

Ice

Peter Chapin
Vermont State University

What is Ice?

● Middleware system from ZeroC
● Based on CORBA
● Cross-Language

– C++, Java, Python, Ruby, .NET (C#, etc), Objective-C, PHP
● Cross-Platform

– Windows, Linux, MacOS, Solaris
● Full featured

– BUT... removes little used or “questionable” features from CORBA.

Slice

● [Add slides on the slice interface language]

Slice to Java Mapping

● [Add slides on the slice to Java mapping.
● [Show examples: Chatter, FileServices]

Proxies

● Stringified
● A way to represent proxies in human readable form.

● Direct vs Indirect
● identity:tcp -h xyz.com -p 2000
● identity@xyz

● Routed
● Replication

● Proxies with multiple endpoints
● Replica Groups

● Interaction with the Location Service

Servants vs Ice Objects

● Ice Object
● An abstract concept of a remote object with methods.

● Servants
● Servants incarnate “one or more” Ice objects.
● Servants that incarnate multiple Ice objects

– Get the identity of the object with each request
– Useful when there are many, many Ice objects. For example, a database

table.

● Ice Objects are “virtual.” Servants are “actual.”

“At Most Once”

● Ice guarantees...
● A request executes once or not at all.

– If a request does not execute, an exception is generated.

● Allows safe use of non-idempotent operations.
● Idempotent operations are those where the effect is the same if they

are executed more than once.
● Ice allows you to declare idempotent operations

● In this case the Ice run time can provide more aggressive error
recovery than normally possible.

Asynchronous Method Invocation

● By default Ice method calls are synchronous
● Caller is blocked until method returns.

– Could take a while even if the operation is quick due to network latency.
– Upon return all results are available.

● Ice allows you to mark calls as asynchronous (“AMI”)
● Invoker passes “call back object”
● Invocation returns at once.
● Run time calls method on call back with result.
● Servant unaware an asynchronous call was made.

Asynchronous Method Dispatch

● Server side analog to AMI
● Servant informed of client invocation but uses its own thread to

process it.
● Thread in the Ice run time can now accept requests from other

clients.
● Servant informs local Ice run time when results are ready to be sent

back to the client.
● Servant thread can continue after data sent to client

– Can perform clean up activities or other post processing.

Oneway Invocations

● Similar to AMI (asynchronous)
● Call returns at once. Invocation done “later.”
● Only allows data from client to server.

– No information comes back... not even error information.
– AMI allows return data via the callback object.
– Oneway invocations are unreliable

● Can't tell if they worked or not. Client just hopes.
– “Best effort” semantics.

● Server unaware that call was made “oneway.”
● Can be batched to reduce overhead.

Datagram Invocations

● Call information transported using datagram protocol (e.g. UDP)
● Similar to oneway...

– Unreliable
– Low overhead.

● Additional errors possible
– Completely lost invocations
– Invocations might arrive in an unexpected order.

● Even less overhead than oneway.
● Supports multicast invocations.
● Can also be batched.

Exceptions

● Ice supports throwing exceptions over the network.
● Two sources of exceptions:

– Communication problems
● Invocation never leaves machine
● Target object does not exist or can't be incarnated

– Ordinary failure of the called method
● Requested operation could not be completed.

● Exceptions due to communication problems reported via exception
types in the Ice namespace.

● Other exceptions are defined by the user as usual.

Services

● Higher level features built on top of the low level system. The
following services ship with Ice:

● IceGrid
● IceBox
● IceStorm
● IcePatch2
● Glacier2
● IceBridge

IceGrid

● Provides many useful services...
● Location service to resolve indirect proxies.
● Can start servers on demand.
● Supports replication and load balancing.
● Automates distribution and patching of servers.
● Sessions and resource allocation.
● Failover support for proxies with multiple endpoints.
● Configuration and administration of multiple server host systems

IceBox

● Allows you to package several Ice applications into a single
process.

● Using, for example, DLLs or shared libraries
● ... or by taking advantage of the features of relevant virtual machines

– JVM
– CLR

IceStorm

● A publish/subscribe service
● Applications can subscribe to “topics”
● When a server publishes a message to a particular topic, every

subscriber is alerted.
● Also called the Observer pattern.

● Decouples clients from servers.
● Clients don't know the servers... only receive events.
● Servers don't know the clients.

● Useful when there are a large number of clients.

IcePatch2

● Patch distribution service for clients.
● Clients connect to an IcePatch2 server.
● Request updates.
● Server pushes updated software to the client where it is automatically

installed.

Glacier2

● Firewall and security services for Ice
● Passing Ice traffic through a firewall is problematic.

– Connections managed by Ice runtime, not application.
– Ice runtime normally selects ports, etc.

● Glacier2 allows controllable connection management behavior to
facilitate firewall interactions.

● Also supports encrypted connections, mutual authentication, etc.

IceBridge

● Relays requests from clients to servers
● Useful, for example, when client/server are using mismatched

network protocols

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

