“stripped” for something else. The terminology here should be made consistent.

You should install modules even on your development system because the mod-
ule library of a kernel is used during the compilation of external modules for
that kernel. However, it is safe to install modules for a kernel even if you usu-
ally run a different kernel. Each kernel has its own private directory under
/1lib/modules.

If plan to run your new kernel on an experimental system (called "hackbox” in
the commands below) you should also copy the modules to that system where
they can be used. On the development system, after installing modules, do the
following:

cd /lib/modules
tar cf - 6.9.3 | gzip > modules-6.9.3.tar.gz
scp modules-6.9.3.tar.gz hackbox:/lib/modules

Unpack it on the experimental system using:

cd /lib/modules
gunzip < modules-6.9.3.tar.gz | tar xf -

You should next copy and rename three files from your freshly built kernel to
the /boot directory on the experimental system. For example, you might do
the following:

cd /home/student/linux-6.9.3

scp arch/x86/boot/bzImage hackbox:/boot/vmlinuz-6.9.3
scp .config hackbox:/boot/config-6.9.3

scp System.map hackbox:/boot/System.map-6.9.3

H H H H

The System.map file contains a list of all symbols in the kernel and their corre-
sponding addresses. This can be useful for debugging and for interpreting stack

traces in kernel oops messages. TODO: Why is it important for this file to be
in /boot?

Finally, I recommend using 1s -1 in the /boot directory of the experimental
system to check file ownership and permissions. Use the chown and chmod
commands as appropriate to match the owners and permissions on the new
files to those of the existing files. While this is not an essential step, it gives
the installation a clean look, and it may have importance from a security and
system maintenance point of view.

2.5.1 Making initrd

Because modern Linux systems are so highly modularized it is possible that
the kernel will need to load a module in order to read the file system. This
creates a problem: how can it load a file system support module from the file
system? To get around this, Linux boots in two phases. During the first phase,
the bootloader loads a pre-defined RAM disk image into memory along with
the kernel. The kernel uses this RAM disk image as it’s initial root file system.
Certain programs and kernel modules can be loaded out of this RAM disk image.
Once that is done, the root file system is changed to be the normal hard disk
and the usual start-up scripts are executed.

Manually creating this initial RAM disk is a somewhat involved procedure.
Fortunately there is utility program named mkinitramfs that does most of the
work. On a Ubuntu system the command is:

mkinitramfs -o /boot/initrd.img-6.9.3 6.9.3

This creates a RAM disk using the same modules as in the existing configuration,
except that it will use the modules for the right kernel version. If you attempt
to use the old RAM disk, it will contain modules for the old kernel which won’t
load into the new kernel.

You should run this command on the experimental system where you plan to
run the new kernel. Be sure you have the module library installed on that
system, and be sure the new kernel configuration file is also installed in /boot.
The mkinitramfs command makes use of both of those resources.

2.5.2 Configuring GRUB

Once you have vmlinuz-6.9.3 and initrd.img-6.9.3 in the /boot directory
of your target system you only need to update your bootloader to provide an
option to boot the new kernel. This can be done by cloning the information
for the existing kernel to a new menu entry and modify the names of the kernel

image file and RAM disk file. The precise steps for doing this will depend on
the bootloader you use.

On a Ubuntu system this is easily accomplished by using the update-grub com-
mand. This command searches /boot for kernels installed there and composes
a suitable GRUB menu for them.

The next time you boot your system if you press the left-hand shift key early in
the boot process you will see the GRUB boot menu. From there you can select
your new kernel. TODO: Say more about setting up GRUB options. However,
if the experimental kernel is the newest kernel on the system, it will be booted
by default.

2.5.3 Installing on Floppy

This section is very old and needs to be rewritten (or removed?). For one thing
it needs to explain how to handle the initial RAM disk. For a second thing it
should probably really talk about setting up a flash drive instead of a floppy (who
has floppy drives?).

