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Wireless Sensor Networks

● Small, inexpensive nodes (“motes”)
– Equipped with application specific sensors.

– Custom software

● Larger base station
– Could be a laptop

– Could be a PDA

● Nodes gather environmental data and relay it to 
the base station.
– Wireless range limited; multiple hops necessary.



  

Many Parameters

● Nodes have high failure rate.
– Network must adapt to lost nodes and paths.

● Reception is variable.
– Network must adapt to radio fading.

● New nodes might appear at any time.
– Network must adapt to additional nodes and paths.

● Nodes might move around.
● Various lifetime requirements.



  

Very Small Systems

● One common theme is that the nodes are all 
very small.
– As little as 4K of RAM

– As little as 16K of program memory

– Slow processors (1 MHz?)

– Very low power operation
● Ideally a node should run for weeks or months on two AA 

batteries.
● Must minimize radio communication

– Very inexpensive
● Many applications require nodes to be expendable.



  

Programming Languages

● Assembly Language
– Not actually used that much.

– Too low level.

– Not portable.

● C
– Commonly used.

– Easier to program (than assembly), still highly 
efficient.

● nesC
– A specialized dialect of C



  

Component Oriented

● nesC is a “component oriented” language.
– You define various components (modules) that 
provide and use specific interfaces.

– You compose these components into configurations 
after the fact.

● Called “wiring” the components.

– The configurations are also components and can be 
used in larger configurations.

● Intended to mimic the way electronic 
components can be wired together.



  

Example Interface

● This is in a file TimerControl.nc
– interface TimerControl {

command error_t setTimeOut(int ms);
command int getTimeOut();
command error_t start();
event   void fired(int count);

}

– Commands are functions you can call in the 
interface.

– Events are “call back” functions that you must 
provide so the interface can call you.



  

Example Timer Module

● This is in a file TimerC.nc
– module TimerC {

provides interface TimerControl;
}
implementation {

int current_timeout = 0;

command error_t TimerControl.setTimeOut(int ms)
{
   current_timeout = ms;

return SUCCESS;
}

}

● Must implement all commands in 
TimerControl.



  

Example Application Module

● This is in a file MainC.nc
– module MainC {

uses interface TimerControl;
}
implementation {

void f()
{

call TimerControl.setTimeOut(250);
call TimerControl.start():

}

event void TimerControl.fired(int count)
{

// Do this when the timer fires!
}

}

● Must implement all events in TimerControl.



  

Example Configuration

● This is in a file AppC.nc
– configuration AppC {
}
implementation {

components MainC, TimerC;

MainC.TimerControl -> TimerC.TimerControl;
}

● MainC is “wired” to TimerC.
– TimerControl commands invoked by Main module 

call into Timer module.

– TimerControl events invoked by Timer module call 
into Main module.

● Neither module is aware of the other.



  

Fan-In/Fan-Out

● Consider this
– configuration AppC { }
implementation {

components A, B, Timer;

A.TimerControl -> Timer;
B.TimerControl -> Timer;

}

● TimerControl commands from module A or B 
invoke code in module Timer. (Fan-In)

● TimerControl events from module Timer invoke 
code in both modules A and B! (Fan-Out)



  

Diagram

A B

Timer

● When TimerControl.fire() is signaled, the 
implementation in both A and B is invoked.

● Compiler executes them in some order.
● Return values are combined with a combining 

function (user specified, but there are defaults)



  

Split Phase

● Consider this simple message sending interface
– interface SendMessage {
 command error_t send(char *message);
 event void sendDone();
}

● To send a message invoke the send command.

● The sendDone event will be signaled when the 
message has been sent.
– Thus the sender does not have to wait for the 

sending.

– Can sleep (low power mode) instead.



  

Somewhat Bigger Example

● This is a more complicated module
– module RadioC {

provides interface Initialize;
provides interface SendMessage;
uses interface TimerControl;

}
implementation {

// Must implement all commands in
// Initialize and SendMessage
//
// Must implement all events in
// TimerControl

}



  

Larger Application

● The main component is always a configuration
– configuration AppC { }
implementation {

components MainC, ControlC;
components RadioC, TimerC;

MainC.Initialize -> RadioC;
MainC.Initialize -> ControlC;
RadioC.TimerControl  -> TimerC;
ControlC.SendMessage -> RadioC;

}



  

Larger Diagram
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nesC Compiler

● The nesC compiler converts nesC to plain C.
– Reads the entire program at once.

● Only possible because programs are small
● Property of sensor network applications

– Writes a single .c file that is then compiled with a 
plain C compiler.

● Whole program analysis and optimization 
feasible.
– Allows much more efficient code to be generated.

– C compiler can see entire code base at once.



  

TinyOS

● An operating system for wireless sensor nodes.
● Written in nesC

– Shipped as a collection of nesC components.

– Programmer wires only those components needed

– nesC compiler builds program from just the 
components wired.

● Globally optimizes entire system: application + OS.
● No components are included that are not used.

● Potentially useful for other embedded systems.



  

Concurrency in nesC/TinyOS

● Many embedded systems need concurrency.
– A radio packet might arrive at any time.

– A timer might say, “time to read the sensors.”

– A hardware device might generate an interrupt.

● Thread based concurrency is inefficient.
– Requires that every thread have its own stack.

● Memory hungry!

– Requires that “context switching” between threads.
● Takes too long... especially on a slow processor.



  

Tasks

● nesC has “tasks” that are “posted”
– task do_something()
{

// Normal C code.
}

● Tasks look like regular C functions inside the 
implementation of a module.

● Posted with post do_something(); inside a 
function, command, event, or another task.



  

Run To Completion

● TinyOS has a queue of pending tasks.
– Each post operation adds to that queue.

● When the node is idle, TinyOS runs tasks from 
the queue in order.
– They do not interrupt each other; run to completion

– A long job might be broken into steps.
● After each step post another task for the next step.
● Allows long jobs to be interleaved, but in a simple way.



  

Interrupt Driven

● A node is driven entirely by hardware interrupts.
– Sleeps most of the time.

– When a hardware device (radio, timer, sensor) 
interrupts...

● An event is signaled from the module controlling that 
device.

● Event handlers execute commands, signal other events, 
post tasks, etc (directly or indirectly).

– When the handling of an interrupt is over, the task 
queue is drained.

– Repeat!



  

Split Phase Revisited

● Now we see why split phase is good
– The send command returns quickly.

● Hardware begins sending.
● Task queue drains... processor goes to sleep.

– When the message is sent the hardware interrupts.
● The radio handling module signals sendDone.
● Application then continues.
● Sleeps again as soon as possible.



  

Advantages of nesC Concurrency

● Only a single stack!
– At any moment there is only a single call stack 

active. Commands, events, functions, and tasks all 
use it.

● Studies have shown that this massively reduces memory 
requirements.

● No context switching!
– Only a single thread of execution.

● Simplifies synchronization problems.
– But doesn't eliminate them. nesC has some 

additional features in this area.



  

Take Home Message

● Specialized application domains can benefit 
from specialized programming languages.
– Small embedded systems have unusual needs

● nesC and TinyOS were designed to meet those needs.

● Other special domains
– HPC (High Performance Computing)

– Graphics

– Database

– etc...

● You may find specialized languages there too.
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