Functional Programming

Why no oneusesfunctional languages

Editor: Philip Wadler, Bell Laboratories,LucentTechnolagies wadler@eseach.bell-labs.com

Philip Wadler

To say that no one usesfunctional languagess an
exaggeration. Phonecalls in the EuropeanParliament
areroutedby programswritten in Ericssons functional
languageErlang. Virtual CDs are distributed on Cor-
nell’s network via the Ensemblesystemwritten in IN-
RIA's CAML, andreal CDs areshippedby Polygramin
Europeusing Software AG’s Natural Expert. Functional
languagesirethe languageof choicefor writing theorem
provers,including the HOL systemwhich helpeddehug
thedesignof the HP 9000line of multiprocessorsThese
applicationsand othersare describedn a previous col-
umn[1].

Still ... | work at Bell Labs,whereC and C++ were
invented.Comparedo usersof C, “no one”is atolerably
accuratecountof the usersof functionallanguages.

Advocatesof functionallanguageglaim they produce
anorderof magnitudeémprovementin productvity. Ex-
perimentsdon’t always verify that figure — sometimes
they shav animprovementof only a factorof four. Still,
codethat’s four times as short, four times as quick to
write, or four timeseasielto maintainis notto be sniffed
at. Sowhy arent functionallanguagesnorewidely used?

1 Reasons

Hereis alist of someof the factorsthatinhibit adoption
of functionallanguages.!’ Il note someresearchaimed
at amelioratingthesefactors. If you know of relevant
projectsthat|’ ve failed to mention,pleasebring themto
my attention.

Most of thesefactorsremainseriousimpedimentgor
most systems. Notable exceptionsare Ericssons Er-
lang (www.erlang.se) and Harlequins ML Works
(www.harlequin.com), two industrial-gradesystems
with extensie userervironmentsandsupport.

Compatibility Computing has maturedto the point
where systemsare often assembledrom components

1To appeain ACM SIGPLANNotices

ratherthanbuilt from scratch.Many of thesecomponents
arewritten in C or C++, so a foreign function interface
to C is essentialandinterfaceso otherlanguagesanbe
useful.

The isolationistnatureof functionallanguagess be-
ginningto give way to a spirit of openinterchange Seri-
ousimplementationsow routinely provide interfacesto
C, andsometime®therlanguageslnterworkingwith the
imperative world is straightforward for strict languages
like ML or Erlang, but trickier for lazy languagedike
Haslell or Clean,sincelazinesamakesthe orderof eval-
uation difficult to predict. However, througha pleas-
ing interplay of theoryand practice,recentresearcthas
shavn how abstractconceptssuchas monadsor linear
logic canbeappliedto smoothlyinterfacelazy functional
languageso therealworld [2, 3].

Conqueringisolationismis a task for everyone, not
just functional programmers. The computingindustry
is now beginning to deplgy standardssuchas CORBA
andCOM, thatsupportthe constructiorof softwarefrom
reusablecomponents.Recentwork allows ary Haslell
programto be packagecasa COM componentandary
COM componento becalledfrom Haslell. Amongother
applicationsthis allows Haslell to be usedasa scripting
languagefor Microsoft’s InternetExplorerweb browser

[4].

Libraries The fashionablddea of software reusehas
beenaroundfor agesin the form of softwarelibraries. A

goodlibrary canmale or breaka language Usersareat-

tractedto Tcl primarily onthestrengthof the Tk graphics
library. Much of theattractvenes®f Java haslittle to do

with thelanguagstself, but with the associatedibraries
for graphics,networking, databaseselepholy, anden-
terpriseseners. (Much of the unattractvenesf Java is

dueto thesamdlibraries.)

Considerableeffort hasbeenextendedon developing
graphicuserinterfacelibrariesfor functionallanguages.
Haslell boastsa plethora:FudgetsGadgetsHaggis,and
Hugs Tk. SML/NJ hastwo, eXeneand SML Tk. The
SML languagecomeswith a powerful module system,

Functional Programming

which makes flexible libraries easierto construct. One
exampleof suchalibraryis ML RISC,aretagetableback
endthathasbeenusedfor SML andC compilersandhas
beenadoptedo a numberof architecture$5].

