
Why no oneusesfunctional languages1
Editor: Philip Wadler, Bell Laboratories,LucentTechnologies; wadler@research.bell-labs.com

Philip Wadler

To say that no one usesfunctional languagesis an
exaggeration. Phonecalls in the EuropeanParliament
are routedby programswritten in Ericsson’s functional
languageErlang. Virtual CDs are distributed on Cor-
nell’s network via the Ensemblesystemwritten in IN-
RIA’s CAML, andrealCDsareshippedby Polygramin
EuropeusingSoftwareAG’s NaturalExpert. Functional
languagesarethelanguageof choicefor writing theorem
provers,including the HOL systemwhich helpeddebug
thedesignof theHP 9000line of multiprocessors.These
applicationsandothersaredescribedin a previous col-
umn[1].

Still . . . I work at Bell Labs,whereC andC++ were
invented.Comparedto usersof C, “no one” is a tolerably
accuratecountof theusersof functionallanguages.

Advocatesof functionallanguagesclaim they produce
anorderof magnitudeimprovementin productivity. Ex-
perimentsdon’t always verify that figure — sometimes
they show animprovementof only a factorof four. Still,
code that’s four times as short, four times as quick to
write, or four timeseasierto maintainis not to besniffed
at. Sowhyaren’t functionallanguagesmorewidelyused?

1 Reasons

Hereis a list of someof the factorsthat inhibit adoption
of functional languages.I’ ll notesomeresearchaimed
at amelioratingthesefactors. If you know of relevant
projectsthat I’ ve failed to mention,pleasebring themto
my attention.

Most of thesefactorsremainseriousimpedimentsfor
most systems. Notable exceptionsare Ericsson’s Er-
lang (www.erlang.se ) and Harlequin’s ML Works
(www.harlequin.com ), two industrial-gradesystems
with extensiveuserenvironmentsandsupport.

Compatibility Computing has matured to the point
where systemsare often assembledfrom components

1To appearin ACM SIGPLANNotices.

ratherthanbuilt from scratch.Many of thesecomponents
arewritten in C or C++, so a foreign function interface
to C is essential,andinterfacesto otherlanguagescanbe
useful.

The isolationistnatureof functional languagesis be-
ginningto give way to a spirit of openinterchange.Seri-
ousimplementationsnow routinelyprovide interfacesto
C, andsometimesotherlanguages.Interworkingwith the
imperative world is straightforward for strict languages
like ML or Erlang, but trickier for lazy languageslike
Haskell or Clean,sincelazinessmakestheorderof eval-
uation difficult to predict. However, through a pleas-
ing interplayof theoryandpractice,recentresearchhas
shown how abstractconceptssuchas monadsor linear
logic canbeappliedto smoothlyinterfacelazyfunctional
languagesto therealworld [2, 3].

Conqueringisolationismis a task for everyone,not
just functional programmers. The computingindustry
is now beginning to deploy standards,suchasCORBA
andCOM, thatsupporttheconstructionof softwarefrom
reusablecomponents.Recentwork allows any Haskell
programto be packagedasa COM component,andany
COM componentto becalledfrom Haskell. Amongother
applications,this allowsHaskell to beusedasa scripting
languagefor Microsoft’s InternetExplorerweb browser
[4].

Libraries The fashionableidea of software reusehas
beenaroundfor agesin theform of softwarelibraries.A
goodlibrary canmakeor breaka language.Usersareat-
tractedto Tcl primarily onthestrengthof theTk graphics
library. Much of theattractivenessof Java haslittle to do
with the languageitself, but with theassociatedlibraries
for graphics,networking, databases,telephony, anden-
terpriseservers. (Much of theunattractivenessof Java is
dueto thesamelibraries.)

Considerableeffort hasbeenextendedon developing
graphicuserinterfacelibrariesfor functional languages.
Haskell boastsaplethora:Fudgets,Gadgets,Haggis,and
Hugs Tk. SML/NJ hastwo, eXeneandSML Tk. The
SML languagecomeswith a powerful modulesystem,

1



which makesflexible librarieseasierto construct. One
exampleof suchalibrary is ML RISC,aretargetableback
endthathasbeenusedfor SML andC compilersandhas
beenadoptedto a numberof architectures[5].

