

Daytime Client/Server

Peter Chapin
Vermont State University

CIS-3152: Network Programming

Addresses

● IP Addresses are assigned to interfaces
● A machine with multiple interfaces gets multiple addresses.

– Interfaces can be physical or virtual.

● “Machine's IP address” is technically incorrect.
● Machines don't have addresses, interfaces do.
● However, many machines have only one (relevant) interface.

– Thus talk of a “machine's IP address” is common.

Connections

● TCP connections are described by a 4-tuple
● (src address, src port, dest address, dest port)

155.42.234.80

155.42.14.3

155.42.13.30

Port: 1234

Port: 1234

Port: 80

(155.42.14.3, 1234, 155.42.234.80, 80)

(155.42.13.30, 1234, 155.42.234.80, 80)

Connections (Continued)

● TCP connections are bi-directional
● Words like “source” and “destination” don't apply!
● IP packets have sources and destinations, but on a connection both

endpoints can send or receive data.
● However: creating a connection is asymmetric

● Client active: initiates connection (dials the phone)
● Server passive: accepts the connection (picks up the phone when it

rings)

Connections (Continued)

● Once connection is established, the peers are equal.
● Either side can initiate a shutdown.

● The first side that closes the connection does an active close.
● The other side responds with a passive close.

● Which side does the active close is an application level
decision.

● Either side must be prepared for the other to close unexpectedly.
– You have no idea what your peer will do.

Sockets is Protocol Independent

● Important!
● The sockets API is not specific to TCP/IP
● On machines supporting multiple protocols (OSI, IPX/SPX, etc)

sockets could potentially work with all of them.
– We will care about this when we look at IPv6.

● Design of Sockets is object oriented!
● But... since C is not an OOP language, the interface is somewhat

awkward.
● Knowing this helps explain the awkwardness

– And helps make it more acceptable!

Unix Style Error Handling

● Unix system calls follow a simple tradition:
● Call returns integer -1 when error occurs
● Sets a global integer errno with an error code.

– Consult man page for specific error code possibilities.
● Usually shown with symbolic name #defined in <errno.h>. For example: EPERM

(meaning permission denied).

● Check each system call for -1 return.
– If found, consult errno for more specific information.

● NOTE: Not all system calls follow this approach. Check the man
page to be sure.

Quick Error Messages

● Checking errno all the time is a pain.

● Library function perror simplifies the process of producing
useful error messages.

● Looks up a generic message in an internal table using errno value
as a table index.

● EXAMPLE: Suppose errno set to EPERM
– perror(“Unable to do operation”);
– Displays: “Unable to do operation: Permission denied”

● Sends message to standard error file.

● [Demonstrate connect man page]

Daytime Protocol

● A simple protocol good for testing.
● Can focus on network issues because the protocol is trivial.
● Stevens uses it as a first example in his book. We will also.

● Described by RFC-867
● Read it!

– It's very short... unlike some of the RFCs we'll look at later!

● [Demonstrate the RFC index]

https://tools.ietf.org/html/rfc867

Protocol Overview

● Daytime protocol steps:
● Client connects to server port 13 (default)
● Server sends ASCII string containing the date and time.

– One line recommended
– No particular format is required

● Server closes the connection (does the active close)
● NOTE:

● Client need not send any data (anything sent is ignored)

Daytime Client Using Sockets

● Client steps:
● Create a socket object (inside the kernel) to represent the

connection's endpoint.
● Prepare a sockaddr_in structure to hold the server address and

port.
● Connect to the server.
● Read the connection (like a file) until an end-of-file indication appears

(that is, loop).
– Sockets will indicate end-of-file when the server closes the connection.

● Close the connection.

Create a Socket

● Creating a kernel socket object
● if ((socket_handle = socket(PF_INET, SOCK_STREAM, 0))

 == -1) {
 perror(“Unable to create socket”);
 return error_code;
}

● Include headers as necessary (see man pages)
● socket_handle is an integer file handle

● PF_INET specifies the “INET” protocol family (TCP/IPv4)

● SOCK_STREAM specifies a stream protocol (TCP)

● perror is a library function that simplifies error handling.

Prepare Address Structure

● Fill in a sockaddr_in structure.
● memset(&server_address, 0, sizeof(server_address));

server_address.sin_family = AF_INET;
server_address.sin_port = htons(port);
if (inet_pton(AF_INET, argv[1],
 &server_address.sin_addr) <= 0) {
 fprintf(stderr, "Unable to convert address.\n");
 close(socket_handle);
 return error_code;
}

● Zero structure first to put unused fields into a default state
● Use htons to convert host to network byte order

● Use inet_pton to convert address from “presentation” to “network”

Connect To Server

● Call the connect function.
● if (connect(socket_handle,

 (struct sockaddr *) &server_address,
 sizeof(server_address)) == -1) {
 perror("Unable to connect to server");
 close(socket_handle);
 return error_code;
}

● You must pass a pointer to the server address structure.
– But you must cast it into a generic sockaddr pointer first!
– This is like converting to a base class in C++
– connect examines the structure and the socket to figure out what protocol

you are trying to use.

