

Remote Procedure Call

Peter Chapin
Vermont State University

Network Programming is Hard

● “Traditional” network programming is complicated.
● Must deal with a special API

– Create socket.
– Create connection.
– Format data into raw octets.
– Write raw octets into connection.
– Read raw octets from connection.
– Interpret the raw octets.
– Close connection.
– Close socket.

Streaming API is Easier

● Treat the network like a file.
● Open connection.
● Write various data types into the connection.

– Integers, Floats, Characters, Strings.
– More complex user defined types.

● Read various data types from the connection.
– Must distinguish one from the other somehow.

● Problem...
● Application must still manage process and state.

– What do the sent/received data objects mean?

Awkward Programming Model

● Program components...
● Don't normally interact by passing raw bytes.
● Don't normally interact through heterogeneous files.

● Instead...
● Program components interact by calling code in separate libraries.

– Data passed and returned as typed values.

● Can this be done over the network?

Remote Procedure Call (RPC)

int service(int x, float y)
{
 int result;

 // Do stuff with x and y.
 return result;
}

if(service(1, 3.14) == 0) {
 // etc..
}

Client Server

Network

“Invoke service with
arguments 1, 3.14 on
Host x.y.z.w” “Return result to

calling host.”

RPC

● Provides a natural programming model.
● Makes network programs easier to understand.

– ... easier to write, maintain, etc.

● Gives illusion of a single application.
● Application is now distributed over the network.
● Distributed Application Programming
● Server appears as a library of functions.

– Can be called in any order desired.
– Data on the network is fully typed.

Disadvantages of RPC

● Requires software to...
● Marshal (“encode” or “serialize”) and unmarshal (“decode” or

“deserialize”) the parameters and return values.
– Converts typed data to raw octets.
– Must do so in a way that is understandable to peer.

● Locate the peer, establish connection, etc, etc.
– In short... take care of all the grunt work that was done by the programmer

using the old way.

● This software is called middleware.
● Ideally...

● The middleware would make the network “invisible.”

Distributed Applications

Middleware

App App
Library

Network
Stack

Network
Stack

Physical Network

TCP Connections

Middleware Technologies

● Many technologies to do this exist.
● Sun's RPC (called ONC RPC)

– Uses C
– The basis for NFS and related technologies.

● DCE (Distributed Computing Environment)
– Based on old technology.
– Now open source: http://www.opengroup.org/dce/

● XML-RPC
– Uses XML to structure data on the wire.

● SOAP
– Simple “Object” Access Protocol

http://www.opengroup.org/dce/

More Technologies

● The list goes on...
● Microsoft's history in this area is long.

– COM became DCOM
– MS embraced SOAP and web services.
– .NET remoting.
– “Windows Communication Foundation” (WCF)

● If you are a Java person...
– Java RMI (Remote Method Invocation)

Even More Technologies

● CORBA
● Common Object Request Broker Architecture.

– Standard controlled by the Object Management Group (OMG, see: http://ww
w.omg.org)

– Supports multiple languages.
– Supports multiple platforms.
– Supports multiple network protocols.
– Large standard with many features.

● Complex
● Not fully implemented by anyone.
● “Does everything.”

– Slowly vanishing.

http://www.omg.org/
http://www.omg.org/

Ice

● Internet Communications Engine.
● Created by two CORBA experts who became disillusioned by the

CORBA “process.”
– Supports multiple languages.
– Supports multiple platforms.
– Uses just TCP/IP.

● Well designed, modern, open source.
– Created originally to support a MMOG

● The game failed, but not because of Ice.
– A very nice system overall, but relatively unknown.
– See http://www.zeroc.com/

http://www.zeroc.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

