

Buffer Overflow Attacks

Peter C. Chapin
Vermont Technical College

Bounds Checking

Programming languages intended for high
performance often do not check the bounds
when arrays are accessed.
char buffer[128]; buffer[128] = 'x';

Such checks usually involve runtime overhead.

C, C++, Fortran, Assembly Language (of course)
all prefer high speed over safety of execution.

Out of bounds access → “undefined behavior”

C Makes Bounds Checking Hard

Adding bounds checking to C is difficult
because of pointer arithmetic

int main(void)
{
 char buffer[128];

 f(buffer);
 f(buffer – 1);
 f(buffer + 64);
}

void f(char *buffer)
{
 buffer[128] = 'x';
}

Function f doesn't know buffer points into
an array let alone how large the array is.

Adding Bounds Checking

Fortran: Many compilers will add bounds
checking code as an option for debugging
purposes.

C/C++: Adding such code is infeasible.

Except... Special techniques that attach extra
information to pointers can be used.

An experimental version of gcc does this.
[reference?]

However, performance hit is greater than that
suffered by normal bounds checking languages.

Security Recommendation

If security is a high priority, consider not using C
or C++.

If C or C++ must be used, apply tools that employ
static and/or dynamic analysis methods to look
for possible buffer overflows.

Do not rely on your ability to notice possible
problems. Experience shows that technique
does not work well.

Stack Frames
int f(int a, int b)
{
 char buffer[128];

 push %ebp
 mov %esp, %ebp
 sub 128, %esp

 ... [%ebp + 8]
 ... [%ebp - 128]

 mov %ebp, %esp
 pop %ebp
 ret
}

a

b

Return address

Old %ebp

%ebp

%esp

128 bytes
for

buffer

To previous
frame

When a local buffer is overflowed
the return address can be overwritten.

Overflows Cause Crashes

When a “random” return address is used, the
function returns to an unexpected location.

It is possible that the program will continue executing.

It is more likely that the program will crash.

An attacker who can control the return address
can get the program to execute arbitrary code.

Attack Idea

a

b

Return address

Old %ebp
%ebp

%esp
nop
nop
nop
nop
nop

...
(Attack Code)
new ret addr
new ret addr
new ret addr
new ret addr
new ret addr
new ret addr
new ret addr
new ret addr

1. Provide attack code as input
 to the program.

2. Flood buffer with desired return
return address after the attack
code.

3. Prefix attack code with nop
instructions so return address
need not be 100% accurate.

4. When function returns, program
executes attack code.

Attack Code

Cleaning Up the Attack Code

What Return Address?

Countermeasures

Don't use C.

Use an operating system that won't let code
execute on the stack.

Use a run time stack guard system of some sort
(dynamic analysis).

Statically analyze code with a tool looking for
problems.

At least: Write the code carefully (don't be lazy
about bounds checking) and inspect the code
manually looking for problems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