Portability I haveheardof numerousprojectswhereC
won out over a functional language,not becauseC runs
faster(althoughoftenit does),but becausethehegemony
of C guaranteesthat it is widely portable. For example,
researchersat Lucentwould have preferredto build the
PRL databaselanguageusingSML, but choseC++ be-
causeSML wasnot availableon theAmdahlmainframe
they wererequiredto use.Ontheotherhand,abstractma-
chinesarea popularimplementationtechnique,for both
functionallanguagesandfor Java,in partbecausewriting
themachinein C makesit is easyto port to awidevariety
of architectures.

Availability Evenwhenafunctionallanguagehasbeen
portedto the machineand operatingsystemat hand, it
maynot beeasyto use.For example,a typical response
from auserof Glasgow Haskell is thatinstallingit wasan
“adventure”.

Large projectsare understandablyreluctant to com-
mit to a languageunlessit comeswith a guaranteeof
continuing support. A few functional languagesare
availablecommercially:ResearchSoftwaremarketsMi-
randa,AbstractHardware markets Poly ML, ISL mar-
kets Poplog/SML, Harlequin markets ML Works, and
Ericssonhas a division devoted to supportof Erlang.
Nonetheless,for many functional languages,it remains
difficult to ensurea stablesourceandreliablesupport.

An additionalproblemarisesbecausefunctional lan-
guagesareoftenunderactive development,creatingten-
sion betweenthe needsof stability and research. The
Haskell community is attemptingto resolve theseby
definingStandardHaskell, a versionof thelanguagethat
will remainstableandsupportedwhile otherversionsof
Haskell continueto evolve [6].

Packagability Following the LISP tradition, many
functional languageimplementationsoffer a read-eval-
print loop. While convenient,it is alsoessentialto pro-
vide someway to convert a functional programinto a
standaloneapplicationprogram. Most systemsnow of-
fer this. However, thesesystemsoftenincorporatetheen-
tire runtimepackagefor the library, andthushave unac-
ceptablylargememoryfootprints. An ability to develop
compactstandaloneapplicationsis essential.

Tools To beusable,a languagesystemmustbeaccom-
paniedby a debugger and a profiler. Just as with in-
terlanguageworking, designingsuchtools is straightfor-
wardfor strict languages,but trickier for lazy languages.
However, thereare few debuggersor profilers for strict
languages,perhapsbecauseconstructingthemis not per-
ceivedasresearch.That is a shame,sincesuchtoolsare
sorelyneeded,andthereremainsmuchof interestto learn
abouttheir constructionanduse.

Constructingdebuggers and profilers for lazy lan-
guagesis recognizedasdifficult. Fortunately, therehave
beengreatstridesin profiler research,and most imple-
mentationsof Haskell are now accompaniedby usable
time and spaceprofiling tools. But the slow rate of
progresson debuggersfor lazy languagesmakesus re-
searcherslook, well, lazy.

At a larger scale,one wants integrateddevelopment
environmentsand software engineeringmethodologies.
Building an integrateddevelopmentenvironmentis a lot
of work with little researchcontent,soit is notsurprising
thatthishasattractedlittle attention.But thereis plentyof
interestingwork to bedonein applyingsoftwaremethod-
ologiesto functional languages,and it is disappointing
thatthereis virtually no effort in thisarea.

Training To programmerspracticedin C,C++,or Java,
functionalprogramslook odd. It takesawhile to cometo
gripswith writing f(x,y) asf x y . Curriedfoodand
curriedfunctionsarebothacquiredtastes.

Programmerspracticed in imperative languagesare
usedto a certainstyleof programming.For a giventask,
the imperative solution may leap immediatelyto mind
or be found in a handy textbook, while a comparable
functionalsolutionmayrequireconsiderableeffort to find
(evenif oncefoundit is moreelegant).And thoughthere
area largerangeof problemsthatpossessefficient solu-
tions in a functional language,thereremainsometough
nutsfor which thebestknown solutionsareimperativein
style. (For thesereasons,many functionallanguagespro-
vide anescapeto the imperative style, for instanceSML
includesupdateablereferencesasa basicdatatype, and
Haskell providesthemvia monads[7].)