Portability | have heardof numerougrojectswhereC

won out over a functionallanguagenot becauseC runs
faster(althoughoftenit does) but becaus¢he hegemory

of C guaranteeshatit is widely portable. For example,
researcherat Lucentwould have preferredto build the
PRL databasdanguageusing SML, but choseC++ be-
causeSML wasnot availableon the Amdahl mainframe
they wererequiredto use.Ontheotherhand,abstracima-
chinesare a popularimplementatiortechnique for both
functionallanguagesndfor Java,in partbecausevriting

themachinein C makesit is easyto portto awide variety
of architectures.

Availability Evenwhenafunctionallanguageéhasbeen
portedto the machineand operatingsystemat hand, it
may not be easyto use. For example,a typical response
from auserof Glasgav Haslell is thatinstallingit wasan
“adventure”.

Large projectsare understandablyeluctantto com-
mit to a languageunlessit comeswith a guaranteeof
continuing support. A few functional languagesare
availablecommercially: ResearctSoftware markets Mi-
randa, Abstract Hardware markets Poly ML, ISL mar
kets Poplog/SML, Harlequin markets ML Works, and
Ericssonhas a division devoted to supportof Erlang.
Nonethelessfor mary functional languagesit remains
difficult to ensurea stablesourceandreliablesupport.

An additional problemarisesbecausdunctional lan-
guagesareoften underactive development creatingten-
sion betweenthe needsof stability and research. The
Haslell community is attemptingto resohe these by
definingStandardHaslell, a versionof the languagehat
will remainstableandsupportedvhile otherversionsof
Haslell continueto evolve [6].

Packagability Following the LISP tradition, mary
functional languageimplementationsffer a read-eal-
print loop. While convenient,it is alsoessentiato pro-
vide someway to corvert a functional programinto a
standaloneapplicationprogram. Most systemsnow of-
fer this. However, thesesystem®ftenincorporateheen-
tire runtime packagédor thelibrary, andthushave unac-
ceptablylarge memoryfootprints. An ability to develop
compacistandalonapplicationss essential.

Tools To beusablealanguagesystemmustbe accom-
paniedby a deluggerand a profiler. Justas with in-
terlanguagevorking, designingsuchtoolsis straightfor
wardfor strict languageshut trickier for lazy languages.
However, thereare few detuggersor profilersfor strict
languagesperhapdecauseonstructinghemis not per
ceivedasresearchThatis a shame sincesuchtools are
sorelyneededandthereremainamuchof interestto learn
abouttheir constructioranduse.

Constructingdehuggers and profilers for lazy lan-
guagess recognizedasdifficult. Fortunately therehave
beengreatstridesin profiler researchand mostimple-
mentationsof Haslell are nov accompaniedy usable
time and spaceprofiling tools. But the slow rate of
progresson dehuggersfor lazy languagesnakes us re-
searchertook, well, lazy.

At a larger scale,one wantsintegrateddevelopment
ervironmentsand software engineeringmethodologies.
Building anintegrateddevelopmentervironmentis a lot
of work with little researcltontent soit is not surprising
thatthishasattractedittle attention.Butthereis plentyof
interestingwork to be donein applyingsoftwaremethod-
ologiesto functional languagesandit is disappointing
thatthereis virtually no effort in this area.

Training To programmergracticedn C, C++,or Java,
functionalprogramdook odd. It takesawhile to cometo
gripswith writing f(x,y) asf x y. Curriedfoodand
curriedfunctionsarebothacquiredastes.

