Programming UDP

Peter Chapin
Vermont State University
CI1S-3152: Network Programming



UDP and Sockets

* The sockets API doesn't directly talk about particular transport
protocols.

* Sockets works with multiple protocols

- TCP, UDP, etc, are in the TCP/IP protocol stack.
— The OSI protocols are different.
- efc...

« TCPis a SOCK STREAM protocol
 UDPis a SOCK DGRAM protocol



Creating a Socket

« Use the same socket function as with TCP

e 1f ((socket handle =
socket (PF INET, SOCK DGRAM, 0)) == -1)
perror (“Unable to create socket”);
return error code;

}

* The combination PF INET and SOCK DGRAM
means UDP.



Prepare Address

« As with TCP you must prepare a sockaddr in structure.

* Contains address where you want to send the datagram (UDP
packet).

* Nothing different here.



No Connection!

 No call to connect is necessary.

 Each datagram must be addressed individually.
- Like a traditional postal envelope.
 With TCP, connect is told the address of the other endpoint.

- ... thus itis not necessary to specify the address for each write operation.
 UDP is different.



Prepare a Buffer

* You must format the datagram yourself.
e char buffer[512];

- Put any data you want into the buffer.
* Size of the datagram is an application issue.

 Should not be too large (IP protocol has limits!)

* Note that packet structure is now exposed to the application. This is
different than with TCP.
— UDP is not a streaming protocol. Application must manage the datagrams.

— This is an important distinction between stream and datagram protocols in
general.



Send the Buffer

* Use the sendto function to send the datagram.

e 1f (sendto(socket handle,
buffer, // Pointer to data
length, // Number of bytes to send

0, // Flags (see man page)
(struct sockaddr *) é&server address,
sizeof (server address)) == -1) {

perror (“Unable to send”);
return error code;

}

* Notice that the destination address must be given.

* Be sure to specify an appropriate length.

- In some cases you won't want to send the entire buffer (application
dependent).



Receive Reply

Receives not only data, but address of sender.

e 1int address length = sizeof (struct sockaddr in);
1f ((count = recvfrom(socket handle,

buffer, // Buffer to store incoming data
512, // Size of buffer
0, // Flags (see man page)
(struct sockaddr *) é&server address,
&address length)) == -1) {

perror (“"Error during packet receive”);

return error code;

}
« The address length is passed as an in/out parameter.

 recvfrom returns number of bytes actually received.



Address Handling

e Each call to recvfrom returns the address of the sender.
* To reply turn that address around.

* Use the sockaddr in structure returned by recvfrom in the next
call to sendto.

* When sending to a UDP server...

* Send initial request to the server's “well known port”

* Send subsequent datagrams (if any) to the address in the server's
reply (probably a different port).

e Server uses a new port for each client.



One To One

 Each sendto call produces exactly one datagram.
e Calls to sendto are not combined or split.
« Each recvfrom call returns exactly one datagram.

* Incoming datagrams are not combined or split.
* This is another aspect of a datagram protocol.



Timeout

« UDP is unreliable

 When sending a request to the server, there may never be a reply:
- Server is off-line (you don't know until you try!)
- Request lost on network.

- Reply lost on network.
* QUIZ: Does it matter which of the two cases above happened?

 recvfrom will normally wait forever.

 That's bad if the reply never comes.



SIGALRM

 On Unix you can timeout with STGALRM.

« Just before calling recvfrom, call alarm.
- The alarm function takes a count of seconds as an argument.
- Raises the STGALRM signal after that time elapses.
* Install a signal handling function that does nothing.
« When SIGALRM is raised, recvfrom will return with the EINTR error
code (interrupted system call).

- In that case, you timed out.
e Use alarm(0) to cancel the alarm if recvfrom returns normally.



select

e On Windows use the select function.

e This function can wait for multiple sockets.

- ... But we will use it to wait for just one.
- We use it because it provides a timeout option.

e Note: select also available on Unix.

e fd set handles;
struct timeval timeout = { 10, 0 };

FD ZERO (&handles) ;
FD SET (socket handle, &handles);
if (select(l, &handles, NULL, NULL, &timeout)
== 0) {
// Timed out (zero sockets ready)

}



Socket Option

* Another approach is to use setsockopt

« The SO RCVTIMEO option sets a receiver timeout on a specified
socket.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