The training problemis not intractable.SoftwareAG
foundthey couldtrain industrialprogrammersto useNat-
ural Expertin a one-weekcoursethatincludedlazyeval-
uation, polymorphic types, and higher-order functions.
Typically, studentsweremiffedwhenthecompilerwould
repeatedlyrejectprogramsfor typeerrors,but pleasantly
surprisedwhen their programsfinally passedthe type
checkerandrancorrectlyon thefirst try [8].

2



Popularity If a managerchoosesto usea functional
languagefor a project and the project fails, then he or
shewill certainlybefired. If amanagerchoosesC++ and
the project fails, thenhe or shehasthe defensethat the
samething hashappenedto everyoneelse.

While managementproblemsarea significantbarrier,
the flipside is a significantopportunity: a large project
that is in troublemaybewilling to considerswitchingto
afunctionallanguagebecausetheincreasein productivity
maygetthemout of a jam. An effectiveway in canbeto
offer to prototypethe solutionin a functional language,
andoncetheprototypeis runningshow how to scaleit to
a full solution.

While managershave their worries, so too do man-
agees. Experiencewith C++ or Java will buff up your
resumenicely, while Haskell or SML will do you little
good.Lucent’sPdiff system,writtenin SML, is akey tool
in maintainingdatabasesoftwarefor the5ESSswitch.No
developercouldbefoundwilling takeontheroleof main-
taining thesystem,andeventuallya physicistlooking to
switchfieldswashired.

2 Non-reasons

On theotherhand,therearetwo piecesof commoncant
asto why peopledon’t usefunctionallanguagesto which
I do not subscribe.

Performance This might have beena reasona decade
ago, but thesedaysthe performanceof functional lan-
guagesoften rivals C. That’s a rough estimate. Perfor-
mancecanbe significantly inferior to C for someappli-
cations,anda weebit betterfor others. But asa rough
startingpoint,within a factorof two of C seemsfair.

More importantly, experienceshows thatwhile perfor-
mancethatrivalsC helps,it is not a requirementfor suc-
cess. Tcl/Tk, Perl, andVisual Basic all roseto promi-
nencewith implementationsthatareinterpreted.Javahas
becomeenormouslysuccessfulwith performancesignifi-
cantlyshortof C. In thefunctionalworld,Erlangachieved
its first successesasaninterpretedlanguage.

Onehaslanguageswith high performancethatarenot
widely used,and languageswith middling performance
thatarewidely used.Performanceis sometimesanissue,
but it is rare for it to be the deciding factor. It is im-
prudentto expectthatall we needdo is make functional
languagesrunblindingly fastin orderfor themto become
immenselypopular.

“They don’t get it” Functionalprogrammingis beau-
tiful, a joy to behold. Oncesomeoneunderstandsfunc-
tional programming,he or shewill switch to it immedi-
ately. The massesthat stick with outmodedimperative
andobject-orientedprogrammingdosooutof blind prej-
udice.They justdon’t getit.

The above paragraphechoesbeliefs deeply held by
many researchers.But the long list in theprecedingsec-
tion shouldmake it clear that it may be possibleto be
attractedby functionalprogramming,but still find it un-
usable.

For instance,hereis a postingto the Haskell mailing
list.

I have beentrying to learn Haskell and have
beenimpressedwith both its eleganceandthe
way it allows me to write codethat works on
the first try (or two). However, I am not a re-
searcher. I do commercialsoftware develop-
mentandneedsomedocumentationandstabil-
ity. [9]

Mailing lists relatedto functionallanguagesarerife with
requestsfor foreign function interfaces, libraries, and
tools.

Doubtless,thereareprejudicedindividualsout there,
accustomedto C and its variantsand dismissive of al-
ternatives. But many out theredo “get it”, andeschew
functionalprogrammingfor otherreasons.

