
Pattern Matching

CIS-3030, Vermont Technical College
Peter C. Chapin

Pattern Matching

• What is it?
– Match a complex data structure against a pattern
– Common feature of functional languages

• Example

def sumAndDifference(x: Int, y: Int) = (x + y, x – y)

val result = sumAndDifference(1, 2)
val (resultSum, resultDifference) = result
// Match result against a “tuple pattern”

Details
• val (resultSum, resultDifference) = result

– Names bound to components of result
– Names are vals here (could also be vars)
– Names have types inferred

• result has type (Int, Int) so resultSum must be Int

– Names can be used like any other val (or var)
• val x = resultSum + 1

Compare Approaches

• Contrast:
– Without pattern matching

• val result = sumAndDifference(a, b)
val x = result._1 + 1
val y = result._1 * result._2

– With pattern matching
• val (sum, difference) =

sumAndDifference(a, b)
val x = sum + 1
val y = sum * difference

Usefulness of Tuples

• Why Tuples?
– Can (easily) return multiple values from a method
– Caller pattern matches to extract values

• … and give them suitable names
• Tuple value returned often not manipulated directly

• Pattern Matching Called Deconstruction
– val myArray = Array((1, “Hello”), (2, “World”))

// myArray has type Array[(Int, String)]

val (key, message) = myArray(1)
// Deconstruct tuple in array element #1

List Patterns

• You Can Pattern Match Lists
– val myList = List(1, 2, 3)
val x :: xs = myList

– The :: symbol separates the “head” and “tail.”
• Defn: The head of a list is the first element
• Defn: The tail of a list is everything else (a list)

– After the above code…
• x == 1

• xs == List(2, 3)

Nil

• The Symbol Nil is the Empty List
– val myList = List(1)
val x :: xs = myList

– After this code executes
• x == 1

• xs == Nil

– The empty list can also be represented as
List()

• The distinction between List() and Nil does not
concern us now

Impossible Matches?

• Consider
– val myList: List[Int] = List()
val x :: xs = myList // What happens?

– When this code executes…
• scala.MatchError exception is thrown!
• If the match executes successfully, the names are

bound to something.
– val myPair = (1, 2)
val x :: xs = myPair // Huh?

• Compiler says: “error: constructor can’t be instantiated
to expected type.”

Arrays vs. Lists

Arrays
• Fast access to first element
• Fast access to any element
• No pattern matching
• Mutable

Lists
• Fast access to first element
• O(n) access to any element
• Pattern matching
• Immutable

Prefer List unless you need fast random access or mutability

What Else?

• Arbitrary Pattern Matching
– For your own classes define method unapply

• Beyond the scope of these slides

– For many uses define a case class
• Compiler creates unapply for you...
• … and also some other services.

Case Classes

• Simple Example
– case class Student(

ID : Int,
name : String,
balance: Double)

– Example use
• val studentList = getAllStudents(2012)
for (Student(ID, name, balance) <- studentList) {
// ID, name, and balance for “current” student

}

• Pattern match in blue above.
• Pattern matching allowed inside for bindings also!

Case Classes and Inheritance

• Case Classes can be related
– Useful for creating complex data structures

• sealed abstract class Tree
case object Leaf extends Tree
case class Node(
data: Int, left: Tree, right: Tree) extends Tree

– Both Left and Node are trees. Thus:
• val myTree =

Node(1978, Leaf, Node(2012, Leaf, Leaf))
displayTree(myTree)

– Can create instances without new

Picture

1978

2012

val myTree =
Node(1978, Leaf, Node(2012, Leaf, Leaf))

Use Pattern Matching

• Deconstruct Trees
– val Node(_, _, Node(value, _, _)) = myTree

– The _ symbol means:
• “match anything”
• “I don’t care what it is”

– The pattern above…
• Matches myTree to a tree with a certain shape
• Binds value to the data item in the right child
• Throws an exception if the match fails
• Infers the type of value as Int.

