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Addresses

● IP Addresses are assigned to interfaces
● A machine with multiple interfaces gets multiple addresses.

– Interfaces can be physical or virtual.

● “Machine's IP address” is technically incorrect.
● Machines don't have addresses, interfaces do.
● However, many machines have only one (relevant) interface.

– Thus talk of a “machine's IP address” is common.



  

Connections

● TCP connections are described by a 4-tuple
● (src address, src port, dest address, dest port)

155.42.234.80

155.42.14.3

155.42.13.30

Port: 1234

Port: 1234

Port: 80

(155.42.14.3, 1234, 155.42.234.80, 80)

(155.42.13.30, 1234, 155.42.234.80, 80)



  

Connections (Continued)

● TCP connections are bi-directional
● Words like “source” and “destination” don't apply!
● IP packets have sources and destinations, but on a connection both 

endpoints can send or receive data.
● However: creating a connection is asymmetric

● Client active: initiates connection (dials the phone)
● Server passive: accepts the connection (picks up the phone when it 

rings)



  

Connections (Continued)

● Once connection is established, the peers are equal.
● Either side can initiate a shutdown.

● The first side that closes the connection does an active close.
● The other side responds with a passive close.

● Which side does the active close is an application level 
decision.

● Either side must be prepared for the other to close unexpectedly.
– You have no idea what your peer will do.



  

Sockets is Protocol Independent

● Important!
● The sockets API is not specific to TCP/IP
● On machines supporting multiple protocols (OSI, IPX/SPX, etc) 

sockets could potentially work with all of them.
– We will care about this when we look at IPv6.

● Design of Sockets is object oriented!
● But... since C is not an OOP language, the interface is somewhat 

awkward.
● Knowing this helps explain the awkwardness

– And helps make it more acceptable!



  

Unix Style Error Handling

● Unix system calls follow a simple tradition:
● Call returns integer -1 when error occurs
● Sets a global integer errno with an error code.

– Consult man page for specific error code possibilities.
● Usually shown with symbolic name #defined in <errno.h>. For example: EPERM 

(meaning permission denied).

● Check each system call for -1 return.
– If found, consult errno for more specific information.

● NOTE: Not all system calls follow this approach. Check the man 
page to be sure.



  

Quick Error Messages

● Checking errno all the time is a pain.

● Library function perror simplifies the process of producing 
useful error messages.

● Looks up a generic message in an internal table using errno value 
as a table index.

● EXAMPLE: Suppose errno set to EPERM
– perror(“Unable to do operation”);
– Displays: “Unable to do operation: Permission denied”

● Sends message to standard error file.

● [Demonstrate connect man page]



  

Daytime Protocol

● A simple protocol good for testing.
● Can focus on network issues because the protocol is trivial.
● Stevens uses it as a first example in his book. We will also.

● Described by RFC-867
● Read it!

– It's very short... unlike some of the RFCs we'll look at later!

● [Demonstrate the RFC index]

https://tools.ietf.org/html/rfc867


  

Protocol Overview

● Daytime protocol steps:
● Client connects to server port 13 (default)
● Server sends ASCII string containing the date and time.

– One line recommended
– No particular format is required

● Server closes the connection (does the active close)
● NOTE:

● Client need not send any data (anything sent is ignored)



  

Daytime Client Using Sockets

● Client steps:
● Create a socket object (inside the kernel) to represent the 

connection's endpoint.
● Prepare a sockaddr_in structure to hold the server address and 

port.
● Connect to the server.
● Read the connection (like a file) until an end-of-file indication appears 

(that is, loop).
– Sockets will indicate end-of-file when the server closes the connection.

● Close the connection.



  

Create a Socket

● Creating a kernel socket object
● if ((socket_handle = socket(PF_INET, SOCK_STREAM, 0))

       == -1 ) {
  perror(“Unable to create socket”);
  return error_code;
}

● Include headers as necessary (see man pages)
● socket_handle is an integer file handle

● PF_INET specifies the “INET” protocol family (TCP/IPv4)

● SOCK_STREAM specifies a stream protocol (TCP)

● perror is a library function that simplifies error handling.



  

Prepare Address Structure

● Fill in a sockaddr_in structure.
● memset(&server_address, 0, sizeof(server_address));

server_address.sin_family = AF_INET;
server_address.sin_port   = htons(port);
if (inet_pton(AF_INET, argv[1],
              &server_address.sin_addr) <= 0) {
  fprintf(stderr, "Unable to convert address.\n");
  close(socket_handle);
  return error_code;
}

● Zero structure first to put unused fields into a default state
● Use htons to convert host to network byte order

● Use inet_pton to convert address from “presentation” to “network”



  

Connect To Server

● Call the connect function.
● if (connect(socket_handle,

      (struct sockaddr *) &server_address,
      sizeof(server_address)) == -1) {
  perror("Unable to connect to server");
  close(socket_handle);
  return error_code;
}

● You must pass a pointer to the server address structure.
– But you must cast it into a generic sockaddr pointer first!
– This is like converting to a base class in C++
– connect examines the structure and the socket to figure out what protocol 

you are trying to use.



