

nesC

Peter C. Chapin
CIS-3030, Vermont Technical College

Wireless Sensor Networks

● Small, inexpensive nodes (“motes”)
– Equipped with application specific sensors.

– Custom software

● Larger base station
– Could be a laptop

– Could be a PDA

● Nodes gather environmental data and relay it to
the base station.
– Wireless range limited; multiple hops necessary.

Many Parameters

● Nodes have high failure rate.
– Network must adapt to lost nodes and paths.

● Reception is variable.
– Network must adapt to radio fading.

● New nodes might appear at any time.
– Network must adapt to additional nodes and paths.

● Nodes might move around.
● Various lifetime requirements.

Very Small Systems

● One common theme is that the nodes are all
very small.
– As little as 4K of RAM

– As little as 16K of program memory

– Slow processors (1 MHz?)

– Very low power operation
● Ideally a node should run for weeks or months on two AA

batteries.
● Must minimize radio communication

– Very inexpensive
● Many applications require nodes to be expendable.

Programming Languages

● Assembly Language
– Not actually used that much.

– Too low level.

– Not portable.

● C
– Commonly used.

– Easier to program (than assembly), still highly
efficient.

● nesC
– A specialized dialect of C

Component Oriented

● nesC is a “component oriented” language.
– You define various components (modules) that
provide and use specific interfaces.

– You compose these components into configurations
after the fact.

● Called “wiring” the components.

– The configurations are also components and can be
used in larger configurations.

● Intended to mimic the way electronic
components can be wired together.

Example Interface

● This is in a file TimerControl.nc
– interface TimerControl {

command error_t setTimeOut(int ms);
command int getTimeOut();
command error_t start();
event void fired(int count);

}

– Commands are functions you can call in the
interface.

– Events are “call back” functions that you must
provide so the interface can call you.

Example Timer Module

● This is in a file TimerC.nc
– module TimerC {

provides interface TimerControl;
}
implementation {

int current_timeout = 0;

command error_t TimerControl.setTimeOut(int ms)
{
 current_timeout = ms;

return SUCCESS;
}

}

● Must implement all commands in
TimerControl.

Example Application Module

● This is in a file MainC.nc
– module MainC {

uses interface TimerControl;
}
implementation {

void f()
{

call TimerControl.setTimeOut(250);
call TimerControl.start():

}

event void TimerControl.fired(int count)
{

// Do this when the timer fires!
}

}

● Must implement all events in TimerControl.

Example Configuration

● This is in a file AppC.nc
– configuration AppC {
}
implementation {

components MainC, TimerC;

MainC.TimerControl -> TimerC.TimerControl;
}

● MainC is “wired” to TimerC.
– TimerControl commands invoked by Main module

call into Timer module.

– TimerControl events invoked by Timer module call
into Main module.

● Neither module is aware of the other.

Fan-In/Fan-Out

● Consider this
– configuration AppC { }
implementation {

components A, B, Timer;

A.TimerControl -> Timer;
B.TimerControl -> Timer;

}

● TimerControl commands from module A or B
invoke code in module Timer. (Fan-In)

● TimerControl events from module Timer invoke
code in both modules A and B! (Fan-Out)

Diagram

A B

Timer

● When TimerControl.fire() is signaled, the
implementation in both A and B is invoked.

● Compiler executes them in some order.
● Return values are combined with a combining

function (user specified, but there are defaults)

Split Phase

● Consider this simple message sending interface
– interface SendMessage {
 command error_t send(char *message);
 event void sendDone();
}

● To send a message invoke the send command.

● The sendDone event will be signaled when the
message has been sent.
– Thus the sender does not have to wait for the

sending.

– Can sleep (low power mode) instead.

Somewhat Bigger Example

● This is a more complicated module
– module RadioC {

provides interface Initialize;
provides interface SendMessage;
uses interface TimerControl;

}
implementation {

// Must implement all commands in
// Initialize and SendMessage
//
// Must implement all events in
// TimerControl

}

Larger Application

● The main component is always a configuration
– configuration AppC { }
implementation {

components MainC, ControlC;
components RadioC, TimerC;

MainC.Initialize -> RadioC;
MainC.Initialize -> ControlC;
RadioC.TimerControl -> TimerC;
ControlC.SendMessage -> RadioC;

}

Larger Diagram

Control Radio Timer

Main

Initialize
Initialize

SendMessage TimerControl

nesC Compiler

● The nesC compiler converts nesC to plain C.
– Reads the entire program at once.

● Only possible because programs are small
● Property of sensor network applications

– Writes a single .c file that is then compiled with a
plain C compiler.

● Whole program analysis and optimization
feasible.
– Allows much more efficient code to be generated.

– C compiler can see entire code base at once.

TinyOS

● An operating system for wireless sensor nodes.
● Written in nesC

– Shipped as a collection of nesC components.

– Programmer wires only those components needed

– nesC compiler builds program from just the
components wired.

● Globally optimizes entire system: application + OS.
● No components are included that are not used.

● Potentially useful for other embedded systems.

Concurrency in nesC/TinyOS

● Many embedded systems need concurrency.
– A radio packet might arrive at any time.

– A timer might say, “time to read the sensors.”

– A hardware device might generate an interrupt.

● Thread based concurrency is inefficient.
– Requires that every thread have its own stack.

● Memory hungry!

– Requires that “context switching” between threads.
● Takes too long... especially on a slow processor.

Tasks

● nesC has “tasks” that are “posted”
– task do_something()
{

// Normal C code.
}

● Tasks look like regular C functions inside the
implementation of a module.

● Posted with post do_something(); inside a
function, command, event, or another task.

Run To Completion

● TinyOS has a queue of pending tasks.
– Each post operation adds to that queue.

● When the node is idle, TinyOS runs tasks from
the queue in order.
– They do not interrupt each other; run to completion

– A long job might be broken into steps.
● After each step post another task for the next step.
● Allows long jobs to be interleaved, but in a simple way.

Interrupt Driven

● A node is driven entirely by hardware interrupts.
– Sleeps most of the time.

– When a hardware device (radio, timer, sensor)
interrupts...

● An event is signaled from the module controlling that
device.

● Event handlers execute commands, signal other events,
post tasks, etc (directly or indirectly).

– When the handling of an interrupt is over, the task
queue is drained.

– Repeat!

Split Phase Revisited

● Now we see why split phase is good
– The send command returns quickly.

● Hardware begins sending.
● Task queue drains... processor goes to sleep.

– When the message is sent the hardware interrupts.
● The radio handling module signals sendDone.
● Application then continues.
● Sleeps again as soon as possible.

Advantages of nesC Concurrency

● Only a single stack!
– At any moment there is only a single call stack

active. Commands, events, functions, and tasks all
use it.

● Studies have shown that this massively reduces memory
requirements.

● No context switching!
– Only a single thread of execution.

● Simplifies synchronization problems.
– But doesn't eliminate them. nesC has some

additional features in this area.

Take Home Message

● Specialized application domains can benefit
from specialized programming languages.
– Small embedded systems have unusual needs

● nesC and TinyOS were designed to meet those needs.

● Other special domains
– HPC (High Performance Computing)

– Graphics

– Database

– etc...

● You may find specialized languages there too.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

