

Secure Programming
Peter Chapin

Vermont Technical College

C Language Behaviors

Taxonomy of Error Behavior

● The C standard defines various kind of behavior
– Implementation Defined Behavior

● Behavior that is correct, but may vary from one implementation to another.
● Implementation defined behavior must be documented.

– Unspecified Behavior
● Behavior that is correct, but not specified nor documented.
● Unspecified behavior may vary from moment to moment.

– Undefined Behavior
● Completely undefined: “Anything goes!”

Implementation Defined Behavior

● Example: The range on primitive types…
– C requires minimal ranges:

● -32767 <= short int <= 32767 (16 bits)
● -32767 <= int <= 32767 (16 bits)
● -2147483647 <= long int <= 2147483647 (32 bits)

– C also requires that the actual sizes be such that:
sizeof(short) <= sizeof(int) <= sizeof(long)

– C leaves the actual ranges Implementation Defined

Implementation Defined Behavior

● A typical compiler for 32 bit targets uses:
– Straightforward 2’s complement ranges (note the extra negative):

● -32768 <= short int <= 32767 (16 bits)
● -2147483648 <= int <= 2147483647 (32 bits)
● -2147483648 <= long int <= 2147483647 (32 bits)

Implementation Defined Behavior

● Consider a program that assumes int has a large range:
– int line_count;

…
line_count = 50000; // Implementation defined!

– The problem is that not all compilers use a range for int that includes
50000. On such machines the value is truncated (CWE-197).

– The program is fine and works perfectly on machines using 32 bit int.

Implementation Defined Behavior

● Java has much less implementation defined behavior
– For example, the range on basic types is fixed by the language:

● The type int is definitely 32 bit using 2’s complement
● The type long is definitely 64 bit using 2’s complement

– This simplifies life for the programmer…
– … BUT it prevents Java from taking advantage of diverse systems

effectively
● On small machines, large integers are imposed.
● On large machines, the full capacity of the machine is harder to access.

Implementation Defined Behavior

● The Ada language allows programmers to specify ranges:
– type Line_Counter_Type is range 0 .. 1_000_000;

…
Line_Counter : Line_Counter_Type;
…
Line_Counter := 50_000; -- Works on all machines.

– Makes range information explicit in the program.

Unspecified Behavior

● Classic example: order of evaluation of function arguments.
– x = f(a + b, c – d);

● Which is evaluated first: a + b or c – d?
● The C standard says the order is “unspecified.”
● The compiler is allowed either order, it does not have to document it
● The order might be different for different function calls
● The order might be different each time the program runs!
● In this case it doesn’t matter and nobody cares.

Unspecified Behavior

● Now consider this example:
– x = f(g(), h());

● Which function is called first? g() or h()?
● The order is still unspecified
● … BUT it might make a difference: suppose g() outputs “Hello” and h()

outputs “World.” Does the program output “Hello World” or “World Hello?”
● The program might do what is intended, but that would be by accident. Don’t

write code that relies on unspecified behavior!

Undefined Behavior

● Anything can happen. Usually the program crashes.
– char buffer[128];

…
buffer[128] = ‘x’; // Array out of bounds is UB.

– Even reading an array out of bounds is UB (not just writing to it).
– It might “work.” Program continues and computes a reasonable

result. Or… program might output garbage ultimately. Or… program
might crash immediately. Or… program might crash much later.

Undefined Behavior

● In C, many things are undefined
– Illegal array access
– Integer overflow
– Comparing pointers into different arrays
– Many others...

Undefined Behavior

● Integer overflow… (example assumes 32 bit integers)
– int x = 1000000;

int y = 1000000;
int z;
…
z = x * y; // Result overflows integer. UB!

– Most compilers will wrap the result and continue executing.
– In theory the program might crash. Most like it will produce garbage

Undefined Behavior

● Pointers into different arrays can’t be compared…
– char buffer1[128];

char buffer2[128];
char *p1 = &buffer1[64];
char *p2 = &buffer2[64];
…
if(p1 < p2) { … // Undefined behavior!

– Program will probably evaluate this to true/false depending on the
relative positions of the arrays in memory. OTOH, the program might
crash.

Strictly Conforming

● A program is Strictly Conforming if…
– … it engages in no implementation defined, unspecified, or undefined

behavior.

● Such programs are highly portable
– They should compile and work on every system that supports

standard C.

Help!!

● How is a programmer to keep all of this straight?
– In reality: It is very difficult.
– Consequently many C programs crawl with implementation defined,

unspecified, and even undefined behavior.
– Many C programs have rampant issues because of this and suffer

from reliability and security problems.

● Tools can help!
– We will talk about this later in the class.

Other Languages?

● Other languages have similar issues, to a lesser degree.
– Java is more defined: accessing an array out of bounds throws an

ArrayIndexOutOfBoundsException
● The behavior is well defined.
● Still probably not desirable to have this happening, though.

– In general languages vary greatly in these areas; learning about them
is part of learning a language.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