Programmerspracticedin imperatve languagesare
usedto a certainstyle of programming.For a giventask,
the imperative solution may leap immediatelyto mind
or be found in a handy textbook, while a comparable
functionalsolutionmayrequireconsiderableffort to find
(evenif oncefoundit is moreelegant). And thoughthere
arealarge rangeof problemsthat possesefficient solu-
tionsin a functionallanguagethereremainsometough
nutsfor which thebestknown solutionsareimperativein
style. (For thesereasonstnary functionallanguagegro-
vide anescapedo theimperatie style, for instanceSML
includesupdateablaeferencessa basicdatatype, and
Haslell providesthemvia monadg7].)

Thetraining problemis not intractable. Software AG
foundthey couldtrainindustrialprogrammerso useNat-
ural Expertin a one-weekcoursethatincludedlazy eval-
uation, polymorphictypes, and higherorder functions.
Typically, studentsveremiffed whenthecompilerwould
repeatedlyejectprogramdor type errors,but pleasantly
surprisedwhen their programsfinally passedthe type
checlerandrancorrectlyonthefirst try [8].

Functional Programming

Popularity If a managerchoosesto use a functional
languagefor a project and the project fails, then he or
shewill certainlybefired. If amanagechoose<++and
the projectfails, thenhe or shehasthe defensethatthe
samething hashappenedo everyoneelse.

While managemenproblemsarea significantbarrier,
the flipside is a significantopportunity: a large project
thatis in troublemay bewilling to considerswitchingto
afunctionallanguagéecauséheincreasen productiity
may getthemout of ajam. An effective way in canbeto
offer to prototypethe solutionin a functionallanguage,
andoncethe prototypeis runningshav how to scaleit to
afull solution.

While managershave their worries, so too do man-
agees. Experiencewith C++ or Java will buff up your
resumenicely, while Haslell or SML will do you little
good.LucentsPdiff systemwrittenin SML, is akey tool
in maintainingdatabassoftwarefor the SESSswitch. No
developercouldbefoundwilling take ontherole of main-
taining the system,andeventuallya physicistlooking to
switchfieldswashired.

2 Non-reasons

On the otherhand,therearetwo piecesof commoncant
asto why peopledon’t usefunctionallanguageso which
| donotsubscribe.

Performance This might have beena reasona decade
ago, but thesedaysthe performanceof functional lan-
guagesoften rivals C. That's a rough estimate. Perfor
mancecan be significantlyinferior to C for someappli-
cations,anda wee bit betterfor others. But asa rough
startingpoint, within a factorof two of C seemdair.

More importantly, experienceshaws thatwhile perfor
mancethatrivals C helps,it is notarequiremenfor suc-
cess. Tcl/Tk, Perl, and Visual Basic all roseto promi-
nencewith implementationshatareinterpreted Javahas
becomesnormouslysuccessfulvith performancesignifi-
cantlyshortof C. In thefunctionalworld, Erlangachieved
its first successeasaninterpretedanguage.

Onehaslanguagesvith high performancehatarenot
widely used,and languagesvith middling performance
thatarewidely used.Performancés sometimesnissue,
but it is rarefor it to be the decidingfactor It is im-
prudentto expectthatall we needdo is make functional
languagesun blindingly fastin orderfor themto become
immenselypopular

“They don't getit” Functionalprogrammings beau-
tiful, a joy to behold. Oncesomeonaunderstand$unc-
tional programminghe or shewill switchto it immedi-
ately The masseghat stick with outmodedimperative
andobject-orientegorogrammingdo soout of blind prej-
udice.They justdon't getit.

The above paragraphechoesbeliefs deeply held by
mary researchersBut the long list in the precedingsec-
tion shouldmake it clearthatit may be possibleto be
attractedby functionalprogrammingbut still find it un-
usable.

For instance hereis a postingto the Haslell mailing
list.

| have beentrying to learn Haslell and have
beenimpressedvith bothits eleganceandthe
way it allows me to write codethat works on
thefirst try (or two). However, | amnotare-
searcher | do commercialsoftware develop-
mentandneedsomedocumentatiorandstabil-

ity. [9]

Mailing lists relatedto functionallanguagesrerife with
requestsfor foreign function interfaces, libraries, and
tools.