3 Lessons

To summarize,thereare a large numberof factorsthat
hinderthe widespreadadoptionof functionallanguages.
To be widely used,a languageshouldsupportinterlan-
guageworking, possessextensive libraries, be highly
portable,have a stableand easyto install implementa-
tion, comewith debuggersandprofilers,beaccompanied
by trainingcourses,andhavea goodtrackrecordon pre-
viousprojects.It helpsif theimplementationis efficient,
but this is not an absoluterequirement.Potentialusers
mayfind the languageattractive, but rejectit becauseof
someor all of theprecedingfactors.Herearethelessons
I draw from this exercise.

Killer App The factorslisted constitutea significant
barrierto useof functionallanguages,but notanabsolute
barrier. A userwill forego many conveniencesif given

3



a compellingreasonto do so. Tcl/Tk and Perl roseto
prominencewithoutbenefitof debuggersor profilers.

Someresearchershope that the high-level natureof
functional languageswill prove compellingon its own,
but experienceto datesuggeststhis hopeis misplaced.
Instead,experienceshows that userswill be drawn to a
languageif it lets themconvenientlydo somethingthat
otherwiseis difficult to achieve.Likeothernew technolo-
gies,functionallanguagesmustseektheir killer app.

A previous column listed a numberof suchapplica-
tions,stressinghow eachexploitedsomestrengthof func-
tional languages[1]. Telecommunicationsdevelopersare
drawn to Erlangby its supportfor concurrency anddistri-
bution; thelatteris tieddirectly to thefactthatfunctional
data, being immutable, is well suited for transmission
acrossa network. Creatorsof theoremproversaredrawn
to ML by its supportfor symboliccomputations.Geneti-
cists are drawn to CPL/Kleisli becauseits type system
supportsaccessto heterogeneousdatabases,andbecause
the mathematicalpropertiesof functional languagescan
beexploitedin queryoptimization.Expertsystemdevel-
opersaredrawn to NaturalExpertbecauselazy evalua-
tion resemblesreasoningby backwardchaining,andbe-
causelazy evaluationenablesa space-efficient interface
to databases.

Top-notchfunctional programmingresearchis often
tied to applications.Carnegie-Mellon groundsits func-
tional programmingwork in theFox project,which aims
to build network drivers in SML. Chalmersresearchers
havecloserelationswith CarlstedtandLogikkonsult,and
amongotherthingshaveappliedpartialevaluationto air-
line scheduling. Glasgow teamedup with York to pro-
duceawholebookof applications.TheOregonGraduate
Instituteis teamingup with Intel to look at hardwarede-
sign. Yale researchershave appliedfunctionalprogram-
ming to musicperformanceandnaturallanguageunder-
standing,andare teamingup with Microsoft to look at
animation. However, mostof this researchhasnot cen-
teredaroundapplicationlibrariesor packagesthatmight
attractsignificantusercommunities.

Applicationshaveunexploreddepths.Jumpin, thewa-
ter’s fine!

Research emphasis Despite the applications work
listed above, functional programmingresearchersplace
far moreemphasison developingsystemsthanon apply-
ing thosesystems.Further, thebulk of effort is devotedto
languagedesign,programanalysis,andthe construction
of optimizingcompilers,with far lessto debuggers,pro-
filers,andsoftwareengineeringtoolsandmethodologies.

Shiftsin researchemphasismayrequireshiftsin there-
wardstructure.As Kuhnnotedin TheStructureof Scien-
tific Revolutions, themainstreamof academicwork con-
sistsof incrementalcontributionsto existing paradigms.
Within functionalprogramming,the mainstreamis pro-
gramanalysisandcompilerdevelopment.Leadersin the
field needto move into thenew areasof toolsandappli-
cations,andconferencesand journalsneedto explicitly
welcomecontributions in theseareas. Gopal Gupta is
organizingthe PADL 99, the First InternationalConfer-
enceonPracticalAspectsof DeclarativeLanguages[10].
To aid a paradigmshift, a field may setout new criteria
for judging new work. SimonPeyton Jonesandmyself
have just completedaneditorial for theJournal of Func-
tional Programmingthatwelcomespaperson functional
programmingpracticeand experience,and setsout the
criteriawe applyto judgethem[11].