  

Read Server's Data

● Read the data from the server like a file.
● while ((count = read(

    socket_handle, buffer, BUFFER_SIZE - 1)) > 0) {
  buffer[count] = '\0';
  fputs(buffer, stdout);
}

● Repeatedly try to read BUFFER_SIZE - 1 bytes.
● Data may arrive in pieces (one byte at a time even)
● Just read and print (in this case) each piece as it arrives.
● read will block (wait) if no data has arrived.

● read returns zero when connection closed.



  

Don't Forget Error Handling

● If read fails (due to network failure) the user will want to know.
● if (count < 0) {

  perror("Problem reading socket");
  close(socket_handle);
  return 1;
}

● Errors on the network are common
– Network is orders of magnitude less reliable than memory or disks.

● You must write code to consider these errors.



  

Code Review

[Demonstrate complete client]



  

Daytime Server Using Sockets

● Server steps:
● Create a socket object to represent the listening endpoint.
● Prepare a sockaddr_in structure to specify the server port.
● Bind the socket to the desired address.
● Listen on the socket.
● Accept a connection.
● Write to the connection (like a file).
● Close the connection.
● Loop back and accept the next connection.



  

Create a Socket

● Exactly the same as with the client.
● if ((listen_handle = socket(PF_INET, SOCK_STREAM, 0)) 

      == -1) {
  perror("Unable to create socket");
  return error_code;
}



  

Prepare Address Structure

● Similar to the client
● memset(&server_address, 0, sizeof(server_address));

server_address.sin_family      = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port        = htons(port);

● Zero out the address structure to give unspecified fields appropriate 
default values.

● Use INADDR_ANY to specify listening on any IP address (any 
interface).

● Use htonl and htons to deal with endianness issues in a portable 
way.



  

Bind Socket to Address

● Associate the socket with the desired address. This is called 
“binding.”

● if (bind(listen_handle,
         (struct sockaddr *) &server_address,
         sizeof(server_address)) == -1) {
  perror("Unable to bind socket");
  close(listen_handle);
  return error_code;

● Binding fails if, for example:
– The process does not have permission to use the address/port
– The address/port is already in use by another server.

● Binding does not entail any network activity.



  

Listen on Socket

● This allows connections to be accepted.
● if (listen(listen_handle, 32) == -1) {

  perror("Unable to listen");
  close(listen_handle);
  return error_code;
}

● After listen, connections will no longer be “refused.”
● Second parameter controls size of “backlog” queue.

– Number of pending connections that can be created without being accepted.
– Often ignored. Each OS has its own idea about how to manage this value 

internally.



  

Accept Connection

● This is how to actually accept a connection.
● client_length = sizeof(client_address);

connection_handle = accept(listen_handle,
         (struct sockaddr *) &client_address,
         &client_length);

● The accept function returns a handle to a new socket representing 
the connection endpoint.

– ... different from the listening socket!
● The accept function's third parameter is “in/out.”

– client_length must be initialized with size of space.

– accept modifies client_length to return used space.



  

Other Details

● Server reads/writes the connection like a file.
● … just like the client.
● If client closes first, server will get end-of-file indication.

● Server closes the connection with close.
● … just like the client.

● Listening socket remains open.
● Server loops back and calls accept again to get the next 

connection.



  

Code Review

[Demonstrate complete server]



  

Iterative Server

● The server described is iterative.
● Only accepts one connection at a time.
● If a connection arrives while one is being serviced, the new 

connection is added to the backlog queue.
– Client making that connection must wait.
– If current connection takes a “long time” the waiting client won't be happy. 

Example:
● Servicing current client is time consuming.
● Current client is unresponsive.
● Current client is malicious.

● Inefficient use of resources.



  

Iterative Daytime Server

● BUT... iterative servers are easy to implement.
● Iterative servers are appropriate for some protocols:

● When service provided is trivial, AND
● When server does not have to wait for client commands, AND
● When server does the active close.

● Daytime protocol meets these requirements!



  

Windows Sockets

● Windows uses “WinSock”, not POSIX sockets.
● Function names all begin with “WSA”

– WSAConnect, WSAAccept, etc.

● Functions have similar purpose to their POSIX counterparts, but very 
different parameter lists, etc.

● More complicated to use.
● WinSock needs explicit initialization.

● ... since it is in a DLL that needs to be loaded.
● Use WSAStartup and WSACleanup.

● Retrieve error codes with WSAGetLastError



  

Compatibility Library

● Compatibility library eases porting of Unix programs.
● Provides functions like connect, accept, etc with POSIX 

semantics.
● Implemented on top of the WSA equivalents.

● Not 100% compatible!
● Still need to use WSA functions to initialize WinSock, get error codes, 

etc.
● Some of the data types are different.

● Consult the MSDN library for the details.
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