
CIS–3152 Lab

Concurrent TCP Servers

c© Copyright 2014 by Peter C. Chapin
Vermont Technical College

Last Revised: January 10, 2014

Introduction

In this lab you will write a concurrent TCP server
using the POSIX sockets API. Your server will im-
plement the simple echo protocol described in RFC–
862. You should review that RFC (it is very short).
In particular, the server should accept lines of text
from the client and then return those same lines to
the client exactly as received. This should continue
until the client closes the connection.

Despite the simplicity of this protocol it actually has
uses. It can be valuable as a debugging aid or for
network timing and performance measurements. An
echo client and server can also be used as a starting
point for implmenting more complex protocols.

In this lab it is also essential that the final server be
able to support multiple clients with no particular
limit on the number of simultaneous clients. How-
ever, no support for timeouts on either the server or
client side are required for this lab; it is acceptable if
both the client and server may potentially wait “for-
ever” for a response from the other side.

1 The Client

The client should take the IP address and port num-
ber of the server on the command line. Use a default
port number of 7 if the user does not provide one (see
RFC–862). The client should establish a connection

with the server and then enter a loop where it accepts
lines of text from the user and sends those lines to the
server one at a time. It should display the server’s
response to each line, presumably a copy of the line
sent. The user specifies when a session is over by
entering an “end-of-file” indication at the client ter-
minal (control+D). In response the client closes the
connection to the server and exits.

Much of the client’s behavior is similar to the sim-
ple daytime client discussed in class and used in Lab
#1. After making a suitable branch in your sample
code repository, I recommend that you copy the en-
tire daytime sample to create a starting point for this
lab. You can copy the client and server source files,
along with all the Code::Blocks configuration infor-
mation by going to the daytime folder in cis-3152

and issuing the commands

$ mkdir -p ../echo/C

$ cd C

$ tar cf - . | (cd ../../echo/C; tar xf -)

This uses tar to copy an entire directory hierarchy
from one place to another. After doing this I rec-
ommend that you rename daytimeC.workspace to
echoC.workspace. Note that the copy operation
above will also copy the threaded version of the day-
time server. That version implements concurrency
using POSIX threads. It is not directly useful to you
in this lab since we’ll be using the more traditional
approach of forking child processes, but having the

1



threaded server in your workspace does no harm and
you might find it useful later.

You may wish to add and commit the echo/C direc-
tory and all its contents to your Git repository (be
sure you are working in a branch). You can then load
the Code::Blocks workspace in the echo/C directory
to begin working on your system.

2 The Server

Start by modifying the daytime server to implement
the echo protocol for a single client at a time (in other
words implement an iterative server first). Once you
have that working you can then modify it to provide
support for multiple, simultaneous clients.

The server program should follow the structure of
a concurrent server as described in class. In particu-
lar, it should fork to handle each client. Eventually it
should also properly clean up its children by catching
the SIGCHLD signal and calling waitpid in the cor-
responding signal handler. However, in your server
do not take this step initially so that you can ob-
serve the zombies created by improper handling of
SIGCHLD as described below.

To illustrate the support for concurrency do the fol-
lowing:

1. Modify the server so that the children include
their process ID numbers in each line echoed
to the client. You should probably also have
each child display its process ID number on the
server’s terminal when it starts servicing a client.
Use the getpid system call to obtain the process
ID number.

2. Connect to your server several times simultane-
ously and observe that a new process is created
for each connection. Note the process ID num-
bers of the children.

3. As each client is serviced note the process ID
numbers sent to the clients and verify that they
match.

4. Terminate each connection and then use the ps

aux command to view the process list and verify
that the child processes created above are now
zombies. This is due to the parent server fail-
ing to recover the exit status of the terminated
children.

5. Change the server to eliminate the zombies by
setting up a signal handler for SIGCHLD and
calling waitpid inside that signal handler. Refer
to class notes, the text, or on-line resources for
more details. Repeat the experiment above to
be sure no zombies are created.

3 Optional

There are several ways your server program could be
improved to make it more professional. You do not
need to implement any of these features but if you
have time and would like to explore I invite you to
consider the following.

• The server should write a log file that records
the date and time when each client connects as
well as the IP address of the client. Where in the
program should this be done so as to avoid cor-
rupting the log file in the case when two clients
connect simultaneously?

• Currently the server must be explicitly run in
the background by typing an & character at the
end of the command line. Professional server
programs don’t require this and can “demonize”
themselves by dissociating themselves from their
controlling terminal. Find out how this works
and implement it.

4 Report

Write up a report for this lab using the LATEX typeset-
ting system. Your report should describe how your
client and server software work and report on your
observations of their behavior.

2