The following instructions pertain to users who are booting Linux from a floppy
disk. Note that this is not the normal configuration (although it is sometimes
useful in lab situations).

1. Make a copy of your boot floppy. Never overwrite a known working kernel
with one that you just compiled! First make a backup of the working
kernel and be sure that you can boot the working kernel if necessary.

On Windows you can back up your boot floppy with the diskcopy com-
mand. Open a Windows command prompt and do:

C:\> diskcopy a: a:

You will be prompted for the source disk and then for the target disk.
Note that you can’t just copy the files from one disk to another! A boot
floppy contains special information in the boot sector that will not be
copied by the usual file copying operations.

On Linux you can use the dd command to copy disks raw. Insert the
source floppy and do:

dd if=/dev/fd0 of=/tmp/floppy.img bs=1024
Then insert the target floppy and do:
dd if=/tmp/floppy.img of=/dev/fd0 bs=1024

You can remove the temporary file afterward if you wish. See the manual
page for the dd command for more information.

10

2. Next insert the boot floppy where you want the new kernel to go and
mount it. This can be done with a command such as:

mount /dev/fd0 /mnt/floppy

Use whatever directory is most appropriate if /mnt/floppy is not available
(there should be a /mnt directory at least).

3. Copy arch/x86/boot/bzImage to /mnt/floppy, renaming it to vmlinuz
in the process. This will overwrite the vmlinuz on the floppy with the
new kernel.

There are some control files on the floppy as well that you could edit.
However, if you use the same name (and you might as well since the floppy
isn’t big enough to hold both kernel images) the control files should already
be configured properly.

4. Very Important! Unmount the floppy before physically removing it. This
is necessary because Linux keeps disk blocks in its cache even for floppy
disks. This means that the entire file isn’t actually put on the floppy until
you unmount it.

umount /mnt/floppy

Now you can reboot the machine from your new boot floppy to check your new
kernel.

3 User Mode Linux

This section is old and needs to be reviewed and updated. It has been a while
since I have built a User Mode Linux kernel.

Setting up a completely independent experimental system is a nice way to do
kernel development. However, there are times when it may not be desirable.
For example, you might want to do kernel development on a machine that
you depend on for your normal work and yet not want to risk running an
experimental kernel directly on that system. One option is to use virtualization
software to create a virtual machine for a separate experimental system (as
described in DevBox and HackBoz). However, if your primary machine is also
running Linux, another approach is using User Mode Linux (UML).

The Linux kernel is cross-platform and with suitable cross-compilers can be
compiled on one platform for execution on another. User Mode Linux is treated
as a special “platform.” However, the UML kernel runs on top of a host Linux
system as an ordinary process. All access to hardware is translated into system
calls made against the host system. UML thus allows you to run a custom Linux

11

kernel alongside your regular applications. You don’t even need to be root on
the host system.

Another advantage to UML from a kernel development point of view is that
it allows you to debug the kernel using an ordinary source level debugger such
as gdb without the complexities of setting up a separate machine and remote
debugging. I will discuss how to do this in more detail later in this document.

3.1 Compiling UML

The procedure for compiling the User Mode Linux kernel itself is simple. In
what follows I will assume you are using a 4.x kernel. The 4.x kernel comes
with UML as one of the officially supported architectures. First, unpack the
kernel source code to a suitable working directory. Next run the command:

$ make defconfig ARCH=um

It is important to use the default configuration generated by defconfig as the
starting point for your kernel configuration. Do not try to use the configuration
of the running kernel. It is also important to add the ARCH=um option to the
command line. This tells the build system that you are cross compiling to a
different architecture.

Next run either:

$ make menuconfig ARCH=um
OR

$ make gconfig ARCH=um

It is important to consistently use the architecture specifier.

