Merge Sort

Peter Chapin

Vermont Technical College

Starting Configuration

Split Into Subproblems

Recursively Solve Subproblems

current

Copy Back

Pseudo-Code

Requires allocating (and freeing!) a temporary array

Space and Time

- Merge Sort requires O(n) additional space beyond array.
 - Thus the method is expensive on space
 - Compare: Insertion Sort requires O(1) additional space!
- Time?
 - Not immediately obvious:
 - T(n) = 2*T(n/2) + O(n)
 - A recurrence formula
 - Works out to O(n log(n))
 - Far superior to Insertion Sort's O(n²)

Linear time to merge

Overhead of Recursion

- Using recursion down to subarray sizes of 1 is excessive
 - Huge overheads slow down the algorithm (though it remains O(n log(n))).
- Switch to another algorithm for small subarrays.