Read Server's Data

● Read the data from the server like a file.
● while ((count = read(

 socket_handle, buffer, BUFFER_SIZE - 1)) > 0) {
 buffer[count] = '\0';
 fputs(buffer, stdout);
}

● Repeatedly try to read BUFFER_SIZE - 1 bytes.
● Data may arrive in pieces (one byte at a time even)
● Just read and print (in this case) each piece as it arrives.
● read will block (wait) if no data has arrived.

● read returns zero when connection closed.

Don't Forget Error Handling

● If read fails (due to network failure) the user will want to know.
● if (count < 0) {

 perror("Problem reading socket");
 close(socket_handle);
 return 1;
}

● Errors on the network are common
– Network is orders of magnitude less reliable than memory or disks.

● You must write code to consider these errors.

Code Review

[Demonstrate complete client]

Daytime Server Using Sockets

● Server steps:
● Create a socket object to represent the listening endpoint.
● Prepare a sockaddr_in structure to specify the server port.
● Bind the socket to the desired address.
● Listen on the socket.
● Accept a connection.
● Write to the connection (like a file).
● Close the connection.
● Loop back and accept the next connection.

Create a Socket

● Exactly the same as with the client.
● if ((listen_handle = socket(PF_INET, SOCK_STREAM, 0))

 == -1) {
 perror("Unable to create socket");
 return error_code;
}

Prepare Address Structure

● Similar to the client
● memset(&server_address, 0, sizeof(server_address));

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(port);

● Zero out the address structure to give unspecified fields appropriate
default values.

● Use INADDR_ANY to specify listening on any IP address (any
interface).

● Use htonl and htons to deal with endianness issues in a portable
way.

Bind Socket to Address

● Associate the socket with the desired address. This is called
“binding.”

● if (bind(listen_handle,
 (struct sockaddr *) &server_address,
 sizeof(server_address)) == -1) {
 perror("Unable to bind socket");
 close(listen_handle);
 return error_code;

● Binding fails if, for example:
– The process does not have permission to use the address/port
– The address/port is already in use by another server.

● Binding does not entail any network activity.

Listen on Socket

● This allows connections to be accepted.
● if (listen(listen_handle, 32) == -1) {

 perror("Unable to listen");
 close(listen_handle);
 return error_code;
}

● After listen, connections will no longer be “refused.”
● Second parameter controls size of “backlog” queue.

– Number of pending connections that can be created without being accepted.
– Often ignored. Each OS has its own idea about how to manage this value

internally.

Accept Connection

● This is how to actually accept a connection.
● client_length = sizeof(client_address);

connection_handle = accept(listen_handle,
 (struct sockaddr *) &client_address,
 &client_length);

● The accept function returns a handle to a new socket representing
the connection endpoint.

– ... different from the listening socket!
● The accept function's third parameter is “in/out.”

– client_length must be initialized with size of space.

– accept modifies client_length to return used space.

Other Details

● Server reads/writes the connection like a file.
● … just like the client.
● If client closes first, server will get end-of-file indication.

● Server closes the connection with close.
● … just like the client.

● Listening socket remains open.
● Server loops back and calls accept again to get the next

connection.

Code Review

[Demonstrate complete server]

Iterative Server

● The server described is iterative.
● Only accepts one connection at a time.
● If a connection arrives while one is being serviced, the new

connection is added to the backlog queue.
– Client making that connection must wait.
– If current connection takes a “long time” the waiting client won't be happy.

Example:
● Servicing current client is time consuming.
● Current client is unresponsive.
● Current client is malicious.

● Inefficient use of resources.

Iterative Daytime Server

● BUT... iterative servers are easy to implement.
● Iterative servers are appropriate for some protocols:

● When service provided is trivial, AND
● When server does not have to wait for client commands, AND
● When server does the active close.

● Daytime protocol meets these requirements!

Windows Sockets

● Windows uses “WinSock”, not POSIX sockets.
● Function names all begin with “WSA”

– WSAConnect, WSAAccept, etc.

● Functions have similar purpose to their POSIX counterparts, but very
different parameter lists, etc.

● More complicated to use.
● WinSock needs explicit initialization.

● ... since it is in a DLL that needs to be loaded.
● Use WSAStartup and WSACleanup.

● Retrieve error codes with WSAGetLastError

Compatibility Library

● Compatibility library eases porting of Unix programs.
● Provides functions like connect, accept, etc with POSIX

semantics.
● Implemented on top of the WSA equivalents.

● Not 100% compatible!
● Still need to use WSA functions to initialize WinSock, get error codes,

etc.
● Some of the data types are different.

● Consult the MSDN library for the details.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