Under “UML Specific Options” be sure that “Host filesystem” is selected. This
will allow the UML kernel to access the file system of the host; an easy way to
share files between the host and a running UML system. Under the “Kernel
hacking” option (on the top level menu) be sure the “Compile the kernel with
debug info” and the “Compile the kernel with frame pointers” options are both
selected. These options make it possible to properly debug the UML kernel with
gdb. You may or may not want to set some other debugging related options.
Save these changes.

You are now ready to build the kernel using the command:
$ make ARCH=um

When the build is complete you will have an ordinary executable file named
linux in the root directory of the source tree. Before you can use it, you will
need a root file system.

12

3.2 UML Root File System

User Mode Linux reads its root file system out of a file in the host’s file system.
This file must be set up so that it contains all the normal programs and tools
Linux needs to boot. You may also want development tools or other programs
inside your UML’s root file system. Although you may be able to download a
root file system, matching the root file system with the precise kernel version
and options you want to use can be tricky. The reason for this is that during
the boot process, typical Linux configurations read various modules out of the
root file system to enable support for features needed by the startup scripts.
These modules must be compatible with the running kernel. If you are using a
kernel version that is not compatible, the boot process is likely to fail, or at the
very least report many errors.

Sometimes you can download a UML kernel along with a matching root file
system. However, as a kernel developer, the kernel you want to use is not
arbitrary; it is a specially configured kernel of your choosing. As a consequence
of this, the ideal path is to build your own custom root file system for kernel
development. The procedure is as follows.

TODO: FINISH ME! The description below is very incomplete.

1. Create a file to hold the root file system. This file may need to be rather
large, depending on how much material you plan to install into the UML
environment. Use a command such as:

$ dd if=/dev/zero of=root_fs bs=1M count=512

This command creates a file named root_fs with a size of 512 megabytes.
This file is initially all zeros. It will be treated as raw disk image.

2. The image created above must then be formatted with a suitable file sys-
tem.

$ mk2efs -j root_fs

This command creates an ext3 file system (which is the same as an ext2
file system with a journal created by the -j option) inside the root_£s file.
You may need to specify the path to the mk2efs program,; it is typically not
in the path of ordinary users. The use of ext3, or some other journaled file
system, is recommended. Since this environment will be used for kernel
development, kernel crashes are likely, and it is nice to have the extra
safety inherent in using a journaled file system.

3. Mount the root file system so that you can access its contents. To do this
you will need to be the root user. First create a suitable mount point. I
suggest an empty directory named root. Then issue:

$ mount -o loop root_fs root

13

This command uses the loop back driver (which must be supported in
your host kernel) to mount the file system contained in root_fs onto the
mount point root.

4. You will now find an empty partition beneath the mount point, ready
for you to set up your root file system. Configuring a root file system
for use with Linux is a non-trivial exercise. Lack of space in this docu-
ment prevents me from going into the details here. Please refer to other
documentation for more information.

5. Once the root file system is ready you should (as the root user) unmount
it before you try to use it with UML.

$ umount root

You might want to make a backup copy, perhaps in compressed form, of
your fresh root file system in case you destroy your working copy while
setting up UML or doing kernel development.

3.3 Running UML

Make sure the root file system is named root_fs. Execute 1inux to boot User
Mode LinuXE| Log in as the user root. Typically, depending on the root file
system you are using, the password will either be blank or also root.

Once you have logged in you can use the command:
mount none /mnt -t hostfs

to mount the root of the host file system onto the /mnt directory inside the UML
environment. This allows you to copy files to and from the host file system. You
may now use User Mode Linux in a manner very much the same as any other
Linux system.

TODO: Talk about setting up disk partitions under UML.

To debug the running UML process, open another window on the host machine.
Use a command such as:

$ ps aux | grep linux

to search for information about the running UML process. You will find several
entries because UML is a multithreaded application. Note the process ID of
the first entry. Then launch the gdb debugger, attaching gdb to the process of
interest. For example:

4You can name the root file system something else, in which case you need to add the
ubd0= boot option to the command line to specify it.

