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Input Validation

• Input Validation: Verify the format and constraints on all inputs
• Data entered manually by the user
• Data taken from the command line or environment
• Data read from files
• Data read from the network
• GUI events (mouse clicks, window events, etc.)

• Tool: Regular Expressions
• Match input to check format.
• Probably still requires constraint checks (although complex REs may be able to 

capture some constraints).



Input Validation

• Input Validation is about data integrity
• Malicious user can’t easily “drive” the program using bad inputs to force bad 

outputs.
• Input validation protects the integrity of the data written by the program.
• Input validation also protects against program crashes

• Avoids denial of service attacks
• Input validation improves reliability

• Major tool for reliability enhancement



Confidentiality?

• Confidentiality is the dual of data integrity
• Must not be able to force the program to let the user read secrets 

(confidentiality protection)
• Program does not “leak” secret information

• Must not be able to force the program to write outputs inappropriately (data 
integrity protection)

• Program never outputs garbage

• Input validation only covers data integrity!
• To protect data integrity: We must sanitize public input
• To protect confidentiality: We must obfuscate private input



Example: Gradebook

• It is a violation of FERPA rules to let students see each other’s grades
• Suppose a gradebook program shows:

• His/Her grade
• Class average

• Suppose there are only two students in the class
• Jill sees: Grade = 84, Class average = 87
• Jill calculates other grade: (84 + X)/2 = 87; X = 90
• Security violation!

• Program did not properly obscure other grades; leaked secret information



General Form
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Let’s Talk About Confidentiality

• Imagine four “security levels”
• Unclassified (0), Sensitive (1), Secret (2), Top Secret (3)
• Of course, we could use just two levels if we wanted

• Simple combination rules:
• When level x “meets” level y, the result level is max(x, y)
• That is: the secrecy of the combined information is that of the highest 

component
• A security level can only be lowered by going through an “obfuscation 

function” defined by the developer.



Example…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile();      // Level 2
int z = getFromTopSecretFile();   // Level 3
…
a = x + 1;  // Level 0 (constants don’t affect level)
b = a + y;  // Level 0 and Level 2 results in Level 2
c = (2*a) / (b + z);  // Level ?
print(c);   // WARNING! Printing top secret information.



Example (continued)…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile();      // Level 2
int z = getFromTopSecretFile();   // Level 3
…
a = x + 1;  // Level 0 (constants don’t affect level)
b = a + y;  // Level 0 and Level 2 results in Level 2
c = (2*a) / (b + z);  // Level ?
c = obscuringMethod(c);  // Reduces to Level 0
print(c);   // Printing unclassified information.



Types?

• Notice that obscuringMethod takes a top secret parameter and 
returns an unclassified result. How do we declare it?

• level0 int obscuringMethod( level3 int param ); ?
• Here we assume the language is extended with type qualifiers such as level0, 

level1, level2, etc.

• New type checking rules:
• Every variable has a level (perhaps with a default)
• Level of result is the maximum of input levels



Dynamic Security Levels?

• In Java and many languages, types don’t change
• Once declared as an int, always an int

• Should security levels work the same way?
• Consider: c = obscuringMethod(c);

• If obscuringMethod returns Level 0, does this entail storing a Level 0 value into a Level 3 
variable? If so, it won’t help the later print.

• … or does the level of c change here?
• … or do we have to use a different, level 0 variable to receive the result?

• Note: Many languages (Python) have dynamic types
• … so dynamic levels wouldn’t be weird in such a language.



Control Dependencies

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile();      // Level 2
int z = getFromTopSecretFile();   // Level 3
…
a = 0;
if (z < 0) {
a = x + 1;  // Level 0 (constants don’t affect level)

}
print(a);   // WARNING! Printing top secret information.

• What level can you declare for a?
• Security type systems tend to cause migration toward higher levels



Consider Arrays…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile();      // Level 2
int z = getFromTopSecretFile();   // Level 3
int[] array = new int[z];
…
print(array.length());  // WARNING! Top secret!
Array[0] = x;
print(array[i + 2*j – k]); // What level?



Consider Classes…

• Consider the following code
• int x = getFromUnclassfiedFile(); // Level 0
int y = getFromSecretFile();      // Level 2
int z = getFromTopSecretFile();   // Level 3
SomeClass s = new SomeClass(x, y, z);
// Class contains top secret information.

…
print(s.getSomeValue());  // Top secret?



Incomparable Levels

• Suppose you had Unclassified, Secret, Confidential, Top Secret?
• How do Secret and Confidential combine? Maybe they don’t…

Top Secret

Confidential

Unclassified

Secret



Least Upper Bound

• Security, S, of result is the least upper bound…
• S(Secret, Confidential) = Top Secret
• S(Unclassified, Secret) = Secret
• S(Unclassified, Top Secret) = Top Secret

Top Secret

Confidential
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Secret



In General…

• Security levels form a mathematical object called a “lattice”
• Combined security is the LUB (least upper bound) of component levels
• Security levels flow upwards
• Obfuscation functions lower security level
• Output must be at some predefined low level (unclassified?)
• Different outputs have different requirements

• Program must trace security levels over the control flow
• Either statically using a type system of some kind…
• … or dynamically at run time

• This is hard!!



Now the Dual… Taintedness

• Taintedness, T, of result is greatest lower bound
• T(Partial, Gray) = Dirty
• T(Partial, Clean) = Partial
• T(Clean, Dirty) = Dirty

Clean

Gray

Dirty

Partial



In General…

• Taintedness levels form a mathematical object called a “lattice”
• Combined taintedness is the GLB (greated lower bound) of component levels
• Taintedness levels flow downwards
• Sanitization functions cleanse data
• Output must be at some predefined high level (Clean?)
• Different outputs have different requirements

• Program must trace taintedness levels over the control flow
• Either statically using a type system of some kind…
• … or dynamically at run time

• This is hard!!



Perl

• Perl’s taint mode is a dynamic taintedness check with only two levels
• Uses REs to match format
• Does not deal with high level constraints
• Does not deal with confidentiality issues
• Has runtime cost

• Simple, but limited



Traditional Input Validation

• Input validation attempts to de-taint (sanitize) input immediately
• … and then assumes all other data in the program is clean.
• Often workable

• In contrast, obscuring confidential input immediate is often impractical
• … but not always
• Does nothing about confidentiality (secret leaking)



The “Right” Way

• Secure Information Flow is a research topic
• Type systems tend to not work

• You usually have to declare too much at a high security level
• They also require language extensions

• Static checking is hard
• In general, undecidable
• Requires specialized tools

• There is no ideal solution currently!



Impractical Theory

• There is a concept of “information separation”
• Show that the public output is not affected by any secret input.
• Show that the critical (secret) output is not affected by any public input.
• Total separation!

• Impractical…
• Real programs routinely want to use secret information to impact public 

outputs. Often that is the very point of the program!
• Consider: gradebook example showing class averages.
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