Doubtless thereare prejudicedindividuals out there,
accustomedo C and its variantsand dismissve of al-
ternatves. But mary out theredo “get it”, and eschev
functionalprogrammindor otherreasons.

3 Lessons

To summarize thereare a large numberof factorsthat
hinderthe widespreadadoptionof functionallanguages.
To be widely used,a languageshould supportinterlan-
guageworking, possessextensie libraries, be highly
portable,have a stableand easyto install implementa-
tion, comewith deluggersandprofilers,beaccompanied
by training coursesandhave a goodtrackrecordon pre-
vious projects.It helpsif theimplementatioris efficient,
but this is not an absoluterequirement. Potentialusers
may find the languageattractize, but rejectit becausef
someor all of theprecedingactors.Herearethelessons
| draw from this exercise.

Killer App The factorslisted constitutea significant
barrierto useof functionallanguageshut notanabsolute
barriet A userwill forego mary corveniencesf given

Functional Programming

a compellingreasonto do so. Tcl/Tk and Perl roseto
prominencewithout benefitof detuggersor profilers.

Someresearcher$iope that the high-level nature of
functional languageswill prove compellingon its own,
but experienceto date suggestghis hopeis misplaced.
Instead,experienceshaws that userswill be drawn to a
languageif it lets them corvenientlydo somethingthat
otherwisds difficult to achieve. Lik e othernew technolo-
gies,functionallanguagesnustseektheir killer app.

A previous column listed a numberof suchapplica-
tions, stressindnow eachexploitedsomestrengthof func-
tionallanguage$l]. Telecommunicationdevelopersare
drawn to Erlangby its supportfor concurreng anddistri-
bution; thelatteris tied directly to thefactthatfunctional
data, being immutable, is well suited for transmission
acrossa network. Creatorsof theoremproversaredravn
to ML by its supportfor symboliccomputationsGeneti-
cists are drawn to CPL/Kleisli becausédts type system
supportsaccesgo heterogeneoudatabasesandbecause
the mathematicapropertiesof functionallanguagesan
be exploitedin queryoptimization.Expertsystemdevel-
opersare dravn to Natural Expertbecausdazy evalua-
tion resembleseasonindyy backward chaining,andbe-
causelazy evaluationenablesa space-dfcient interface
to databases.

Top-notchfunctional programmingresearchis often
tied to applications. Carngie-Mellon groundsits func-
tional programmingwork in the Fox project,which aims
to build network driversin SML. Chalmersresearchers
have closerelationswith CarlstedandLogikkonsult,and
amongotherthingshave appliedpartial evaluationto air-
line scheduling. Glasgav teamedup with York to pro-
duceawholebookof applications.The OregonGraduate
Instituteis teamingup with Intel to look at hardwarede-
sign. Yale researcherbave appliedfunctional program-
ming to music performanceandnaturallanguageunder
standing,and are teamingup with Microsoft to look at
animation. However, mostof this researcthasnot cen-
teredaroundapplicationlibrariesor packageshat might
attractsignificantusercommunities.

Applicationshave unexploreddepths.Jumpin, thewa-
ter’sfine!

Reseach emphasis Despite the applications work
listed above, functional programmingresearcherglace
far moreemphasi®n developingsystemghanon apply-
ing thosesystemsFurther thebulk of effort is devotedto
languagedesign,programanalysis,andthe construction
of optimizing compilers,with far lessto debuggers pro-
filers, andsoftwareengineeringoolsandmethodologies.

Shiftsin researctemphasisnayrequireshiftsin there-
wardstructure As Kuhnnotedin TheStructue of Scien-
tific Revolutions the mainstreanof academiavork con-
sistsof incrementalkontributionsto existing paradigms.
Within functional programmingthe mainstreams pro-
gramanalysisandcompilerdevelopment.Leadersn the
field needto move into the new areasof tools andappli-
cations,and conferencesnd journalsneedto explicitly
welcomecontritutions in theseareas. Gopal Guptais
organizingthe PADL 99, the First InternationalConfer
enceon PracticalAspectsof Declaratve Language$10].
To aid a paradigmshift, a field may setout new criteria
for judging new work. Simon Peyton Jonesand myself
have just completedan editorial for the Journal of Func-
tional Programmingthat welcomespaperson functional
programmingpracticeand experience,and setsout the
criteriawe applyto judgethem[11].