A modestproposal Evena modestimplementationof
a functional languageshouldprovide a foreign function
interface,a debugger, anda profiler. By this measure,I
know of only afew modestimplementationsof functional
languages,including Ericsson’s Erlang,Harlequin’s ML
Works,andINRIA’sCAML.

Andrew Tolmach and Andrew Appel devised an in-
geniousdebuggerfor the SML/NJ implementation[12],
but asthe implementationevolvedthedebuggerwasnot
maintained,andthereis nodebuggeravailablefor thecur-
rentreleaseof SML/NJ.

Thereis atensionbetweenbuilding usefulsystemsand
extendingthe frontiers of research,and functional lan-
guageresearcherscanpridethemselveson having found
the resourcesto build someexcellentsystems.We now
needto take the next step,andensurethesesystemsin-
cludeessentialinterfacesandtools. We shouldno longer
settlefor implementationsthatarenot evenmodest.

Hope This long list of reasonswhy no oneusesfunc-
tional languagesmaylook depressing,but I preferto look
on the bright side. Peopledo not reject functional lan-
guagesbecauseof stupidity, ratherthey rejectthemfor a
variety of goodreasons.Stupidity is famouslyresistant
to attack— theseotherproblemsaresomethingwe can
tackle.

References

[1] Philip Wadler, An angry half-dozen, ACM SIG-
PLAN Notices33(2):25-30,February1998. [NB.

4



Table of contentson the cover of this issue is
wrong.]

[2] Philip Wadler. How to declare an imperative.
ACM ComputingSurveys, 29(3):240–263,Septem-
ber1997.

[3] Rinus Plasmeijerand Marko van Eekelen, Pure
and efficient functional programming using the
“unique” featuresof Clean. ACM SIGPLAN No-
tices, to appear.

[4] SimonPeyton Jones,Erik Meijer, andDaanLeijen.
Scripting COM components in Haskell. IEEE
Fifth InternationalConferenceon Software Reuse,
Vancouver, BC, June1998.
www.haskell.org/active/
activehaskell.html

[5] Lal George,MLRISC: CustomizableandReusable
CodeGenerators,Bell Labs technicalreport,May
1997.
www.cs.bell-labs.com/cm/cs/what/
smlnj/doc/MLRISC/

[6] JohnHughes,editor, StandardHaskell.
www.cs.chalmers.se/˜rjmh/Haskell/

[7] J. Launchbury andS. L. Peyton Jones,Lazy func-
tional statethreads.In ACM Conferenceon Pro-
grammingLanguage Design and Implementation,
Orlando,Florida,1994.

[8] Nigel W. O. Hutchison, Ute Neuhaus,Manfred
Schmidt-Schauss,and Cordy Hall. Natural Ex-
pert: a commercial functional programmingen-
vironment. Journal of Functional Programming,
7(2):163–182,March1997.

[9] S. AlexanderJacobsonalex@i2x.com , letter to
Haskell mailing list, 3 May 1998.

[10] GopalGupta,chair, First InternationalConference
on PracticalAspects.
www.cs.nsmsu.edu/˜complog/
conferences/padl99/

[11] Simon Peyton Jonesand Philip Wadler. Editorial:
Practiceand experiencepapers,Journal of Func-
tional Programming, to appear.
www.dcs.glasgow.ac.uk/jfp/

[12] Andrew TolmachandAndrew Appel, A Debugger
for StandardML. Journal of FunctionalProgram-
ming, 5(2):155–200,April 1995.

Philip Wadlerworkswith theUnix andML groupsat Bell
Labs.Hemustlikeworkingwithothers: heis co-designer
of theHaskell andGJ languages,co-authorof Introduc-
tion to FunctionalProgramming, andco-Editor-in-Chief
of theJournalof FunctionalProgramming.

5


