

Programming UDP

Peter Chapin
Vermont State University

CIS-3152: Network Programming

UDP and Sockets

● The sockets API doesn't directly talk about particular transport
protocols.

● Sockets works with multiple protocols
– TCP, UDP, etc, are in the TCP/IP protocol stack.
– The OSI protocols are different.
– etc...

● TCP is a SOCK_STREAM protocol

● UDP is a SOCK_DGRAM protocol

Creating a Socket

● Use the same socket function as with TCP

● if ((socket_handle =
 socket(PF_INET, SOCK_DGRAM, 0)) == -1) {
 perror(“Unable to create socket”);
 return error_code;
}

● The combination PF_INET and SOCK_DGRAM
means UDP.

Prepare Address

● As with TCP you must prepare a sockaddr_in structure.
● Contains address where you want to send the datagram (UDP

packet).
● Nothing different here.

No Connection!

● No call to connect is necessary.
● Each datagram must be addressed individually.

– Like a traditional postal envelope.
● With TCP, connect is told the address of the other endpoint.

– ... thus it is not necessary to specify the address for each write operation.
● UDP is different.

Prepare a Buffer

● You must format the datagram yourself.
● char buffer[512];

– Put any data you want into the buffer.

● Size of the datagram is an application issue.
● Should not be too large (IP protocol has limits!)
● Note that packet structure is now exposed to the application. This is

different than with TCP.
– UDP is not a streaming protocol. Application must manage the datagrams.
– This is an important distinction between stream and datagram protocols in

general.

Send the Buffer

● Use the sendto function to send the datagram.
● if (sendto(socket_handle,

 buffer, // Pointer to data
 length, // Number of bytes to send
 0, // Flags (see man page)
 (struct sockaddr *) &server_address,
 sizeof(server_address)) == -1) {
 perror(“Unable to send”);
 return error_code;
}

● Notice that the destination address must be given.
● Be sure to specify an appropriate length.

– In some cases you won't want to send the entire buffer (application
dependent).

Receive Reply

● Receives not only data, but address of sender.
● int address_length = sizeof(struct sockaddr_in);

if ((count = recvfrom(socket_handle,
 buffer, // Buffer to store incoming data
 512, // Size of buffer
 0, // Flags (see man page)
 (struct sockaddr *) &server_address,
 &address_length)) == -1) {
 perror(“Error during packet receive”);
 return error_code;
}

● The address_length is passed as an in/out parameter.

● recvfrom returns number of bytes actually received.

Address Handling

● Each call to recvfrom returns the address of the sender.

● To reply turn that address around.
● Use the sockaddr_in structure returned by recvfrom in the next

call to sendto.

● When sending to a UDP server...
● Send initial request to the server's “well known port”
● Send subsequent datagrams (if any) to the address in the server's

reply (probably a different port).
● Server uses a new port for each client.

One To One

● Each sendto call produces exactly one datagram.
● Calls to sendto are not combined or split.

● Each recvfrom call returns exactly one datagram.
● Incoming datagrams are not combined or split.

● This is another aspect of a datagram protocol.

Timeout

● UDP is unreliable
● When sending a request to the server, there may never be a reply:

– Server is off-line (you don't know until you try!)
– Request lost on network.
– Reply lost on network.

● QUIZ: Does it matter which of the two cases above happened?

● recvfrom will normally wait forever.
● That's bad if the reply never comes.

SIGALRM

● On Unix you can timeout with SIGALRM.
● Just before calling recvfrom, call alarm.

– The alarm function takes a count of seconds as an argument.

– Raises the SIGALRM signal after that time elapses.

● Install a signal handling function that does nothing.
● When SIGALRM is raised, recvfrom will return with the EINTR error

code (interrupted system call).
– In that case, you timed out.

● Use alarm(0) to cancel the alarm if recvfrom returns normally.

select

● On Windows use the select function.
● This function can wait for multiple sockets.

– ... But we will use it to wait for just one.
– We use it because it provides a timeout option.

● Note: select also available on Unix.
● fd_set handles;

struct timeval timeout = { 10, 0 };
...
FD_ZERO(&handles);
FD_SET(socket_handle, &handles);
if (select(1, &handles, NULL, NULL, &timeout)
 == 0) {
 // Timed out (zero sockets ready)
}

Socket Option

● Another approach is to use setsockopt
● The SO_RCVTIMEO option sets a receiver timeout on a specified

socket.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

