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Concurrency Necessary

● Most services require concurrent servers.
● Clients may require a “long time” to service.

– Long downloads requested by the client
– Multiple commands issued by the client

● Clients might connect and do nothing.
– Because they are broken
– Because they are malicious
– Because they are waiting for human users

● Network might be slow
● Can't afford to block other clients!
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Multi-Thread Alternative

● Create a thread for each client instead.
● This is good because...

– Thread creation is faster than process creation
– Easy for threads to share resources

● BUT...
– Less isolation between threads than processes
– Multi-threaded programming is tricky.

● We will focus on process level concurrency here.



  

Unix fork Function

● Once a connection has been accepted...
● if ((child_ID = fork()) == -1) {

  perror(“Unable to fork”);
  return error_code;         // Is this right?
}
else if (child_ID == 0) {    // We are the child.
  close(listen_handle);      // Don't need to listen.
  // Service connection...
  close(connection_handle);  // Close connection.
  exit(0);                   // Child terminates!
}

● fork creates an identical copy of the parent. Both parent and child 
run the same code. Returns child PID to parent. Returns 0 to child.



  

Parent's Main Loop

● The parent accepts connections and forks a child for each...
● while (1) {

  if ((connection_handle = accept(...)) == -1) {
    perror(“Accept failed”);
  }
  // Create child to service client (previous slide)
  // Parent doesn't need this handle.
  close(connection_handle);
}

● Parent calls accept again “as soon as possible”
– Next client doesn't have to wait.
– NOTE: Child inherits parent's handles!



  

Zombies

● Each process produces an “exit status” to return to its parent.
● Can be used to signal success/failure.
● When a process terminates it becomes a zombie until parent reads 

its exit status.
● Unless the parent server handles this, zombies will accumulate.
● Zombies are also called “defunct” processes.

● Previous code did not deal with zombies.



  

Signals

● A “signal” is a software interrupt.
● Unix-specific concept (Windows does things differently).
● Generated by the operating system.
● Many different system signals are defined.

● When a signal is received...
● The process might be killed.
● The signal might be ignored.
● A special “signal handling function” might be called.
● Action depends on signal and on program.



  

General Structure
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SIGCHLD

● The SIGCHLD signal indicates child termination.
● Unix sends the parent SIGCHLD when one of its children dies.

● Normally SIGCHLD is ignored.
● We must...

– Install a signal handling function for SIGCHLD that:
– Collects the exit status of the child to eliminate the zombie.



  

Set Up Signal Handling

● During the program's initialization...
● struct sigaction action, old_action;

action.sa_handler = SIGCHLD_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
sigaction(SIGCHLD, &action, &old_action);

● SIGCHLD_hander is a pointer to the signal handling function 
(defined elsewhere in your program).

● sigaction installs the new handler and returns the old handler 
information.

● See the man page for more details.



  

SIGCHLD Handler

● Also need a function for handling the SIGCHLD signal...
● void SIGCHLD_handler(int signal_number)

{
  int status;

  while (waitpid(-1, &status, WNOHANG) > 0) ;
}

● Called whenever SIGCHLD received.
– Uses waitpid to retrieve the exit status of a child.
– Loops to handle all dead children. Multiple children might have terminated 

“at the same time.”



  

Slight Complication

● Blocking system calls (like accept) return “spuriously” after a 
signal has been handled.

● This gives your application control again.
– You might want to do something different.

● In our case, we just want to call accept again.
– When a child dies we just want to go back to what we were doing (waiting for 

a new connection).



  

Call accept In a Loop

● Instead of a simple conditional statement...
● while ((connection_handle = accept(...)) == -1) {

  if (errno != EINTR) {
    perror(“Accept failed!”);
    return error_code;
  }
}

● accept returns with errno set to EINTR if it is “interrupted” by a 
signal.

– This is not really an error!
– Code above just ignores that case and calls accept again.



  

Other Possibilities

● Some Unixes allow you to...
● Set a flag in the sigaction structure so that system calls are 

automatically “restarting”
– No EINTR return.

● Set a flag in the sigaction structure so that dead children don't 
create zombies in the first place.

● Features are optional according to POSIX.
● Does Linux allow either of this options?
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