
Secure Information Flow
CIS-3720

Peter Chapin

Input Validation

• Input Validation: Verify the format and constraints on all inputs
• Data entered manually by the user
• Data taken from the command line or environment
• Data read from files
• Data read from the network
• GUI events (mouse clicks, window events, etc.)

• Tool: Regular Expressions
• Match input to check format.
• Probably still requires constraint checks (although complex REs may be able to

capture some constraints).

Input Validation

• Input Validation is about data integrity
• Malicious user can’t easily “drive” the program using bad inputs to force bad

outputs.
• Input validation protects the integrity of the data written by the program.
• Input validation also protects against program crashes

• Avoids denial of service attacks
• Input validation improves reliability

• Major tool for reliability enhancement

Confidentiality?

• Confidentiality is the dual of data integrity
• Must not be able to force the program to let the user read secrets

(confidentiality protection)
• Program does not “leak” secret information

• Must not be able to force the program to write outputs inappropriately (data
integrity protection)

• Program never outputs garbage

• Input validation only covers data integrity!
• To protect data integrity: We must sanitize public input
• To protect confidentiality: We must obfuscate private input

Example: Gradebook

• It is a violation of FERPA rules to let students see each other’s grades
• Suppose a gradebook program shows:

• His/Her grade
• Class average

• Suppose there are only two students in the class
• Jill sees: Grade = 84, Class average = 87
• Jill calculates other grade: (84 + X)/2 = 87; X = 90
• Security violation!

• Program did not properly obscure other grades; leaked secret information

General Form

Program
Public Input

Secret Input

sanitize

obfuscate

Let’s Talk About Confidentiality

• Imagine four “security levels”
• Unclassified (0), Sensitive (1), Secret (2), Top Secret (3)
• Of course, we could use just two levels if we wanted

• Simple combination rules:
• When level x “meets” level y, the result level is max(x, y)
• That is: the secrecy of the combined information is that of the highest

component
• A security level can only be lowered by going through an “obfuscation

function” defined by the developer.

Example…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile(); // Level 2
int z = getFromTopSecretFile(); // Level 3
…
a = x + 1; // Level 0 (constants don’t affect level)
b = a + y; // Level 0 and Level 2 results in Level 2
c = (2*a) / (b + z); // Level ?
print(c); // WARNING! Printing top secret information.

Example (continued)…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile(); // Level 2
int z = getFromTopSecretFile(); // Level 3
…
a = x + 1; // Level 0 (constants don’t affect level)
b = a + y; // Level 0 and Level 2 results in Level 2
c = (2*a) / (b + z); // Level ?
c = obscuringMethod(c); // Reduces to Level 0
print(c); // Printing unclassified information.

Types?

• Notice that obscuringMethod takes a top secret parameter and
returns an unclassified result. How do we declare it?

• level0 int obscuringMethod(level3 int param); ?
• Here we assume the language is extended with type qualifiers such as level0,

level1, level2, etc.

• New type checking rules:
• Every variable has a level (perhaps with a default)
• Level of result is the maximum of input levels

Dynamic Security Levels?

• In Java and many languages, types don’t change
• Once declared as an int, always an int

• Should security levels work the same way?
• Consider: c = obscuringMethod(c);

• If obscuringMethod returns Level 0, does this entail storing a Level 0 value into a Level 3
variable? If so, it won’t help the later print.

• … or does the level of c change here?
• … or do we have to use a different, level 0 variable to receive the result?

• Note: Many languages (Python) have dynamic types
• … so dynamic levels wouldn’t be weird in such a language.

Control Dependencies

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile(); // Level 2
int z = getFromTopSecretFile(); // Level 3
…
a = 0;
if (z < 0) {
a = x + 1; // Level 0 (constants don’t affect level)

}
print(a); // WARNING! Printing top secret information.

• What level can you declare for a?
• Security type systems tend to cause migration toward higher levels

Consider Arrays…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile(); // Level 2
int z = getFromTopSecretFile(); // Level 3
int[] array = new int[z];
…
print(array.length()); // WARNING! Top secret!
Array[0] = x;
print(array[i + 2*j – k]); // What level?

Consider Classes…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile(); // Level 2
int z = getFromTopSecretFile(); // Level 3
SomeClass s = new SomeClass(x, y, z);
// Class contains top secret information.

…
print(s.getSomeValue()); // Top secret?

Incomparable Levels

• Suppose you had Unclassified, Secret, Confidential, Top Secret?
• How do Secret and Confidential combine? Maybe they don’t…

Top Secret

Confidential

Unclassified

Secret

Least Upper Bound

• Security, S, of result is the least upper bound…
• S(Secret, Confidential) = Top Secret
• S(Unclassified, Secret) = Secret
• S(Unclassified, Top Secret) = Top Secret

Top Secret

Confidential

Unclassified

Secret

In General…

• Security levels form a mathematical object called a “lattice”
• Combined security is the LUB (least upper bound) of component levels
• Security levels flow upwards
• Obfuscation functions lower security level
• Output must be at some predefined low level (unclassified?)
• Different outputs have different requirements

• Program must trace security levels over the control flow
• Either statically using a type system of some kind…
• … or dynamically at run time

• This is hard!!

Now the Dual… Taintedness

• Taintedness, T, of result is greatest lower bound
• T(Partial, Gray) = Dirty
• T(Partial, Clean) = Partial
• T(Clean, Dirty) = Dirty

Clean

Gray

Dirty

Partial

In General…

• Taintedness levels form a mathematical object called a “lattice”
• Combined taintedness is the GLB (greated lower bound) of component levels
• Taintedness levels flow downwards
• Sanitization functions cleanse data
• Output must be at some predefined high level (Clean?)
• Different outputs have different requirements

• Program must trace taintedness levels over the control flow
• Either statically using a type system of some kind…
• … or dynamically at run time

• This is hard!!

Perl

• Perl’s taint mode is a dynamic taintedness check with only two levels
• Uses REs to match format
• Does not deal with high level constraints
• Does not deal with confidentiality issues
• Has runtime cost

• Simple, but limited

Traditional Input Validation

• Input validation attempts to de-taint (sanitize) input immediately
• … and then assumes all other data in the program is clean.
• Often workable

• In contrast, obscuring confidential input immediate is often impractical
• … but not always
• Does nothing about confidentiality (secret leaking)

The “Right” Way

• Secure Information Flow is a research topic
• Type systems tend to not work

• You usually have to declare too much at a high security level
• They also require language extensions

• Static checking is hard
• In general, undecidable
• Requires specialized tools

• There is no ideal solution currently!

Impractical Theory

• There is a concept of “information separation”
• Show that the public output is not affected by any secret input.
• Show that the critical (secret) output is not affected by any public input.
• Total separation!

• Impractical…
• Real programs routinely want to use secret information to impact public

outputs. Often that is the very point of the program!
• Consider: gradebook example showing class averages.

	Secure Information Flow
	Input Validation
	Input Validation
	Confidentiality?
	Example: Gradebook
	General Form
	Let’s Talk About Confidentiality
	Example…
	Example (continued)…
	Types?
	Dynamic Security Levels?
	Control Dependencies
	Consider Arrays…
	Consider Classes…
	Incomparable Levels
	Least Upper Bound
	In General…
	Now the Dual… Taintedness
	In General…
	Perl
	Traditional Input Validation
	The “Right” Way
	Impractical Theory