Option

• Scala Library Option
– Case class for representing optional data

• Two subclasses: Some and None
• def getName(ID: Int): Option[String] = …
…
val Some(name) = getName(1234)

• Throws MatchError if getName returns None
– Option used instead of null (as in Java)

• Better type safety
• More flexible. Option has methods to allow processing

of optional data safely even if it’s not really there.

Really an object

Match Expressions

• Roughly Similar to switch in C/Java.
– val x = someInt match {

case 1 => 3.14
case 2 => 2.78
case _ => 0.0

}

– Expression evaluates to a value depending on
match taken.

– Matches checked in order (top to bottom)
– The _ symbol means “anything else.”

Conditional Not Necessary

• Conditional Expressions are Redundant
– val x = if (condition) e1 else e2

– val x = condition match {
case true => e1
case false => e2

}

– Conditionals provided as convenience. Potentially
easier to optimize.

– Compiler infers type of match as with conditional
(least upper bound type of the branches)

Match Cases Are Patterns

• Pattern Matching Applies
– val myPair = (1, 2)
val result = myPair match {

case (1, b) => b + 1
case (a, 1) => a + 1
case (_, b) => b

}

– Last pattern above matches everything. Must be
last.

– Can deconstruct complex data in different ways
and do different things in each case.

List Matches

• Computing List Length Without Looping
– def length[A](myList: List[A]): Int =

myList match {
case Nil => 0
case _ :: tail => 1 + length(tail)

}

– This is idiomatic function style.
• Note the use of recursion instead of (explicit) looping
• No vars
• Recursive observation: “Length of a list is one plus the

length of the tail”

Handling Option

• Pattern Matching Style
– getName(ID) match {

case None =>
println(“Invalid ID: ” + ID)

case Some(name) =>
println(“Processing ” + name + “…”)

}

– getName method returns Option[String]
– This is still not the most idiomatic style.

• Will show another way once we have higher order
methods.

Tree Matches

• Matching Complex Data Structures
– val result = myTree match {

case Leaf => 0
case Node(1, _, _) => 1
case Node(_, Node(v1, _, _), Node(v2, _, _)

=> v1 + v1
case _ => throw new InvalidTreeShapeException

}
– val newTree = myTree match {

case Leaf => Leaf
case Node(0, left, Node(x, _, right))

=> Node(x, left, right)
case _ => throw new InvalidTreeShapeException

}

Guarded Patterns

• Patterns in a match can be qualified
– someValue match {

case 1 => println(“It’s one”)
case a if (a < 0) =>

println(“The value ” + a + “ is negative”)
case _ => println(“It’s something else”)

}

– Cases tried in order…
• … but if a guard is false that case is skipped.

Compare

• As a guarded pattern
– x match {

case a if (a < 0) => …
case _ => …

}

• With a conditional in the branch
– x match {

case a => if (a < 0) …
case _ => …

}

More Interesting Example

• Guarded patterns and more complex matching
– val myPair: (Int, Int) = …
myPair match {

case (a, b) if (isPrime(a)) => …
case (a, b) if (a == 2*b) => …
case (a, b) => …

}

– Consider: complex tree patterns with elaborate
guard conditions on subtrees, etc.

Regular Expressions

• Pattern matching and regular expressions
– val Name = ”””^\s*(\w+)\s+(\w+)\s*$”””.r
val FirstName = ”””^\s*(\w+)\s*$”””.r
“Jill Jones” match {
case FirstName(first) => println(s”$first”)
case Name(first, last) =>
println(s”$last, $first”)

case _ => println(“Invalid name format”)
}

– Triple quoted strings disable escape sequences.
– Note use of r method on string. This converts string to

regular expression object.
– Matching extracts parenthesized fields

Must use upper case first letter!

	Pattern Matching
	Pattern Matching
	Details
	Compare Approaches
	Usefulness of Tuples
	List Patterns
	Nil
	Impossible Matches?
	Arrays vs. Lists
	What Else?
	Case Classes
	Case Classes and Inheritance
	Picture
	Use Pattern Matching
	Option
	Match Expressions
	Conditional Not Necessary
	Match Cases Are Patterns
	List Matches
	Handling Option
	Tree Matches
	Guarded Patterns
	Compare
	More Interesting Example
	Regular Expressions

