

Concurrent TCP Servers

Peter Chapin
Vermont State University

CIS-3152: Network Programming

Concurrency Necessary

● Most services require concurrent servers.
● Clients may require a “long time” to service.

– Long downloads requested by the client
– Multiple commands issued by the client

● Clients might connect and do nothing.
– Because they are broken
– Because they are malicious
– Because they are waiting for human users

● Network might be slow
● Can't afford to block other clients!

Process Tree

Parent
(listens)

Child #1
(services client)

Child #2
(services client)

Child #3
(services client)

CLIENT #1 CLIENT #2 CLIENT #3

Incoming
Connection

Multi-Thread Alternative

● Create a thread for each client instead.
● This is good because...

– Thread creation is faster than process creation
– Easy for threads to share resources

● BUT...
– Less isolation between threads than processes
– Multi-threaded programming is tricky.

● We will focus on process level concurrency here.

Unix fork Function

● Once a connection has been accepted...
● if ((child_ID = fork()) == -1) {

 perror(“Unable to fork”);
 return error_code; // Is this right?
}
else if (child_ID == 0) { // We are the child.
 close(listen_handle); // Don't need to listen.
 // Service connection...
 close(connection_handle); // Close connection.
 exit(0); // Child terminates!
}

● fork creates an identical copy of the parent. Both parent and child
run the same code. Returns child PID to parent. Returns 0 to child.

Parent's Main Loop

● The parent accepts connections and forks a child for each...
● while (1) {

 if ((connection_handle = accept(...)) == -1) {
 perror(“Accept failed”);
 }
 // Create child to service client (previous slide)
 // Parent doesn't need this handle.
 close(connection_handle);
}

● Parent calls accept again “as soon as possible”
– Next client doesn't have to wait.
– NOTE: Child inherits parent's handles!

Zombies

● Each process produces an “exit status” to return to its parent.
● Can be used to signal success/failure.
● When a process terminates it becomes a zombie until parent reads

its exit status.
● Unless the parent server handles this, zombies will accumulate.
● Zombies are also called “defunct” processes.

● Previous code did not deal with zombies.

Signals

● A “signal” is a software interrupt.
● Unix-specific concept (Windows does things differently).
● Generated by the operating system.
● Many different system signals are defined.

● When a signal is received...
● The process might be killed.
● The signal might be ignored.
● A special “signal handling function” might be called.
● Action depends on signal and on program.

General Structure

kill(pid, SIGUSR1)

Signal handling
function

Explicit SIGUSR1

Signal raised by OS in response to external
event or event generated by program
(example: SIGWINCH, SIGFPE, SIGSEGV)

Operating System

Applications

SIGCHLD

● The SIGCHLD signal indicates child termination.
● Unix sends the parent SIGCHLD when one of its children dies.

● Normally SIGCHLD is ignored.
● We must...

– Install a signal handling function for SIGCHLD that:
– Collects the exit status of the child to eliminate the zombie.

Set Up Signal Handling

● During the program's initialization...
● struct sigaction action, old_action;

action.sa_handler = SIGCHLD_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
sigaction(SIGCHLD, &action, &old_action);

● SIGCHLD_hander is a pointer to the signal handling function
(defined elsewhere in your program).

● sigaction installs the new handler and returns the old handler
information.

● See the man page for more details.

SIGCHLD Handler

● Also need a function for handling the SIGCHLD signal...
● void SIGCHLD_handler(int signal_number)

{
 int status;

 while (waitpid(-1, &status, WNOHANG) > 0) ;
}

● Called whenever SIGCHLD received.
– Uses waitpid to retrieve the exit status of a child.
– Loops to handle all dead children. Multiple children might have terminated

“at the same time.”

Slight Complication

● Blocking system calls (like accept) return “spuriously” after a
signal has been handled.

● This gives your application control again.
– You might want to do something different.

● In our case, we just want to call accept again.
– When a child dies we just want to go back to what we were doing (waiting for

a new connection).

Call accept In a Loop

● Instead of a simple conditional statement...
● while ((connection_handle = accept(...)) == -1) {

 if (errno != EINTR) {
 perror(“Accept failed!”);
 return error_code;
 }
}

● accept returns with errno set to EINTR if it is “interrupted” by a
signal.

– This is not really an error!
– Code above just ignores that case and calls accept again.

Other Possibilities

● Some Unixes allow you to...
● Set a flag in the sigaction structure so that system calls are

automatically “restarting”
– No EINTR return.

● Set a flag in the sigaction structure so that dead children don't
create zombies in the first place.

● Features are optional according to POSIX.
● Does Linux allow either of this options?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