A modestproposal Evena modestimplementatiorof
a functionallanguageshouldprovide a foreign function
interface,a dehugger anda profiler. By this measure|

know of only afew modesimplementationsf functional
languagesincluding Ericssons Erlang, Harlequins ML

Works,andINRIA’s CAML.

Andrew Tolmach and Andrew Appel devised an in-
geniousdehuggerfor the SML/NJ implementation12],
but asthe implementatiorevolved the deluggerwasnot
maintainedandthereis nodeluggeravailablefor thecur-
rentreleaseof SML/NJ.

Thereis atensionbetweerbuilding usefulsystemsand
extendingthe frontiers of researchand functional lan-
guageresearchersanpride themseleson having found
the resourcego build someexcellentsystems.We now
needto take the next step,and ensurethesesystemsn-
cludeessentiainterfacesandtools. We shouldno longer
settlefor implementationshatarenot evenmodest.

Hope This long list of reasonsvhy no one usesfunc-

tionallanguagesnaylook depressinghut | preferto look

on the bright side. Peopledo not rejectfunctional lan-

guagedecausef stupidity, ratherthey rejectthemfor a

variety of goodreasons.Stupidity is famouslyresistant
to attack— theseotherproblemsare somethingwe can
tackle.

References

[1] Philip Wadler An angry half-dozen, ACM SIG-
PLAN Notices 33(2):25-30, February1998. [NB.

(2]

3]

[4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

Functional Programming

Table of contentson the cover of this issueis
wrong.]

Philip Wadler How to declare an imperatie.
ACM ComputingSurves 29(3):240-263Septem-
ber1997.

Rinus Plasmeijerand Marko van Eelelen, Pure
and efficient functional programming using the
“unique” featuresof Clean. ACM SIGPLAN No-
tices to appear

SimonPeyton JonesErik Meijer, andDaanLeijen.
Scripting COM componentsin Haslell. IEEE
Fifth International Confeenceon Softwae Reuse
Vancouer, BC, Junel998.
www.haskell.org/active/

activehaskell.html

Lal Geoge, MLRISC: CustomizableandReusable
CodeGeneratorsBell Labstechnicalreport, May
1997.

www.cs.bell-labs.com/cm/cs/what/
sminj/doc/MLRISC/

JohnHughes gditor, StandarcHaslell.
www.cs.chalmers.se/“rjimh/Haskell/

J. Launchlury and S. L. Peyton Jones,Lazy func-
tional statethreads.In ACM Confeenceon Pro-
grammingLanguage Design and Implementation
Orlando,Florida, 1994.

Nigel W. O. Hutchison, Ute Neuhaus, Manfred
Schmidt-Schaussand Cordy Hall. Natural Ex-
pert: a commercial functional programmingen-
vironment. Journal of Functional Programming
7(2):163-182March1997.

S. AlexanderJacobsoralex@i2x.com , letterto
Haslell mailing list, 3 May 1998.

Gopal Gupta,chair, First InternationalConference
on PracticalAspects.
www.cs.nsmsu.edu/"complog/
conferences/padl99/

Simon Peyton Jonesand Philip Wadler Editorial:
Practiceand experiencepapers,Journal of Func-
tional Programming to appear
www.dcs.glasgow.ac.uk/jfp/

Andrew Tolmachand Andrew Appel, A Debugger
for StandardML. Journal of Functional Program-
ming, 5(2):155-200April 1995.

Philip Wadlerworkswith the Unix andML groupsat Bell
Labs.Hemustlike workingwith others: heis co-designer
of the Haslell and GJ languages,co-authorof Introduc-
tion to FunctionalProgrammingand co-Editorin-Chief
of the Journalof FunctionalProgramming

