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Pattern Matching

• What is it?
– Match a complex data structure against a pattern
– Common feature of functional languages

• Example

def sumAndDifference(x: Int, y: Int) = (x + y, x – y)

val result = sumAndDifference(1, 2)
val (resultSum, resultDifference) = result
// Match result against a “tuple pattern”



Details
• val (resultSum, resultDifference) = result

– Names bound to components of result
– Names are vals here (could also be vars)
– Names have types inferred

• result has type (Int, Int) so resultSum must be Int

– Names can be used like any other val (or var)
• val x = resultSum + 1



Compare Approaches

• Contrast:
– Without pattern matching

• val result = sumAndDifference(a, b)
val x = result._1 + 1
val y = result._1 * result._2

– With pattern matching
• val (sum, difference) = 

sumAndDifference(a, b)
val x = sum + 1
val y = sum * difference



Usefulness of Tuples

• Why Tuples?
– Can (easily) return multiple values from a method
– Caller pattern matches to extract values

• … and give them suitable names
• Tuple value returned often not manipulated directly

• Pattern Matching Called Deconstruction
– val myArray = Array( (1, “Hello”), (2, “World”) )

// myArray has type Array[(Int, String)]

val (key, message) = myArray(1)
// Deconstruct tuple in array element #1



List Patterns

• You Can Pattern Match Lists
– val myList = List(1, 2, 3)
val x :: xs = myList

– The :: symbol separates the “head” and “tail.”
• Defn: The head of a list is the first element
• Defn: The tail of a list is everything else (a list)

– After the above code…
• x == 1

• xs == List(2, 3)



Nil

• The Symbol Nil is the Empty List
– val myList = List(1)
val x :: xs = myList

– After this code executes
• x == 1

• xs == Nil

– The empty list can also be represented as 
List()

• The distinction between List() and Nil does not 
concern us now



Impossible Matches?

• Consider
– val myList: List[Int] = List()
val x :: xs = myList // What happens?

– When this code executes…
• scala.MatchError exception is thrown!
• If the match executes successfully, the names are

bound to something.
– val myPair = (1, 2)
val x :: xs = myPair // Huh?

• Compiler says: “error: constructor can’t be instantiated 
to expected type.”



Arrays vs. Lists

Arrays
• Fast access to first element
• Fast access to any element
• No pattern matching
• Mutable

Lists
• Fast access to first element
• O(n) access to any element
• Pattern matching
• Immutable

Prefer List unless you need fast random access or mutability



What Else?

• Arbitrary Pattern Matching
– For your own classes define method unapply

• Beyond the scope of these slides

– For many uses define a case class
• Compiler creates unapply for you...
• … and also some other services.



Case Classes

• Simple Example
– case class Student(

ID     : Int,
name   : String,
balance: Double)

– Example use
• val studentList = getAllStudents(2012)
for (Student(ID, name, balance) <- studentList) {
// ID, name, and balance for “current” student

}

• Pattern match in blue above.
• Pattern matching allowed inside for bindings also!



Case Classes and Inheritance

• Case Classes can be related
– Useful for creating complex data structures

• sealed abstract class Tree
case object Leaf extends Tree
case class Node(
data: Int, left: Tree, right: Tree) extends Tree

– Both Left and Node are trees. Thus:
• val myTree =

Node( 1978, Leaf, Node(2012, Leaf, Leaf) )
displayTree(myTree)

– Can create instances without new



Picture

1978

2012

val myTree =
Node( 1978, Leaf, Node(2012, Leaf, Leaf) )



Use Pattern Matching

• Deconstruct Trees
– val Node(_, _, Node(value, _, _)) = myTree

– The _ symbol means:
• “match anything”
• “I don’t care what it is”

– The pattern above…
• Matches myTree to a tree with a certain shape
• Binds value to the data item in the right child
• Throws an exception if the match fails
• Infers the type of value as Int.



Option

• Scala Library Option
– Case class for representing optional data

• Two subclasses: Some and None
• def getName(ID: Int): Option[String] = …
…
val Some(name) = getName(1234)

• Throws MatchError if getName returns None
– Option used instead of null (as in Java)

• Better type safety
• More flexible. Option has methods to allow processing 

of optional data safely even if it’s not really there.

Really an object



Match Expressions

• Roughly Similar to switch in C/Java.
– val x = someInt match {

case 1 => 3.14
case 2 => 2.78
case _ => 0.0

}

– Expression evaluates to a value depending on 
match taken.

– Matches checked in order (top to bottom)
– The _ symbol means “anything else.”



Conditional Not Necessary

• Conditional Expressions are Redundant
– val x = if (condition) e1 else e2

– val x = condition match {
case true  => e1
case false => e2

}

– Conditionals provided as convenience. Potentially 
easier to optimize.

– Compiler infers type of match as with conditional 
(least upper bound type of the branches)



Match Cases Are Patterns

• Pattern Matching Applies
– val myPair = (1, 2)
val result = myPair match {

case (1, b) => b + 1
case (a, 1) => a + 1
case (_, b) => b

}

– Last pattern above matches everything. Must be 
last.

– Can deconstruct complex data in different ways 
and do different things in each case.



List Matches

• Computing List Length Without Looping
– def length[A](myList: List[A]): Int =

myList match {
case Nil => 0
case _ :: tail => 1 + length(tail)

}

– This is idiomatic function style.
• Note the use of recursion instead of (explicit) looping
• No vars
• Recursive observation: “Length of a list is one plus the 

length of the tail”



Handling Option

• Pattern Matching Style
– getName(ID) match {

case None =>
println(“Invalid ID: ” + ID)

case Some(name) =>
println(“Processing ” + name + “…”)

}

– getName method returns Option[String]
– This is still not the most idiomatic style.

• Will show another way once we have higher order 
methods.



Tree Matches

• Matching Complex Data Structures
– val result = myTree match {

case Leaf => 0
case Node(1, _, _) => 1
case Node(_, Node(v1, _, _), Node(v2, _, _)

=> v1 + v1
case _ => throw new InvalidTreeShapeException

}
– val newTree = myTree match {

case Leaf => Leaf
case Node(0, left, Node(x, _, right))

=> Node(x, left, right)
case _ => throw new InvalidTreeShapeException

}



Guarded Patterns

• Patterns in a match can be qualified
– someValue match {

case 1 => println(“It’s one”)
case a if (a < 0) =>

println(“The value ” + a + “ is negative”)
case _ => println(“It’s something else”)

}

– Cases tried in order…
• … but if a guard is false that case is skipped.



Compare

• As a guarded pattern
– x match {

case a if (a < 0) => …
case _ => …

}

• With a conditional in the branch
– x match {

case a => if (a < 0) …
case _ => …

}



More Interesting Example

• Guarded patterns and more complex matching
– val myPair: (Int, Int) = …
myPair match {

case (a, b) if (isPrime(a)) => …
case (a, b) if (a == 2*b) => …
case (a, b) => …

}

– Consider: complex tree patterns with elaborate 
guard conditions on subtrees, etc.



Regular Expressions

• Pattern matching and regular expressions
– val Name = ”””^\s*(\w+)\s+(\w+)\s*$”””.r
val FirstName = ”””^\s*(\w+)\s*$”””.r
“Jill Jones” match {
case FirstName(first) => println(s”$first”)
case Name(first, last) =>
println(s”$last, $first”)

case _ => println(“Invalid name format”)
}

– Triple quoted strings disable escape sequences.
– Note use of r method on string. This converts string to 

regular expression object.
– Matching extracts parenthesized fields

Must use upper case first letter!
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