14

$ gdb linux 1234

where 1234 is the process ID of the running UML system.

Once gdb has started you will want to execute the command handle SIGUSR1
nostop noprint. I'm not entirely sure what this command does exactly, but it
has something to do with the way gdb deals with multiple threads. In particular,
without this command gdb will stop the UML system frequently because of
SIGUSRI1 signals.

Notice that when gdb attaches to a process, that process is stopped. Your UML
session will appear dead. However, by issuing the continue command to gdb
you can cause your UML session to resume normally. Use C in the gdb window
to interrupt the UML session at any time. You can now set break points and
single step the Linux kernel as you might any other process.

TODO: Talk about how to set a break point inside a module.

4 Code Browsing Tools

The Linux kernel is very large and finding one’s way around in it can be a major
chore. To simplify the navigation of large programs there exists a number of
code browsing tools. I recommend using one or more of these tools when working
with the Linux kernel source. In this section I talk about how to configure a
few of these tools for use with the Linux kernel.

Note that you should only set up code browsing tools after you’ve applied any
patches to the source code. Patches will, of course, modify files and change
the line numbers where functions are defined, etc. If you index the source and
then apply patches or make other changes you will want to reindex the source
afterward. However, it shouldn’t matter if you've compiled the kernel first or
not. Code browsing tools are normally smart enough to ignore object files.

4.1 Cscope

The cscope tool is a simple but effective code browser with a long history. It
reads a collection of C files and builds an indexed database that can be used to
quickly look up declarations and points-of-use for any symbol.

The script below launches cscope on the Linux kernel. You should edit the
three variable definitions at the top of the script to suite your system. The
script does not index the entire kernel code base. In particular, it skips the
driver hierarchy and only indexes the x86 architecturally specific code. This
makes the database size more manageable and reduces the number of duplicate
declarations the tool returns.

15

#!/bin/bash

Set a few variables. Change here for your system.
CSCOPE_DIR=/home/student/cscope
CSCOPE_FILE=$CSCOPE_DIR/cscope.files
LNX=/home/student/linux-6.9.3

If the database hasn’t yet been created, then create it.
if [! -f $CSCOPE_FILE]; then

Build file list. Exclude uninteresting regions.
cd ~
find $LNX \
-path "$LNX/arch/*" ! -path "$LNX/arch/x86*" -prune -o \
-path "$LNX/Documentation*" -prune -o \
-path "$LNX/scripts*" -prune -o \
-path "$LNX/tools*" -prune -o \
-path "$LNX/drivers*" -prune -o \
-name "*.[chxsS]" -print > $CSCOPE_FILE

echo Creating database...
cd $CSCOPE_DIR
cscope -b -q -k

echo Creating tags...

ctags -L $CSCOPE_FILE

if [-f tags]; then
mv tags "$LNX"

fi

fi

Run cscope
cd $CSCOPE_DIR
cscope —-d

In addition to using a dedicated code browsing tool, many programmer’s text
editors have a feature that allows them to read a “tags” file containing cross-
reference information about entities declared and defined in a program. The
script above uses the ctags command to create such a file for the Vim editor.

It is natural to create a tags file for your editor at the same time as you create
the cscope database. This is because cscope will launch your editor (Vim is the
default) whenever you ask it to display a file. Once in the editor it is convenient
to continue your browsing experience using editor tags commands.

If you are an emacs user instead, you can create a tags file for that editor

16

with the etags command. Set the EDITOR environment variable to emacs to
override cscope’s default editor setting.

TODO: FINISH ME! Need to talk about how to use cscope and the tags file.

17

	Introduction
	Compiling the Kernel
	Downloading and Unpacking
	The C Library
	Configuring
	Building
	Installing
	Making initrd
	Configuring GRUB
	Installing on Floppy

	User Mode Linux
	Compiling UML
	UML Root File System
	Running UML

	Code Browsing Tools
	Cscope

