
Linked Lists
Peter Chapin

Vermont Technical College

About Dynamic Memory Allocation

#include <stdlib.h>

int *p = (int *)malloc(sizeof(int));

Number of bytes to allocateLibrary function
Cast to proper pointer type

C vs C++ vs Java

Widget *w = (Widget *)malloc(sizeof(Widget));
initialize_widget(w, other, arguments, as, needed);
free(w);

Widget *w = new Widget(other, arguments, as, needed);
delete w;

Widget w = new Widget(other, arguments, as, needed);

C++

C

Java
Invokes constructor method in class Widget

Separate “constructor” function

C vs C++ vs Java

Widget *w1 = (Widget *)malloc(sizeof(Widget));
Widget w2;

Widget *w1 = new Widget(other, arguments, as, needed);
Widget w2;

Widget w1 = new Widget(other, arguments, as, needed);
Widget w2;

C++

C

Java

Uninitialized Widget object

Initialized with default constructor (if available)

Not a real object. Initialized as a null reference.

Arrays

• An array is a sequence of items laid out in contiguous memory.
• Each item is physically adjacent to the previous (and next).
• Each item has the same size (and typically has the same type).

• Items are accessed using an integer “index” value.
• Let a be the base address of an array. Let s be the size of each item. The

address of item i is given by a + i*s.

• Using C notation:

*(a + i) == a[i]

Name of array is pointer to first element

Compiler automatically applies scale factor s

Arrays

• Time to access an item is independent of the array’s size
• Said to be constant time

• However, inserting an item requires shifting down the array’s
contents. The time required is proportional to the array’s size

• Said to be linear time

146 239 381 406 544 621 734 891 980

146 239 381 406 544 621 734 891 980

146 239 381 406 100 544 621 734 891 980

Opening a gap requires copying part of the array down

Installing new item is easy once the gap is made

Arrays

• In C arrays can’t be resized after they are created
• Opening a gap can’t be done unless you have “extra” space pre-allocated.
• Must maintain a record of how much space is actually being used
• C strings (for example), mark the end with a null character.

void insert_into(char *s, size_t position, char new_item)
{

char *p = strchr(s, ‘\0’);
while(p - s > position) {

*(p + 1) = *p;
p--;

}
*(p + 1) = *p;
*p = new_item;

}
Linear time loop

Function assumes sufficient space exists

Linked Lists

• A sequence of items where each item is stored in its own node
• Nodes are dynamically allocated and could be anywhere in the heap
• Nodes contain a pointer to the next node in the sequence (a link)

129 350 472 281

Each node contains a next pointer The next pointer of last node is NULL

Linked Lists

• Accessing an item requires accessing the previous item
• Must use the previous item’s next pointer to locate the next item (linear time)

• Inserting an item requires allocating it and then adjusting pointers

129 350 472 281

100
No need to move following items!

Information Hiding

129

350

472

count = 3

SingleList object

NULL next pointer

List Iterators

129

350

472

count = 3

SingleList object

SingleListIterator

Insert After

129

350

472

count = 4

SingleList object

SingleListIterator

100

Copy Lists?

129

350

472

count = 3

SingleList object

SingleListIterator

count = 3

SingleList object

Problem!

129

350

472

count = 4

SingleList object

SingleListIterator

100

count = 3

SingleList object

Proper Copying

129

350

472

count = 3

SingleListIterator

129

350

472

count = 3

DoubleList_splice_before

129

350

472

count = 3

900

901

count = 2

SingleListIterator

DoubleList_splice_before

129

350

472

count = 5

900

901

count = 0

SingleListIterator

	Linked Lists
	About Dynamic Memory Allocation
	C vs C++ vs Java
	C vs C++ vs Java
	Arrays
	Arrays
	Arrays
	Linked Lists
	Linked Lists
	Information Hiding
	List Iterators
	Insert After
	Copy Lists?
	Problem!
	Proper Copying
	DoubleList_splice_before
	DoubleList_splice_before

